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1-slide recap

• EnCo-DeCo

• BPTT

• Foundations of representation 

learning

• Nittie gritties of BP
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Input Sequence: (𝑥1 𝑥2 𝑥3 𝑥4… . . 𝑥𝑖 …… . 𝑥𝑁)

Output Sequence: (𝑦1 𝑦2 𝑦3 𝑦4… . . 𝑦𝑖 …… . 𝑦𝑁)

Sequence  Labelling Task

Input and output sequences have the same length 

Variable length input

Output contains categorical labels

Output at any time-step typically depends on neighbouring output labels and input 

elements 

Part-of-speech 

tagging

Recurrent Neural Network is a powerful model to learn sequence labelling 

tasks



How do we model language modeling 

as a sequence labeling task?

The capital of Maharashtra is Mumbai

capital of Maharashtra is MumbaiThe

<BOS>

<EOS>

The output sequence is one-time step ahead of the input sequence



How do we evaluate quality of language models?

Evaluate the ability to predict the next word given a 

context

Evaluate the probability of a testset of 

sentences

Standard test sets exist for evaluating language models: 

Penn Treebank, Billion Word Corpus, WikiText

Evaluating Language Models



https://research.fb.com/building-an-efficient-neural-language-model-over-

a-billion-words/

RNN models outperform n-gram models

A special kind of RNN network – LSTM- does 

even Better



Long distance dependencies: 

Sentence-1

• Ram who is a good student and lives 

in London which is a large metro, will

go to the University for higher 

studies. 

• राम जो एक अच्छा छात्र है और लंदन में
रहता है जो एक बड़ी मेट्रो है, उच्च अध्ययन
के ललए विश्िविद्यालय जाएगा।



Sentence-2

• Sita who is a good student and lives 

in London which is a large metro, will

go to the University for higher 

studies. 

• स़ीता जो एक अच्छी छात्रा है और लंदन में
रहत़ी है जो एक बड़ी मेट्रो है, उच्च अध्ययन
के ललए विश्िविद्यालय जाएग़ी।



Long distance dependency: WSD

The bank



Long distance dependency: WSD

The bank that Ram 



Long distance dependency: WSD

The bank that Ram used to visit 



Long distance dependency: WSD

The bank that Ram used to visit 30 

years before 



Long distance dependency: WSD

The bank that Ram used to visit 30 

years before was closed 



Long distance dependency: WSD

The bank that Ram used to visit 30 

years before was closed due to 



Long distance dependency: WSD

The bank that Ram used to visit 30 

years before was closed due to the 

lockdown



Long distance dependency: WSD

The bank that Ram used to visit 30 

years before was closed due to the 

lockdown with the Govt



Long distance dependency: WSD

The bank that Ram used to visit 30 

years before was closed due to the 

lockdown with the Govt. getting worried 

that



Long distance dependency: WSD

The bank that Ram used to visit 30 

years before was closed due to the 

lockdown with the Govt. getting worried 

that crowding of people



Long distance dependency: WSD

The bank that Ram used to visit 30 

years before was closed due to the 

lockdown with the Govt. getting worried 

that crowding of people during the



Long distance dependency: WSD

The bank that Ram used to visit 30 

years before was closed due to the 

lockdown with the Govt. getting worried 

that crowding of people during the 

immersion ceremony 



Long distance dependency: WSD

The bank that Ram used to visit 30 

years before was closed due to the 

lockdown with the Govt. getting worried 

that crowding of people during the 

immersion ceremony on the river will 

aggravate the situation.



Movement of probability mass for 

“bank”

• Seeing “closed”, probability mass edges 

toward “financial” sense, because of strong 

association between “bank” and “closed/open”

• “lockdown” pushed this probability mass 

towards “river bank”

• Push further strengthened by arrival of 

“crowding”, “immersion” and “river” one after 

the other; “river” closes the case!



LSTM



• The product of gradients can become small if 

the some of these quantities are small

• Gradient signal can become small for 

positions that are farther away from a position 

under consideration  can’t learn long term 

dependency 

• Truncated BPTT  restrict the product to 

fewer terms

• Exploding Gradient: Gradient can also 

become large  clip the gradient before 

parameter update

Vanishing Gradient Problem  

Intuition 



Selecting hidden states that affect 

current hidden state

0/

1

𝒄𝒊

𝒇(𝒄𝒊−𝟏)

𝒇(𝒄𝒊−𝟐)

• What if there was a 

switch to select which 

previous hidden state 

should impact current 

hidden state?

• Better still, we 

had a soft-switch

𝝀
𝒄𝒊

𝒇(𝒄𝒊−𝟏)

𝒇(𝒄𝒊−𝟐)



Addressing VG: Long Short-Term 

Memory (LSTM)
• Formalization of the ideas just discussed

• A special kind of RNN-cell that enables 

selective read/write/erasure

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Different gates (shown with 

crosses)control flow of 

information

http://colah.github.io/posts/2015-08-Understanding-LSTMs


http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture06-fancy-rnn.pdf



http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture06-fancy-rnn.pdf



LSTMs solve vanishing gradient 

problem
• Intuition: “The cell state is 

kind of like a conveyor belt. 

It runs straight down the 

entire chain, with only some 

minor linear interactions. 

It’s very easy for 

information to just flow 

along it unchanged.”

• You can show that the gradient of loss with respect to cell 

state depends on forget gate values along the path

• For a detailed explanation see this: 

http://www.cse.iitm.ac.in/~miteshk/CS7015/Slides/Teachi

ng/pdf/Lecture15.pdf

http://www.cse.iitm.ac.in/~miteshk/CS7015/Slides/Teaching/pdf/Lecture15.pdf


Other Noteworthy Points

• Bi-directional RNNs

– All NLU applications typically use this to incorporate 

context in both directions

– Run separate RNNs in forward and backward directions

– Concatenate hidden states at each time step for 

bidirectional context vector

• Deep RNNs: RNNS layers can be stacked

• Gated Recurrent Units (GRU): a simpler variant of LSTM

• LSTM-CRF network: A LSTM-variant where dependencies 

between output variables can be modeled

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/pdf/1508.01991.pdf


Suggested Reading
• N-gram Language Models (textbook chapter)

• Smoothing techniques: http://nrs.harvard.edu/urn-

3:HUL.InstRepos:25104739

• FF-Neural LM: 

https://www.jmlr.org/papers/volume3/bengio03a/bengio03

a.pdf

• The Unreasonable Effectiveness of Recurrent Neural 

Networks (nice blog post overview)

• Sequence Modeling: Recurrent and Recursive Neural 

Nets (Sections 10.1 and 10.2)

• On Chomsky and the Two Cultures of Statistical Learning

• Sequence Modeling: Recurrent and Recursive Neural 

https://web.stanford.edu/~jurafsky/slp3/3.pdf
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25104739
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://www.deeplearningbook.org/contents/rnn.html
http://norvig.com/chomsky.html
http://www.deeplearningbook.org/contents/rnn.html


Suggested Reading

• On the difficulty of training Recurrent Neural 

Networks (proof of vanishing gradient problem)

• Vanishing Gradients Jupyter Notebook (demo for 

feedforward networks)

• Understanding LSTM Networks (must read, blog post 

overview)

• https://r2rt.com/written-memories-understanding-

deriving-and-extending-the-lstm.html

https://arxiv.org/pdf/1211.5063.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/lectures/vanishing_grad_example.html
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://r2rt.com/written-memories-understanding-deriving-and-extending-the-lstm.html


Suggested Reading

• Original LSTM papers: 
– http://www.bioinf.jku.at/publications/older/2604.pdf (the original 

paper)

– ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
(peephole variant that is most widely used)

• Pretrained Models
– ELMo

– ULMFit

• Other lectures on RNNs
– https://github.com/oxford-cs-deepnlp-2017/lectures (Lectures 3 

& 4)

– https://www.cse.iitm.ac.in/~miteshk/CS7015.html (Lectures 14 
& 15)

– http://web.stanford.edu/class/cs224n/ (Lectures 5 & 6)  

http://www.bioinf.jku.at/publications/older/2604.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://www.cse.iitm.ac.in/~miteshk/CS7015.html
http://web.stanford.edu/class/cs224n/


Decoding- A* Algorithm



Search building blocks

• State Space : Graph of states (Express 

constraints and parameters of the problem)

• Operators : Transformations applied to the 

states.

• Start state : S0 (Search starts from here)

• Goal state : {G} - Search terminates here.

• Cost : Effort involved in using an operator.

• Optimal path : Least cost path



Examples

Problem 1 : 8 – puzzle
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Tile movement represented as the movement of the blank space.

Operators:

L : Blank moves left

R : Blank moves right

U : Blank moves up

D : Blank moves down

C(L) = C(R) = C(U) = C(D) = 1



Algorithmics of Search



General Graph search Algorithm

S

A CB

F

ED

G

1 103

5 4
6

2
3

7

Graph G = (V,E)



1) Open List : S (Ø, 0)

Closed list : Ø

2) OL : A(S,1), B(S,3), C(S,10)

CL : S

3) OL : B(S,3), C(S,10), D(A,6)

CL : S, A

4) OL : C(S,10), D(A,6), E(B,7)

CL: S, A, B

5) OL : D(A,6), E(B,7)

CL : S, A, B , C

6) OL : E(B,7), F(D,8), G(D, 9)

CL : S, A, B, C, D

7) OL : F(D,8), G(D,9)

CL : S, A, B, C, D, E

8) OL : G(D,9)

CL : S, A, B, C, D, E, F

9) OL : Ø

CL : S, A, B, C, D, E,

F, G



Steps of GGS 
(principles of AI, Nilsson,)

• 1. Create a search graph G, consisting solely of the 

start node S; put S on a list called OPEN.

• 2. Create a list called CLOSED that is initially empty.

• 3. Loop: if OPEN is empty, exit with FAILURE.

• 4. Select the first node on OPEN, remove from 

OPEN and put on CLOSED, call this node n.

• 5. if n is the goal node, exit with SUCCESS with the 

solution obtained by tracing a path along the 

pointers from n to s in G. (pointers are established in 

step 7).

• 6. Expand node n, generating the set M of its 

successors that are not ancestors of n. Install these 

memes of M as successors of n in G.



GGS steps (contd.)

• 7. Maintain the least cost path and node in OPEN:  to 

Establish a pointer to n from those members of M that 

were not already in G (i.e., not already on either OPEN 

or CLOSED). Add these members of M to OPEN. For 

each member of M that was already on OPEN or 

CLOSED, decide whether or not to redirect its pointer to 

n. For each member of M already on CLOSED, decide 

for each of its descendants in G whether or not to 

redirect its pointer.

• 8. Reorder the list OPEN using some strategy.

• 9. Go LOOP.



GGS is a general umbrella

S

n1

n2

g

C(n1,n2)

h(n2)

h(n1)

)(),()( 2211 nhnnCnh 

OL is a 

queue

(BFS)

OL is 

stack

(DFS)

OL is accessed by 

using a functions 

f= g+h

(Algorithm A)



Algorithm A

• A function f is maintained with each node

f(N) = g(N) + h(N), N is the node in the open list

• Node chosen for expansion is the one with least f

value

• BFS: h = 0, g = number of edges in the path to S

• DFS: h = 0, g =(1/no. of edges)

• Djikstra: g=path cost from S to N

• A*: h <= h*, h*=actual path cost from N to G the 

goal



Algorithm A*

• One of the most important advances in AI

• g(n) = least cost path to n from S found so far

• h(n) <= h*(n) where h*(n) is the actual cost of 

optimal path to G(node to be found) from n

S

n

G

g(n)

h(n)

“Optimism leads to optimality”



A* Algorithm – Definition and Properties

• f(n) = g(n) + h(n)
• The node with the least value 

of f is chosen from the OL.
• f*(n) = g*(n) + h*(n), where,

g*(n) = actual cost of the 
optimal path (s, n)

h*(n) = actual cost of 
optimal path (n, g)

• g(n) ≥ g*(n)

• By definition, h(n) ≤ h*(n)

S s

n

goal

State space graph G

g(n)

h(n)



8-puzzle: heuristics

2 1 4

7 8 3

5 6

1 6 7

4 3 2

5 8

1 2 3

4 5 6

7 8

s n g

Example: 8 puzzle

h*(n) = actual no. of moves to transform n to g

1. h1(n) = no. of tiles displaced from their destined position.

2. h2(n) = sum of Manhattan distances of tiles from their destined 

position.

h1(n) ≤ h*(n) and h1(n) ≤ h*(n)

h*

h2

h1

Comparison



A* critical points

• Goal
1. Do we know the goal?

2. Is the distance to the goal known?

3. Is there a path (known?) to the goal?



A* critical points

• About the path
Any time before A* terminates there exists 

on the OL, a node from the optimal path all 

whose ancestors in the optimal path are in 

the CL.

This means,

There exists in the OL always a node ‘n’  s.t.

g(n)  = g*(n)



A* critical points

• About the path
Any time before A* terminates there exists 

on the OL, a node from the optimal path all 

whose ancestors in the optimal path are in 

the CL.

This means,

There exists in the OL always a node ‘n’  s.t.

g(n)  = g*(n)



Key point about A* search

S

Statement:  

Let S -n1-n2-n3…ni…-nk-1-

nk(=G) be an optimal path.

At any time during the 

search:

1. There is a node ni from the 

optimal path in the OL

2. For ni all its ancestors 

S,n1,n2,…,ni-1 are in CL

3. g(ni) = g*(ni)

S
|
n1

|
n2

|
.
.
ni

.

.
nk-1

|
nk =g



Proof of the statement

Proof by induction on iteration no. j

Basis : j = 0, S is on the OL, S satisfies 

the statement

Hypothesis : Let the statement be true 

for j = p (pth iteration)

Let ni be the node satisfying the 

statement 



Proof (continued)

Induction : Iteration no. j = p+1

Case 1 : ni is expanded and moved to the 

closed list

Then, ni+1 from the optimal path comes to the 

OL

Node ni+1 satisfies the statement

(note: if ni+1 is in CL, then ni+2 satisfies the 

property)

Case 2 : Node x ≠ ni is expanded

Here, ni satisfies the statement



• Admissibility: An algorithm is called 
admissible if it always terminates and 
terminates in optimal path

• Theorem: A* is admissible.
• Lemma: Any time before A* terminates there 

exists on OL a node n such that f(n) <= f*(s)
• Observation: For optimal path s → n1 → n2

→ … → g, 
1. h*(g) = 0, g*(s)=0 and 
2. f*(s) = f*(n1) = f*(n2) = f*(n3)… = f*(g)

A* Algorithm- Properties



f*(ni) = f*(s), ni ≠ s and ni ≠ g

Following set of equations show the above equality:

f*(ni) = g*(ni) + h*(ni)

f*(ni+1) = g*(ni+1) + h*(ni+1)

g*(ni+1) = g*(ni) + c(ni , ni+1)

h*(ni+1) = h*(ni) - c(ni , ni+1)

Above equations hold since the path is optimal.

A* Properties (contd.)



A* always terminates finding an optimal path to the 

goal if such a path exists.

Intuition

S

g(n)

n

h(n)

G

(1) In the open list there always exists a 

node n such that f(n) <= f*(S) .

(2) If A* does not terminate, the f value of 

the nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate

Admissibility of A*



Lemma

Any time before A* terminates there exists in the open list a node n'

such that f(n') <= f*(S)

S

n
1

n
2

G

Optimal path
For any node n

i
on optimal path,

f(n
i
) = g(n

i
) + h(n

i
)

<= g*(n
i
) + h*(n

i
)

Also f*(ni) = f*(S)

Let n' be the first node in the optimal path that 

is in OL. Since all parents of n' in the optimal 

have gone to CL,

g(n') = g*(n') and h(n') <= h*(n') 

=> f(n') <= f*(S)



If A* does not terminate

Let e be the least cost of all arcs in the search graph.

Then g(n) >= e.l(n) where l(n) = # of arcs in the path from S to 

n found so far. If A* does not terminate, g(n) and hence 

f(n) = g(n) + h(n) [h(n) >= 0] will become unbounded.

This is not consistent with the lemma. So A* has to terminate.



2nd part of admissibility of A*

The path formed by A* is optimal when it has terminated

Proof

Suppose the path formed is not optimal

Let G be expanded in a non-optimal path. 

At the point of expansion of G,

f(G) = g(G) + h(G)

= g(G) + 0

> g*(G)  = g*(S) + h*(S)

= f*(S) [f*(S) = cost of optimal path]

This is a contradiction

So path should be optimal



Key Points on Admissibility

• 1. A* algorithm halts

• 2. A* algorithm finds optimal path

• 3. If f(n) < f*(S) then node n has to be expanded before 

termination

• 4. If A* does not expand a node n before termination then 

f(n) >= f*(S) 



Exercise-1

Prove that if the distance of every node from the goal 

node is “known”, then no “search:” is necessary

Ans:

• For every node n, h(n)=h*(n). The algo is A*.

• Lemma proved: any time before A* terminates, there is a node 

m in the OL that has f(m) <= f*(S), S= start node (m is the node 

on the optimal path all whose ancestors in the optimal path are 

in the closed list).

• For m, g(m)=g*(m) and hence  f(m)=f*(S).

• Thus at every step, the node with f=f* will be picked up, and the 

journey to the goal will be completely directed and definite, with 

no “search” at all.

• Note: when h=h*, f value of any node on the OL can never be 

less than f*(S).



Exercise-2
If the h value for every node over-estimates the h* value of the 

corresponding node by a constant, then the path found need 

not be costlier than the optimal path by that constant. Prove 

this. 

Ans:

• Under the condition of the problem,  h(n) <= h*(n) + c.

• Now, any time before the algo terminates, there exists on the 

OL a node m such that f(m) <= f*(S)+c.

• The reason is as follows: let m be the node on the optimal path 

all whose ancestors are in the CL (there has to be such a 

node).

• Now, f(m)= g(m)+h(m)=g*(m)+h(m) <= g*(m)+h*(m)+c = f*(S)+c

• When the goal G is picked up for expansion, it must be the 

case that

• f(G)<= f*(S)+c=f*(G)+c

• i.e., g(G)<= g*(G)+c, since h(G)=h*(G)=0.  



A list of AI Search Algorithms

• A*
– AO*
– IDA* (Iterative Deepening)

• Minimax Search on Game Trees
• Viterbi Search on Probabilistic FSA
• Hill Climbing
• Simulated Annealing
• Gradient Descent
• Stack Based Search
• Genetic Algorithms
• Memetic Algorithms



Viterbi Decoding

Illustration with POS tagging



Sentence: “People Dance”

• ‘people’ and ‘dance’ can both be both 

nouns and verbs, as in 
– “old_JJ people_NNS” (‘people’ as noun)

– “township_NN peopled_VBN with soldiers_NNS” 

(‘people’ as verb)

• as well as 
– “rules_NNS of_IN classical_JJ dance_NN” (‘dance’ 

as noun)

– “will_VAUX dance_VB well_RB”

(‘dance’ as verb)



Possible Tags: “^ people dance .”

• for simplicity we take single letter tags-

N: noun, V: verb:
– ^ N N .

– ^ N V .

– ^ V N .

– ^ V V .

• We know that out of these, the second 

option ^ N V. is the correct one. How do 

we get this sequence? 



Step-1: Trellis 

Columns of tags on each input word with transition 

arcs going from tags (states) to tags in consecutive 

columns and output arcs going from tags to words 

(observations)



Aim: select the highest probability path

From 4 possibilities; As and Bs are accumulated 

probabilities 



RNN vs. HMM

● RNN is an infinite memory machine (ideally) and is more general than a 

k-order HMM

● HMM combines lexical and transition probabilities through the product 

operation (Markov independence assumption) while the Softmax 

operation in the RNN encompasses both these probabilities



Some numerical values: hypothetical 

but not unrealistic

• Calculations:

• When it comes to the start of the 

sentence, most sentences start with a 

noun. So lets have

P(N|^)=0.8, P(V|^)=0.2 and of course 

P(‘^’|^)=1.0

• Then

A1=0.8, A2=0.2



Encounter “people”: more probabilities (1/2)

• Transition from N to N is less common than to 

V. 

• Transition from V to V- as in auxiliary verb to 

main verb- is quite common (e.g., is going). 

• V to N too is common- as in case of a nominal 

object following the verb (going home).

• Following plausible transition probabilities:
– P(N|N)=0.2, P(V|N)=0.8, P(V|V)=0.4, P(N|V)=0.6

• We also need lexical probabilities. ‘people’ 

appearing as verb is much less common than 

its appearing as noun. So let us have



Encounter “people”: more probabilities (2/2)

• We also need lexical probabilities. ‘people’ 

appearing as verb is much less common than 

its appearing as noun. So let us have

– P(‘people’|N)=0.01, P(‘people’|V)=0.001

• Note: N N: golf club, cricket bat, town people-

ambiguity “The town people visited was 

deserted”/”town people will not be able to live here”

• V V combination: Hindi- has padaa (laughed 

suddenly), Bengali- chole gelo (went away)



Calculate Bs

• B1=0.8.0.2.0.01=0.0016 (approx.)

• B2=0.8.0.8.0.01=0.064 (approx.)

• B3=0.2.0.6.0.001=0.00012

• B4=0.2.0.4.0.001=0.00008



Reduced Viterbi Configuration

• Heart of Decoding  linear time



Next word: ‘dance’



More probabilities needed

• We can give equal probabilities to 

sentences ending in noun and verb. 

Also, ‘dance’ as verb is more common 

than noun.

P(.|N)=0.5=P(.|V)

P(‘dance’|N)=0.001

P(‘dance’|V)=0.01



Best Path: ^ N V .

C1=0.0016.0.5.0.001=0.0000008

C2=0.064.0.5.0.01=0.00032



Beam Search Based Decoding



Motivation

• HMM based POS tagging cannot handle 

“free word order” and “agglutination” well

• If adjective after noun is equally likely as 

adjective before noun, the transition 

probability is no better than uniform 

probability which has high entropy and is 

uninformative.

• When the words are long strings of many 

morphemes, POS tagging w/o morph 

features is highly inaccuarte.



Modelling in Discriminative POS Tagging

• T* is the best possible tag sequence

• Summation dropped, because given W and feature 

engineering, F is unique; also P(F|T)=1

• The final independence assumption is that the tag at 

any position i depends only on the  feature vector at 

that position
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Feature Engineering

• Running example: ^ brown foxes

jumped over the fence .

• A. Word-based features

f21 – dictionary index of the current word (‘foxes’): 

integer

f22 – -do- of the previous word (‘brown’): integer

f23 – -do- of the next word (‘jumped’): integer

B. Part of Speech (POS) tag-based feature 

f24 – index of POS of previous word (here JJ): 

integer 



Feature engineering cntd.

• ^ brown foxes jumped over the fence .

• C. Morphology-based features
– f25– does the current word (‘foxes’) have a noun 

suffix, like ‘s’, ‘es’, ‘ies’, etc.: 1/0- here the value is 

– f26– does the current word (‘foxes’) have a verbal 

suffix, like ‘d’, ‘ed’, ‘t’, etc.: 1/0- 0

– f27 and f28 for ‘brown’ like for ‘foxes

– f29 and f2,10 for ‘jumped’ like for ‘foxes; here f2,10 is 1 

(jumped has ‘ed’ as suffix)



An Aside: word vectors

• These features are opaquely 

represented in word vectors created 

from huge corpora

• Word vectors are vectors of numbers 

representing words

• It is not possible to tell which component 

in the word vector does what 



Modelling Equations 

W: ^ w0 w1 w2…wn-2 wn-1 wn . T: ^ t0 t1 t2…tn-2 tn-1 tn .

Maximum Entropy Markov Model (MEMM)

S: set of tags. 

The sequence probability of a tag sequence T is the 

product of P(ti|Fi), i varying over the positions. 














St

tf

f

ii

kj

ijj

kj

ijj

e

e
FttP

'

)'(

.1

.1

)|(




])|([)(
1

0







n

i

ii FtPTP



Beam Search Based Decoding

• ^ The brown foxes jumped .

• Let us assume the following tags for the 

purpose of the discussion:

– D- determiner like ‘the’

– A- adjective like ‘brown’

– N- noun like ‘foxes’, ‘fence’

– V- verb like ‘jumped’

• Let the decoder start at the state ‘^’ which 

denotes start of the sentence. 



Step-1

• ^ The brown foxes jumped .

• The word ‘the’ is encountered. First 

there are 4 next states possible 

corresponding to 4 tags, giving rise 

to 4 possible paths:

• ^ D -P1

• ^ A -P2

• ^ N -P3

• ^ V -P4



Commit to Beam Width

• Beam width is an integer which denotes how 

many of the possibilities should be kept open. 

• Let the beam width be 2. 
– This means that out of all the paths obtained so far we 

retain only the top 2 in terms of their probability 

scores.

• We will assume that the actual linguistically 

viable sub-sequence appears amongst the top 

two choices. 
– ‘The’ is a determiner and we get the two highest probability 

paths for “^ The” as P1 and P3. 



Step-2
• ^ The brown foxes jumped .

• ‘brown’ is the next word. P1 and P3 are extended as

• ^ D D -P11

• ^ D A -P12

• ^ D N -P13

• ^ D V -P14

• ^ N D -P31

• ^ N A -P32

• ^ N N -P33

• ^ N V -P34



Retain two paths

• Keep two possibilities corresponding to 

correct/almost-correct sub-sequences. 

‘brown’ is an adjective, but can be noun 

too (e.g., “the brown of his eyes”).

^ D A -P12

^ D N -P13



Step-3
• ^ The brown foxes jumped .

• Can be both noun and verb (verb: “he was foxed by 

their guile”). 

• From P12 and P13, we will get 8 paths, but retain only 

two, as per the beam width.  

• We assume only the paths coming from P12 survive 

with ‘A’ and ‘N’ extending the paths:

^ D A A -P122 (this is a wrong path!)

^ D A N -P123



Step-4
• ^ The brown foxes jumped .

• Can be both a past participial adjective (“the 

halted train”) and a verb. 

• Retaining only two top probability paths we get

^ D A N A -P1232

^ D A N V -P1234



Step-5
• ^ The brown foxes jumped .

• Can be both a past participial adjective (“the 

halted train”) and a verb. 

• Retaining only two top probability paths we get

^ D A N A -P1232

^ D A N V -P1234



Step-6: Final Step

• ^ The brown foxes jumped .

• On encountering dot, the beam search 

stops. 

• We assume we get the correct path 

probabilistically in the beam (width 2)

^ D A N V.



How to fix the beam width (1/2)

• English POS tagging with Penn POS tag 

set: approximately 40 tags

• Fine categories like NNS for plural NNP 

for proper noun, VAUX for auxiliary verb, 

VBD for past tense verb and so on. 

• A word can have on an average at most 3 

POSs recorded in the dictionary. 



How to fix the beam width (2/2)

• Allow for 4 finer category POSs under 

each category and with support from a 

lexicon that records the broad category 

POSs, 

• A practical beam width for POS tagging 

for English using Penn tagset could be 12 

(=3 X 4). (think and justify)



Neural Decoding



Encode - Decode Paradigm Explained

Use two RNN networks: the encoder and the decoder

मैं ककताबने पढी

I read the book

h1 h2 h3h0

h4

s0 s1 s2
s3

(1) Encoder 

processes one 

input at a time

(4) Decoder 

generates one 

element at a 

time

(2) A representation 

of the sentence is 

generated

(3) This is used 

to initialize the 

decoder state

Encoding

Decoding

<EOS>

s4

(5)… continue till 

end of sequence 

tag is generated

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/

Sequence to Sequence Learning with Neural Networks Ilya Sutskever, Oriol Vinyals, Quoc V. Le. arxiv pre-

print [link]

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/
https://arxiv.org/abs/1409.3215


Decoding in seq2seq

• There are 4 influencing factors for conditioning random 

variables -

– Input encoding

– Autoregression

– Cross attention

– Self attention



All searching is table lookup!

• Table look-up is equivalent to mapping

• Any form of search, is computing a 

mapping continuously, including the 

neural networks



Structural AI vs Functional AI

• 80s and 90s, AI used to get ints inspiration and 

way forward from biology, neuro-physiology

• Today’s AI finds the way forward from DATA 

Structural AI Functional AI

● Concerned with understanding the 

anatomy of a system

● Concerned with understanding the 

behaviour of a system

● Analogy to medicine: Doctors use 

graphs like EEG to understand 

anatomy of system

● Analogy to medicine: Attributes like 

facial expression, body language and 

pain are used to understand behaviour



FF

RNN-LSTM

softmax

This captures y<j

This captures x, c=h4

What is the decoder doing at each 

time-step?



Decoding

Ram    ate rice   with the spoon

राम ने चम्मच से चािल खाये

Searching for the best translations in the space of all 

translations



राम ने

चािल

चम्मच

खा ललया

चम्मच से

चािल

खाये

• Incremental construction

• Each hypothesis is scored using the model

• Hypotheses are maintained in a priority 
queue 

Empty 

Hypothesis

Partial 

Hypothesis

Final 

Hypothesis

Hypothesis 

Expansion



मैं ककताबने पढी

I read the book

h1 h2 h3

h0

h4

s0 s1 s2
s3

Encoding

Decoding

<EOS>

s4

h4

Feed the encoder state as input at 

each decoder timestep



The entire source sentence is 

represented by a single vector

Problems

● Insufficient to represent to capture all the syntactic and 

semantic complexities

○ Solution: Use a richer representation for the sentences

● Long-term dependencies: Source sentence representation 

not useful after few decoder time steps

○ Solution: Make source sentence information when making 

the next prediction

○ Even better, make RELEVANT source sentence 

information available



Encode - Attend - Decode Paradigm

I read the book

s1 s1 s3s0

s4

Annotation 

vectors Represent the source sentence by 

the set of output vectors from the 

encoder

Each output vector at time t is a 

contextual representation of the 

input at time t

Let’s call these encoder output 

vectors annotation vectors

e1 e2 e3 e4

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." ICLR 2015.

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-3/


