
CS772: Deep Learning for

Natural Language Processing

(DL-NLP)

EnCo-DeCo, A*, Viterbi, Beam Search,
Neural Decoding

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay

Week 8 of 19feb24

1-slide recap

• EnCo-DeCo

• BPTT

• Foundations of representation

learning

• Nittie gritties of BP

A B C

w1 w4

w2 w3

A0 B0 C0

A1 B1 C1

A3 B3 C3

A2 B2 C2

w1 w2 W3 W4

time=

0

time=

2

time=

1

time=

3

w1 w2 W3 W4

w1 w2 W3 W4

Loss/Error= E

I

h0 h1

o1 o2
o3 o4

c5

a51

a52
a53

a54

like the

h3
h2

camer

a

<EOS

>

h4 h5

Input Sequence: (𝑥1 𝑥2 𝑥3 𝑥4… . . 𝑥𝑖 …… . 𝑥𝑁)

Output Sequence: (𝑦1 𝑦2 𝑦3 𝑦4… . . 𝑦𝑖 …… . 𝑦𝑁)

Sequence Labelling Task

Input and output sequences have the same length

Variable length input

Output contains categorical labels

Output at any time-step typically depends on neighbouring output labels and input

elements

Part-of-speech

tagging

Recurrent Neural Network is a powerful model to learn sequence labelling

tasks

How do we model language modeling

as a sequence labeling task?

The capital of Maharashtra is Mumbai

capital of Maharashtra is MumbaiThe

<BOS>

<EOS>

The output sequence is one-time step ahead of the input sequence

How do we evaluate quality of language models?

Evaluate the ability to predict the next word given a

context

Evaluate the probability of a testset of

sentences

Standard test sets exist for evaluating language models:

Penn Treebank, Billion Word Corpus, WikiText

Evaluating Language Models

https://research.fb.com/building-an-efficient-neural-language-model-over-

a-billion-words/

RNN models outperform n-gram models

A special kind of RNN network – LSTM- does

even Better

Long distance dependencies:

Sentence-1

• Ram who is a good student and lives

in London which is a large metro, will

go to the University for higher

studies.

• राम जो एक अच्छा छात्र है और लंदन में
रहता है जो एक बड़ी मेट्रो है, उच्च अध्ययन
के ललए विश्िविद्यालय जाएगा।

Sentence-2

• Sita who is a good student and lives

in London which is a large metro, will

go to the University for higher

studies.

• स़ीता जो एक अच्छी छात्रा है और लंदन में
रहत़ी है जो एक बड़ी मेट्रो है, उच्च अध्ययन
के ललए विश्िविद्यालय जाएग़ी।

Long distance dependency: WSD

The bank

Long distance dependency: WSD

The bank that Ram

Long distance dependency: WSD

The bank that Ram used to visit

Long distance dependency: WSD

The bank that Ram used to visit 30

years before

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to the

lockdown

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to the

lockdown with the Govt

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to the

lockdown with the Govt. getting worried

that

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to the

lockdown with the Govt. getting worried

that crowding of people

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to the

lockdown with the Govt. getting worried

that crowding of people during the

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to the

lockdown with the Govt. getting worried

that crowding of people during the

immersion ceremony

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to the

lockdown with the Govt. getting worried

that crowding of people during the

immersion ceremony on the river will

aggravate the situation.

Movement of probability mass for

“bank”

• Seeing “closed”, probability mass edges

toward “financial” sense, because of strong

association between “bank” and “closed/open”

• “lockdown” pushed this probability mass

towards “river bank”

• Push further strengthened by arrival of

“crowding”, “immersion” and “river” one after

the other; “river” closes the case!

LSTM

• The product of gradients can become small if

the some of these quantities are small

• Gradient signal can become small for

positions that are farther away from a position

under consideration  can’t learn long term

dependency

• Truncated BPTT  restrict the product to

fewer terms

• Exploding Gradient: Gradient can also

become large  clip the gradient before

parameter update

Vanishing Gradient Problem 

Intuition

Selecting hidden states that affect

current hidden state

0/

1

𝒄𝒊

𝒇(𝒄𝒊−𝟏)

𝒇(𝒄𝒊−𝟐)

• What if there was a

switch to select which

previous hidden state

should impact current

hidden state?

• Better still, we

had a soft-switch

𝝀
𝒄𝒊

𝒇(𝒄𝒊−𝟏)

𝒇(𝒄𝒊−𝟐)

Addressing VG: Long Short-Term

Memory (LSTM)
• Formalization of the ideas just discussed

• A special kind of RNN-cell that enables

selective read/write/erasure

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Different gates (shown with

crosses)control flow of

information

http://colah.github.io/posts/2015-08-Understanding-LSTMs

http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture06-fancy-rnn.pdf

http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture06-fancy-rnn.pdf

LSTMs solve vanishing gradient

problem
• Intuition: “The cell state is

kind of like a conveyor belt.

It runs straight down the

entire chain, with only some

minor linear interactions.

It’s very easy for

information to just flow

along it unchanged.”

• You can show that the gradient of loss with respect to cell

state depends on forget gate values along the path

• For a detailed explanation see this:

http://www.cse.iitm.ac.in/~miteshk/CS7015/Slides/Teachi

ng/pdf/Lecture15.pdf

http://www.cse.iitm.ac.in/~miteshk/CS7015/Slides/Teaching/pdf/Lecture15.pdf

Other Noteworthy Points

• Bi-directional RNNs

– All NLU applications typically use this to incorporate

context in both directions

– Run separate RNNs in forward and backward directions

– Concatenate hidden states at each time step for

bidirectional context vector

• Deep RNNs: RNNS layers can be stacked

• Gated Recurrent Units (GRU): a simpler variant of LSTM

• LSTM-CRF network: A LSTM-variant where dependencies

between output variables can be modeled

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/pdf/1508.01991.pdf

Suggested Reading
• N-gram Language Models (textbook chapter)

• Smoothing techniques: http://nrs.harvard.edu/urn-

3:HUL.InstRepos:25104739

• FF-Neural LM:

https://www.jmlr.org/papers/volume3/bengio03a/bengio03

a.pdf

• The Unreasonable Effectiveness of Recurrent Neural

Networks (nice blog post overview)

• Sequence Modeling: Recurrent and Recursive Neural

Nets (Sections 10.1 and 10.2)

• On Chomsky and the Two Cultures of Statistical Learning

• Sequence Modeling: Recurrent and Recursive Neural

https://web.stanford.edu/~jurafsky/slp3/3.pdf
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25104739
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://www.deeplearningbook.org/contents/rnn.html
http://norvig.com/chomsky.html
http://www.deeplearningbook.org/contents/rnn.html

Suggested Reading

• On the difficulty of training Recurrent Neural

Networks (proof of vanishing gradient problem)

• Vanishing Gradients Jupyter Notebook (demo for

feedforward networks)

• Understanding LSTM Networks (must read, blog post

overview)

• https://r2rt.com/written-memories-understanding-

deriving-and-extending-the-lstm.html

https://arxiv.org/pdf/1211.5063.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/lectures/vanishing_grad_example.html
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://r2rt.com/written-memories-understanding-deriving-and-extending-the-lstm.html

Suggested Reading

• Original LSTM papers:
– http://www.bioinf.jku.at/publications/older/2604.pdf (the original

paper)

– ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
(peephole variant that is most widely used)

• Pretrained Models
– ELMo

– ULMFit

• Other lectures on RNNs
– https://github.com/oxford-cs-deepnlp-2017/lectures (Lectures 3

& 4)

– https://www.cse.iitm.ac.in/~miteshk/CS7015.html (Lectures 14
& 15)

– http://web.stanford.edu/class/cs224n/ (Lectures 5 & 6)

http://www.bioinf.jku.at/publications/older/2604.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://www.cse.iitm.ac.in/~miteshk/CS7015.html
http://web.stanford.edu/class/cs224n/

Decoding- A* Algorithm

Search building blocks

• State Space : Graph of states (Express

constraints and parameters of the problem)

• Operators : Transformations applied to the

states.

• Start state : S0 (Search starts from here)

• Goal state : {G} - Search terminates here.

• Cost : Effort involved in using an operator.

• Optimal path : Least cost path

Examples

Problem 1 : 8 – puzzle

8

4

6

5

1

7

2

1

4

7

63 3

5

8

S

2

G

Tile movement represented as the movement of the blank space.

Operators:

L : Blank moves left

R : Blank moves right

U : Blank moves up

D : Blank moves down

C(L) = C(R) = C(U) = C(D) = 1

Algorithmics of Search

General Graph search Algorithm

S

A CB

F

ED

G

1 103

5 4
6

2
3

7

Graph G = (V,E)

1) Open List : S (Ø, 0)

Closed list : Ø

2) OL : A(S,1), B(S,3), C(S,10)

CL : S

3) OL : B(S,3), C(S,10), D(A,6)

CL : S, A

4) OL : C(S,10), D(A,6), E(B,7)

CL: S, A, B

5) OL : D(A,6), E(B,7)

CL : S, A, B , C

6) OL : E(B,7), F(D,8), G(D, 9)

CL : S, A, B, C, D

7) OL : F(D,8), G(D,9)

CL : S, A, B, C, D, E

8) OL : G(D,9)

CL : S, A, B, C, D, E, F

9) OL : Ø

CL : S, A, B, C, D, E,

F, G

Steps of GGS
(principles of AI, Nilsson,)

• 1. Create a search graph G, consisting solely of the

start node S; put S on a list called OPEN.

• 2. Create a list called CLOSED that is initially empty.

• 3. Loop: if OPEN is empty, exit with FAILURE.

• 4. Select the first node on OPEN, remove from

OPEN and put on CLOSED, call this node n.

• 5. if n is the goal node, exit with SUCCESS with the

solution obtained by tracing a path along the

pointers from n to s in G. (pointers are established in

step 7).

• 6. Expand node n, generating the set M of its

successors that are not ancestors of n. Install these

memes of M as successors of n in G.

GGS steps (contd.)

• 7. Maintain the least cost path and node in OPEN: to

Establish a pointer to n from those members of M that

were not already in G (i.e., not already on either OPEN

or CLOSED). Add these members of M to OPEN. For

each member of M that was already on OPEN or

CLOSED, decide whether or not to redirect its pointer to

n. For each member of M already on CLOSED, decide

for each of its descendants in G whether or not to

redirect its pointer.

• 8. Reorder the list OPEN using some strategy.

• 9. Go LOOP.

GGS is a general umbrella

S

n1

n2

g

C(n1,n2)

h(n2)

h(n1)

)(),()(2211 nhnnCnh 

OL is a

queue

(BFS)

OL is

stack

(DFS)

OL is accessed by

using a functions

f= g+h

(Algorithm A)

Algorithm A

• A function f is maintained with each node

f(N) = g(N) + h(N), N is the node in the open list

• Node chosen for expansion is the one with least f

value

• BFS: h = 0, g = number of edges in the path to S

• DFS: h = 0, g =(1/no. of edges)

• Djikstra: g=path cost from S to N

• A*: h <= h*, h*=actual path cost from N to G the

goal

Algorithm A*

• One of the most important advances in AI

• g(n) = least cost path to n from S found so far

• h(n) <= h*(n) where h*(n) is the actual cost of

optimal path to G(node to be found) from n

S

n

G

g(n)

h(n)

“Optimism leads to optimality”

A* Algorithm – Definition and Properties

• f(n) = g(n) + h(n)
• The node with the least value

of f is chosen from the OL.
• f*(n) = g*(n) + h*(n), where,

g*(n) = actual cost of the
optimal path (s, n)

h*(n) = actual cost of
optimal path (n, g)

• g(n) ≥ g*(n)

• By definition, h(n) ≤ h*(n)

S s

n

goal

State space graph G

g(n)

h(n)

8-puzzle: heuristics

2 1 4

7 8 3

5 6

1 6 7

4 3 2

5 8

1 2 3

4 5 6

7 8

s n g

Example: 8 puzzle

h*(n) = actual no. of moves to transform n to g

1. h1(n) = no. of tiles displaced from their destined position.

2. h2(n) = sum of Manhattan distances of tiles from their destined

position.

h1(n) ≤ h*(n) and h1(n) ≤ h*(n)

h*

h2

h1

Comparison

A* critical points

• Goal
1. Do we know the goal?

2. Is the distance to the goal known?

3. Is there a path (known?) to the goal?

A* critical points

• About the path
Any time before A* terminates there exists

on the OL, a node from the optimal path all

whose ancestors in the optimal path are in

the CL.

This means,

There exists in the OL always a node ‘n’ s.t.

g(n) = g*(n)

A* critical points

• About the path
Any time before A* terminates there exists

on the OL, a node from the optimal path all

whose ancestors in the optimal path are in

the CL.

This means,

There exists in the OL always a node ‘n’ s.t.

g(n) = g*(n)

Key point about A* search

S

Statement:

Let S -n1-n2-n3…ni…-nk-1-

nk(=G) be an optimal path.

At any time during the

search:

1. There is a node ni from the

optimal path in the OL

2. For ni all its ancestors

S,n1,n2,…,ni-1 are in CL

3. g(ni) = g*(ni)

S
|
n1

|
n2

|
.
.
ni

.

.
nk-1

|
nk =g

Proof of the statement

Proof by induction on iteration no. j

Basis : j = 0, S is on the OL, S satisfies

the statement

Hypothesis : Let the statement be true

for j = p (pth iteration)

Let ni be the node satisfying the

statement

Proof (continued)

Induction : Iteration no. j = p+1

Case 1 : ni is expanded and moved to the

closed list

Then, ni+1 from the optimal path comes to the

OL

Node ni+1 satisfies the statement

(note: if ni+1 is in CL, then ni+2 satisfies the

property)

Case 2 : Node x ≠ ni is expanded

Here, ni satisfies the statement

• Admissibility: An algorithm is called
admissible if it always terminates and
terminates in optimal path

• Theorem: A* is admissible.
• Lemma: Any time before A* terminates there

exists on OL a node n such that f(n) <= f*(s)
• Observation: For optimal path s → n1 → n2

→ … → g,
1. h*(g) = 0, g*(s)=0 and
2. f*(s) = f*(n1) = f*(n2) = f*(n3)… = f*(g)

A* Algorithm- Properties

f*(ni) = f*(s), ni ≠ s and ni ≠ g

Following set of equations show the above equality:

f*(ni) = g*(ni) + h*(ni)

f*(ni+1) = g*(ni+1) + h*(ni+1)

g*(ni+1) = g*(ni) + c(ni , ni+1)

h*(ni+1) = h*(ni) - c(ni , ni+1)

Above equations hold since the path is optimal.

A* Properties (contd.)

A* always terminates finding an optimal path to the

goal if such a path exists.

Intuition

S

g(n)

n

h(n)

G

(1) In the open list there always exists a

node n such that f(n) <= f*(S) .

(2) If A* does not terminate, the f value of

the nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate

Admissibility of A*

Lemma

Any time before A* terminates there exists in the open list a node n'

such that f(n') <= f*(S)

S

n
1

n
2

G

Optimal path
For any node n

i
on optimal path,

f(n
i
) = g(n

i
) + h(n

i
)

<= g*(n
i
) + h*(n

i
)

Also f*(ni) = f*(S)

Let n' be the first node in the optimal path that

is in OL. Since all parents of n' in the optimal

have gone to CL,

g(n') = g*(n') and h(n') <= h*(n')

=> f(n') <= f*(S)

If A* does not terminate

Let e be the least cost of all arcs in the search graph.

Then g(n) >= e.l(n) where l(n) = # of arcs in the path from S to

n found so far. If A* does not terminate, g(n) and hence

f(n) = g(n) + h(n) [h(n) >= 0] will become unbounded.

This is not consistent with the lemma. So A* has to terminate.

2nd part of admissibility of A*

The path formed by A* is optimal when it has terminated

Proof

Suppose the path formed is not optimal

Let G be expanded in a non-optimal path.

At the point of expansion of G,

f(G) = g(G) + h(G)

= g(G) + 0

> g*(G) = g*(S) + h*(S)

= f*(S) [f*(S) = cost of optimal path]

This is a contradiction

So path should be optimal

Key Points on Admissibility

• 1. A* algorithm halts

• 2. A* algorithm finds optimal path

• 3. If f(n) < f*(S) then node n has to be expanded before

termination

• 4. If A* does not expand a node n before termination then

f(n) >= f*(S)

Exercise-1

Prove that if the distance of every node from the goal

node is “known”, then no “search:” is necessary

Ans:

• For every node n, h(n)=h*(n). The algo is A*.

• Lemma proved: any time before A* terminates, there is a node

m in the OL that has f(m) <= f*(S), S= start node (m is the node

on the optimal path all whose ancestors in the optimal path are

in the closed list).

• For m, g(m)=g*(m) and hence f(m)=f*(S).

• Thus at every step, the node with f=f* will be picked up, and the

journey to the goal will be completely directed and definite, with

no “search” at all.

• Note: when h=h*, f value of any node on the OL can never be

less than f*(S).

Exercise-2
If the h value for every node over-estimates the h* value of the

corresponding node by a constant, then the path found need

not be costlier than the optimal path by that constant. Prove

this.

Ans:

• Under the condition of the problem, h(n) <= h*(n) + c.

• Now, any time before the algo terminates, there exists on the

OL a node m such that f(m) <= f*(S)+c.

• The reason is as follows: let m be the node on the optimal path

all whose ancestors are in the CL (there has to be such a

node).

• Now, f(m)= g(m)+h(m)=g*(m)+h(m) <= g*(m)+h*(m)+c = f*(S)+c

• When the goal G is picked up for expansion, it must be the

case that

• f(G)<= f*(S)+c=f*(G)+c

• i.e., g(G)<= g*(G)+c, since h(G)=h*(G)=0.

A list of AI Search Algorithms

• A*
– AO*
– IDA* (Iterative Deepening)

• Minimax Search on Game Trees
• Viterbi Search on Probabilistic FSA
• Hill Climbing
• Simulated Annealing
• Gradient Descent
• Stack Based Search
• Genetic Algorithms
• Memetic Algorithms

Viterbi Decoding

Illustration with POS tagging

Sentence: “People Dance”

• ‘people’ and ‘dance’ can both be both

nouns and verbs, as in
– “old_JJ people_NNS” (‘people’ as noun)

– “township_NN peopled_VBN with soldiers_NNS”

(‘people’ as verb)

• as well as
– “rules_NNS of_IN classical_JJ dance_NN” (‘dance’

as noun)

– “will_VAUX dance_VB well_RB”

(‘dance’ as verb)

Possible Tags: “^ people dance .”

• for simplicity we take single letter tags-

N: noun, V: verb:
– ^ N N .

– ^ N V .

– ^ V N .

– ^ V V .

• We know that out of these, the second

option ^ N V. is the correct one. How do

we get this sequence?

Step-1: Trellis

Columns of tags on each input word with transition

arcs going from tags (states) to tags in consecutive

columns and output arcs going from tags to words

(observations)

Aim: select the highest probability path

From 4 possibilities; As and Bs are accumulated

probabilities

RNN vs. HMM

● RNN is an infinite memory machine (ideally) and is more general than a

k-order HMM

● HMM combines lexical and transition probabilities through the product

operation (Markov independence assumption) while the Softmax

operation in the RNN encompasses both these probabilities

Some numerical values: hypothetical

but not unrealistic

• Calculations:

• When it comes to the start of the

sentence, most sentences start with a

noun. So lets have

P(N|^)=0.8, P(V|^)=0.2 and of course

P(‘^’|^)=1.0

• Then

A1=0.8, A2=0.2

Encounter “people”: more probabilities (1/2)

• Transition from N to N is less common than to

V.

• Transition from V to V- as in auxiliary verb to

main verb- is quite common (e.g., is going).

• V to N too is common- as in case of a nominal

object following the verb (going home).

• Following plausible transition probabilities:
– P(N|N)=0.2, P(V|N)=0.8, P(V|V)=0.4, P(N|V)=0.6

• We also need lexical probabilities. ‘people’

appearing as verb is much less common than

its appearing as noun. So let us have

Encounter “people”: more probabilities (2/2)

• We also need lexical probabilities. ‘people’

appearing as verb is much less common than

its appearing as noun. So let us have

– P(‘people’|N)=0.01, P(‘people’|V)=0.001

• Note: N N: golf club, cricket bat, town people-

ambiguity “The town people visited was

deserted”/”town people will not be able to live here”

• V V combination: Hindi- has padaa (laughed

suddenly), Bengali- chole gelo (went away)

Calculate Bs

• B1=0.8.0.2.0.01=0.0016 (approx.)

• B2=0.8.0.8.0.01=0.064 (approx.)

• B3=0.2.0.6.0.001=0.00012

• B4=0.2.0.4.0.001=0.00008

Reduced Viterbi Configuration

• Heart of Decoding  linear time

Next word: ‘dance’

More probabilities needed

• We can give equal probabilities to

sentences ending in noun and verb.

Also, ‘dance’ as verb is more common

than noun.

P(.|N)=0.5=P(.|V)

P(‘dance’|N)=0.001

P(‘dance’|V)=0.01

Best Path: ^ N V .

C1=0.0016.0.5.0.001=0.0000008

C2=0.064.0.5.0.01=0.00032

Beam Search Based Decoding

Motivation

• HMM based POS tagging cannot handle

“free word order” and “agglutination” well

• If adjective after noun is equally likely as

adjective before noun, the transition

probability is no better than uniform

probability which has high entropy and is

uninformative.

• When the words are long strings of many

morphemes, POS tagging w/o morph

features is highly inaccuarte.

Modelling in Discriminative POS Tagging

• T* is the best possible tag sequence

• Summation dropped, because given W and feature

engineering, F is unique; also P(F|T)=1

• The final independence assumption is that the tag at

any position i depends only on the feature vector at

that position

])|([)|(

)|()|(.1

),|().|(

)|,()|,()|(

)|(maxarg*

1

0



















n

i

ii

F

T

FtPFTP

FTPFTP

WFTPWFP

WFTPWFTPWTP

WTPT

Feature Engineering

• Running example: ^ brown foxes

jumped over the fence .

• A. Word-based features

f21 – dictionary index of the current word (‘foxes’):

integer

f22 – -do- of the previous word (‘brown’): integer

f23 – -do- of the next word (‘jumped’): integer

B. Part of Speech (POS) tag-based feature

f24 – index of POS of previous word (here JJ):

integer

Feature engineering cntd.

• ^ brown foxes jumped over the fence .

• C. Morphology-based features
– f25– does the current word (‘foxes’) have a noun

suffix, like ‘s’, ‘es’, ‘ies’, etc.: 1/0- here the value is

– f26– does the current word (‘foxes’) have a verbal

suffix, like ‘d’, ‘ed’, ‘t’, etc.: 1/0- 0

– f27 and f28 for ‘brown’ like for ‘foxes

– f29 and f2,10 for ‘jumped’ like for ‘foxes; here f2,10 is 1

(jumped has ‘ed’ as suffix)

An Aside: word vectors

• These features are opaquely

represented in word vectors created

from huge corpora

• Word vectors are vectors of numbers

representing words

• It is not possible to tell which component

in the word vector does what

Modelling Equations

W: ^ w0 w1 w2…wn-2 wn-1 wn . T: ^ t0 t1 t2…tn-2 tn-1 tn .

Maximum Entropy Markov Model (MEMM)

S: set of tags.

The sequence probability of a tag sequence T is the

product of P(ti|Fi), i varying over the positions.














St

tf

f

ii

kj

ijj

kj

ijj

e

e
FttP

'

)'(

.1

.1

)|(




])|([)(
1

0







n

i

ii FtPTP

Beam Search Based Decoding

• ^ The brown foxes jumped .

• Let us assume the following tags for the

purpose of the discussion:

– D- determiner like ‘the’

– A- adjective like ‘brown’

– N- noun like ‘foxes’, ‘fence’

– V- verb like ‘jumped’

• Let the decoder start at the state ‘^’ which

denotes start of the sentence.

Step-1

• ^ The brown foxes jumped .

• The word ‘the’ is encountered. First

there are 4 next states possible

corresponding to 4 tags, giving rise

to 4 possible paths:

• ^ D -P1

• ^ A -P2

• ^ N -P3

• ^ V -P4

Commit to Beam Width

• Beam width is an integer which denotes how

many of the possibilities should be kept open.

• Let the beam width be 2.
– This means that out of all the paths obtained so far we

retain only the top 2 in terms of their probability

scores.

• We will assume that the actual linguistically

viable sub-sequence appears amongst the top

two choices.
– ‘The’ is a determiner and we get the two highest probability

paths for “^ The” as P1 and P3.

Step-2
• ^ The brown foxes jumped .

• ‘brown’ is the next word. P1 and P3 are extended as

• ^ D D -P11

• ^ D A -P12

• ^ D N -P13

• ^ D V -P14

• ^ N D -P31

• ^ N A -P32

• ^ N N -P33

• ^ N V -P34

Retain two paths

• Keep two possibilities corresponding to

correct/almost-correct sub-sequences.

‘brown’ is an adjective, but can be noun

too (e.g., “the brown of his eyes”).

^ D A -P12

^ D N -P13

Step-3
• ^ The brown foxes jumped .

• Can be both noun and verb (verb: “he was foxed by

their guile”).

• From P12 and P13, we will get 8 paths, but retain only

two, as per the beam width.

• We assume only the paths coming from P12 survive

with ‘A’ and ‘N’ extending the paths:

^ D A A -P122 (this is a wrong path!)

^ D A N -P123

Step-4
• ^ The brown foxes jumped .

• Can be both a past participial adjective (“the

halted train”) and a verb.

• Retaining only two top probability paths we get

^ D A N A -P1232

^ D A N V -P1234

Step-5
• ^ The brown foxes jumped .

• Can be both a past participial adjective (“the

halted train”) and a verb.

• Retaining only two top probability paths we get

^ D A N A -P1232

^ D A N V -P1234

Step-6: Final Step

• ^ The brown foxes jumped .

• On encountering dot, the beam search

stops.

• We assume we get the correct path

probabilistically in the beam (width 2)

^ D A N V.

How to fix the beam width (1/2)

• English POS tagging with Penn POS tag

set: approximately 40 tags

• Fine categories like NNS for plural NNP

for proper noun, VAUX for auxiliary verb,

VBD for past tense verb and so on.

• A word can have on an average at most 3

POSs recorded in the dictionary.

How to fix the beam width (2/2)

• Allow for 4 finer category POSs under

each category and with support from a

lexicon that records the broad category

POSs,

• A practical beam width for POS tagging

for English using Penn tagset could be 12

(=3 X 4). (think and justify)

Neural Decoding

Encode - Decode Paradigm Explained

Use two RNN networks: the encoder and the decoder

मैं ककताबने पढी

I read the book

h1 h2 h3h0

h4

s0 s1 s2
s3

(1) Encoder

processes one

input at a time

(4) Decoder

generates one

element at a

time

(2) A representation

of the sentence is

generated

(3) This is used

to initialize the

decoder state

Encoding

Decoding

<EOS>

s4

(5)… continue till

end of sequence

tag is generated

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/

Sequence to Sequence Learning with Neural Networks Ilya Sutskever, Oriol Vinyals, Quoc V. Le. arxiv pre-

print [link]

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/
https://arxiv.org/abs/1409.3215

Decoding in seq2seq

• There are 4 influencing factors for conditioning random

variables -

– Input encoding

– Autoregression

– Cross attention

– Self attention

All searching is table lookup!

• Table look-up is equivalent to mapping

• Any form of search, is computing a

mapping continuously, including the

neural networks

Structural AI vs Functional AI

• 80s and 90s, AI used to get ints inspiration and

way forward from biology, neuro-physiology

• Today’s AI finds the way forward from DATA

Structural AI Functional AI

● Concerned with understanding the

anatomy of a system

● Concerned with understanding the

behaviour of a system

● Analogy to medicine: Doctors use

graphs like EEG to understand

anatomy of system

● Analogy to medicine: Attributes like

facial expression, body language and

pain are used to understand behaviour

FF

RNN-LSTM

softmax

This captures y<j

This captures x, c=h4

What is the decoder doing at each

time-step?

Decoding

Ram ate rice with the spoon

राम ने चम्मच से चािल खाये

Searching for the best translations in the space of all

translations

राम ने

चािल

चम्मच

खा ललया

चम्मच से

चािल

खाये

• Incremental construction

• Each hypothesis is scored using the model

• Hypotheses are maintained in a priority
queue

Empty

Hypothesis

Partial

Hypothesis

Final

Hypothesis

Hypothesis

Expansion

मैं ककताबने पढी

I read the book

h1 h2 h3

h0

h4

s0 s1 s2
s3

Encoding

Decoding

<EOS>

s4

h4

Feed the encoder state as input at

each decoder timestep

The entire source sentence is

represented by a single vector

Problems

● Insufficient to represent to capture all the syntactic and

semantic complexities

○ Solution: Use a richer representation for the sentences

● Long-term dependencies: Source sentence representation

not useful after few decoder time steps

○ Solution: Make source sentence information when making

the next prediction

○ Even better, make RELEVANT source sentence

information available

Encode - Attend - Decode Paradigm

I read the book

s1 s1 s3s0

s4

Annotation

vectors Represent the source sentence by

the set of output vectors from the

encoder

Each output vector at time t is a

contextual representation of the

input at time t

Let’s call these encoder output

vectors annotation vectors

e1 e2 e3 e4

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." ICLR 2015.

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-3/

