
CS772: Deep Learning for

Natural Language Processing

(DL-NLP)

Cross Entropy Loss and Softmax, Start of
RNN

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay

Week 6 of 7th Feb, 2022

multiclass: SOFTMAX

• 2-class  multi-class (C classes)

• Sigmoid  softmax

• ith input, cth class (small c), k varies over

classes

,)(

1







C

k

net

net

ci

i

c
i
k

i
c

e

e
NETSo

Softmax Neuron

neti1

oi
1

xi
0

xi
1xi

2
xi

m-2xi
m-1

xi
m

…
wC1

oi
C

netiC

oi
C-1

netiC-1

oi
1

neti2

…

,

)(

1










C

k

net

net

ci

i

c

i

k

i
c

e

e

NETSo

Target Vector, Ti: <tiC tiC-1…ti2 ti1>, i for ith input.

Only one of these C componets is 1, rest are 0.

Compare and contrast Sigmoid and

Softmax

inputifor
e

osigmoid th

neti
i
,

1

1
:






,:max

1





C

k

net

net
i

c
i
k

i
c

e

e
osoft

ith input, cth class (small c), k varies

over classes 1 to C

Interpreting oi
c

• oi
c value is between 0 and 1

• Interpreted as probability

• Multi-class situation

• oi
c value is the probability of the class

being ‘c’ for the ith input

• That is,

P(Class of ith input=c)=oi
c

Derivatives

Derivative of Softmax

)ln(ln

,

1

1













C

k

netneti

c

th

C

k

net

net
i

c

i
k

i
c

i
k

i
c

eeo

patterninputi

e

e
o

Derivative of Softmax: Case-1,

class c for O and NET same

)1(

1.
1

1
1

)ln(ln

1

1

i

c

i

ci

c

i

c

i

c

net

C

k

net
i

c

i

c

i

c

C

k

neti

c

i

c

oo
net

o

oe

e
net

o

o

eneto

i
c

i
k

i
k






















Derivative of Softmax: Case-2,

class c’ in netic’ different from class

c of O

i

c

i

ci

c

c

k

i

c

net

C

k

net
i

c

i

c

i

c

C

k

neti

c

i

c

oo
net

O

oe

e
net

o

o

eneto

i

c

i
k

i
k

'

'

'

'

'

.
1

0
1

)ln(ln

1

1






















FFNN: Working with RELU

Rectifier Linear Unit

What is RELU

y=relu(x)=max(0,x)

dy/dx

= 0 for x<o

= 1 for x>0

= 0 (forced to be 0 at x=0, though

does not exit)

Output sigmod and hidden neurons

as RELU
o

w22

x2 x1

w11

w12 w21

H2 H1

w31
w32

i

ji

j

ji

j

th

j

ji

j

jji

ji

ji

jo
w

net
jw

j
net

E

net

w

net

net

E

w

E

w

E
w











































)neuron j at theinput

10rate, learning

Backpropagation – for outermost

layer

ijjjjji

jjjj

m

p

pp

th

j

j

j

jj

ooootw

oootj

otE

net
net

o

o

E

net

E
j

)1()(

))1()((Hence,

)(
2

1

)layer j at theinput (

1

2





























Backpropagation – for hidden

layers

0)(

)01()(Hence,

)01()(

)01(

layernext

layernext

layernext

orw

orw

or
o

net

net

E

or
o

E

net

o

o

E

net

E
j

jow

k

kkj

k

kjkj

k j

k

k

j

j

j

jj

iji
























































This recursion can

give rise to vanishing

and exploding

Gradient problem

Backpropagation Rule for weight

change with RELU, Sigmoid and TSS

0)(
layernext

orw
k

kkj


 

)1()(jjjjj ooot 

iji jow 

for outermost layer

for hidden layers

15

Softmax, Cross Entropy and

RELU

Cross Entropy Function


x

xQxPQPH)(log)(),(2

P is target distribution, Q is observed

distribution

e.g., Positive, Negative, Neutral Sentiment

x: input sentence: The movie was excellent

P(x): <1,0,0>, Q(x): <0.9,0.02,0.08>, (say)

H(P,Q)=-log0.9=log(10/9)

Deriving weight change rules

Cross Entropy Softmax combination

A very ubiquitous combination in neural

combination

Foundation: Gradient descent

Change is weight Δwji= -

ηδL/ δwji

η= learning rate, L=loss,

wji= weight of connection

from the ith neuron to jth

L

wji

B

A

At A, δL/ δwji is negative, so

Δwji is positive. At B, δL/ δwji

Is positive, so so Δwji is

negative. L *always

decreases. Greedy algo.

Single neuron: sigmoid+cross

entropy loss

x0x1x2xn-2
xn-1

xn …

o

w1

1

1

1

1

10

11

)(

)3(

)2()1()(
1

1

)1(
)1(1

1

)1log()1(log

..

xot
w

L
w

x
w

net
xwnet

oo
net

o
sigmoid

e
o

oo

ot

o

t

o

t

o

L

ototL

w

net

net

o

o

L

w

L

n

i

ii

net































































Δw1 = η(t-o)x1

net

FFNN with O1-O2 softmax, all hidden neurons

RELU, Cross Entropy Loss

21

O2

H22

H12

X2

O1

H21

H11

X1

W11,1
W12,1

W11,2
W12,2

W21,11

W22,11

W22,12
W21,12

W1,21W2,22

W2,21

W1,22

net2 net1

We will apply the

Δwji=ηδjoi rule

Gradient Descent Rule and the

General Weight Change Equation

1

2121,1

1

1

net

E

hw

o

o












O2

H22

O1

H21

W2,22

W2,21

W1,22

net2

W1,21

net1

1122 loglog ototE 

)(,

)(

)(

)1(

))(()1(

..

22

11

111221

1211

21

2

2
11

1

1

1

2

21

1

11

2

1

otSimilarly

ot

ototot

otot

oo
o

t
oo

o

t

net

o

o

E

net

o

o

E

net

E

O

O



































ΔW1,21=η(t1-o1)h21

Weight Change for Hidden Layer, W21,11

23

O2

H22

H12

O1

H21

H11

W21,11

W22,11

W22,12
W21,12

W2,22 W2,21

W1,22

)(_');('.

)(;.

2121

21

2121
21

21

11

11,21

11,21

2121

21

21

21

HRELUderivativerHr
h

E

Houtputh
net

h

h

E

net

E

net

E

h
w

E
w

HH

H

H

H




































net2 net1

W1,21

derivativeRELUdeltaatedbackpropag

HrWW

WW

h

net

net

E

h

net

net

E

h

E

ooH

oo

.

)(')...(

).().(

..

2121,2221,1

21,2221,1

21

2

221

1

121

121

1

































ΔW21,11=η[(t2-o2)W2,21+(t1-o1)W1,21].r’(H21).h11

2021: Midsem questions on FFNN (10, 11,

12)

There is a pure feedforward network 2-2-2

(2 input, 2 hidden and 2 output neurons).

Input neurons are called X1 and X2 (right

to left when drawn on paper, X1 to the

right of X2). Similarly hidden neurons are

H1 and H2 (right to left) and output

neurons are O1 and O2 (right to left). H1

and H2 are RELU neurons. O1 and O2

form a softmax layer.

Remember: weight change rules

25

W2
11

O2

H2

X2

O1

H1

X1

W1
11

W1
21

W1
22

W1
21

W2
22

W2
21

W2
12

net2 net1
1122 loglog ototE 

ΔW2
11=η(t1-o1)h1

ΔW1
11=η[(t2-o2)W

2
21+(t1-o1)W

1
11].r’(H1).h1

Why is RELU a solution for

vanishing or exploding gradient?

Vanishing/Exploding Gradient
27

O2

H22

H12

X2

O1

H21

H11

X1

W11,1
W12,1

W11,2
W12,2

W21,11

W22,11

W22,12
W21,12

W1,21W2,22
W2,21

W1,22

δx1

δH12
δH11

δH22
δH21 δH21δH22

δO2
δO1

δO2
δO1

δO2
δO1

δO2
δO1

δx1=W11,1δH11+W12,1δH12

W12,1
W11,1

W22,12 W21,12

W21,11

W22,11

W2,22

W1,21W2,21 W1,21 W2,21

W1,22
W1,22

W2,22

Vanishing/Exploding Gradient
28

δx1

δH12
δH11

δH22
δH21 δH21δH22

δO2
δO1

δO2
δO1

δO2
δO1

δO2
δO1

δx1=W11,1δH11+W21,1δH12 [2

terms]

=W11,1(W21,11δH21+

W22,11δH22).r’(H11)+

W21,1(W21,12δH21+

W22,12δH22). r’(H12) [4 terms]

= (4 terms involving δo1) + (4

terms involving δo2)

δs get multiplied by

derivatives of RELU which

are 1 or 0; hence δs from

the output layer pass as

such or as 0

W21,1
W11,1

W22,12 W21,12

W21,11

W22,11

W2,22

W1,21W2,21 W1,21 W2,21

W1,22
W1,22

W2,22

W11,1W21,11W1,21

Vanishing/Exploding Gradient
29

δx1

δH12
δH11

δH22
δH21 δH21δH22

δO2
δO1

δO2
δO1

δO2
δO1

δO2
δO1

With ‘B’ as branching factor and

‘L’ as number of levels,

There will be BL terms in the final

Expansion of δx1. Also each term

Will be product of L weights
O2

H22

H12

X2

O1

H21

H11

X1

W12,1

W11,2
W12,2

W21,11
W22,11

W22,12
W21,12

W2,22
W2,21

W1,22

How can gradients explode

• Station derivatives multiply

• If <0, progressive attenuation of product

• Now the sigmoid function can be in the form

of y=K[1/(1+e-x)]

• Derivative= K.y.(1-y)

• If K is more than 1, the product of gradients

can become larger and larger, leading to

explosion of gradient

• K needs to be >1, to avoid saturation of

neurons

Can happen for tanh too

• Tanh: y=[(ex-e-x)/(ex+e-x)]

• Derivative= (1-y)(1+y)

• If we take a neuron with K.tanh, we can

again have explosion of gradient if K>1

• Why K needs to be >1?

• To take care of situations where #inputs

and individual components of input are

large

• This is to avoid saturation of the neuron

Recurrent Neural Network

Acknowledgement:
1. http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-

introduction-to-rnns/

By Denny Britz

2. Introduction to RNN by Jeffrey Hinton

http://www.cs.toronto.edu/~hinton/csc2535/lectures.html

3. Dr. Anoop Kunchukuttan, Microsoft and ex-CFILT

32

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.cs.toronto.edu/~hinton/csc2535/lectures.html

Sequence processing m/c

33

Meaning of state
• State vector  constituted of states of neurons

• State of a neuron  activation, i.e., output of

the neuron corresponding to an input

• E.g., state vector for the XOR n/w is <h1, h2, o>

o

w22

x2 x1

w11

w12 w21

H2 H1

w31
w32

E.g. POS Tagging

35

Purchased Videocon machine

VBD NNP NN

Note that POS of “purchased” is ambiguous

With possibilities as VBD or VBN or JJ (“I purchased Videocon machine”

vs.

“my purchased Videocon machine is running well”

I

h0 h1

o1 o2
o3 o4

c1

a11 a12 a13

a14

Decision on a piece of text

E.g. Sentiment Analysis
36

I

h0 h1

o1 o2
o3 o4

c2

a21
a22

a23

a24

like

h2

37

I

h0 h1

o1 o2
o3 o4

c3

a31 a32 a33

a34

like the

h3
h2

38

I

h0 h1

o1 o2
o3 o4

c4

a41

a42
a43

a44

like the

h3
h2

camera

h4

39

I

h0 h1

o1 o2
o3 o4

c5

a51

a52
a53

a54

like the

h3
h2

camera <EOS>

h4 h5

Positive

sentiment

40

Recurrent Neural Networks: two

key Ideas

𝑥𝑖−1𝑥2𝑥1 𝑐(𝑥𝑖)

1. Summarize context information into a single vector

𝑐(𝑥𝑖) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑖−1)

Nature of 𝑷(.)

n-gram LM: look-up table

FF LM: 𝑐 𝑥𝑖 = 𝐺 𝑥𝑖−1, 𝑥𝑖−2 (trigram LM)

RNN LM: 𝑐 𝑥𝑖 = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑖−1) (unbounded

context)

𝑃(𝑥𝑖|𝑐 𝑥𝑖)

Function G requires

all context inputs at

once

How does RNN

address this

problem?

Two Key Ideas (cntd)

𝑥3𝑥2𝑥1

𝑐(𝑥2)

2. Recursively construct the

context

𝑐(𝑥3)𝑐(𝑥1)𝑐(𝑥0)

𝑐(𝑥𝑖) = 𝐹(𝑐 𝑥𝑖−1 , 𝑥𝑖)

We just need two inputs to construct the context

vector:

- Context vector of previous timestep

- Current input
The context vector  state/hidden state/contextual representation

𝐹 . can be implemented as

𝑐(𝑥𝑖) = 𝜎 𝑊𝑐𝑐(𝑥𝑖−1 +𝑊𝑥 𝑥𝑖 + 𝑏1)

Like a feed-forward network

𝑊𝑥 𝑊𝑥 𝑊𝑥

𝑊𝑐 𝑊𝑐 𝑊𝑐

𝑥3𝑥2𝑥1

𝑜1 𝑜2 𝑜3

𝑜(𝑥𝑖) = 𝑊𝑜𝑐(𝑥𝑖) + 𝑏2
We are generally interested in categorical outputs

Ƹ𝑧𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑜(𝑥𝑖))
= 𝑃(𝑦𝑖|𝑐𝑡𝑥(𝑥𝑖))

𝑐(𝑥2) 𝑐(𝑥3)𝑐(𝑥1)
𝑐(𝑥0)

Ƹ𝑧1 Ƹ𝑧2 Ƹ𝑧3

𝑊𝑐 𝑊𝑐 𝑊𝑐

𝑊𝑥 𝑊𝑥 𝑊𝑥

𝑊𝑜𝑊𝑜𝑊𝑜

The same parameters are used at each time-step

Model size does not depend on sequence length

Long range context is modeled

𝑦1 𝑦2 𝑦3

෢𝑧𝑖
𝑤 = 𝑃(𝑦𝑖 = 𝑤|𝑐𝑡𝑥(𝑥𝑖))

Generate output give the current input and

state/context

Wo=wt. for output layer;

Wc= wt. for generating next state

(context);

Wx= wt. for the input layer

Input Sequence: (𝑥1 𝑥2 𝑥3 𝑥4… . . 𝑥𝑖 …… . 𝑥𝑁)

Output Sequence: (𝑦1 𝑦2 𝑦3 𝑦4… . . 𝑦𝑖 …… . 𝑦𝑁)

Sequence Labelling Task

Input and output sequences have the same length

Variable length input

Output contains categorical labels

Output at any time-step typically depends on neighbouring output labels and input

elements

Part-of-speech

tagging

Recurrent Neural Network is a powerful model to learn sequence labelling

tasks

How do we model language

modeling as a sequence labeling

task?

The capital of Maharashtra is Mumbai

capital of Maharashtra is MumbaiThe

<BOS>

<EOS>

The output sequence is one-time step ahead of the input sequence

Training Language Models
Input: large monolingual corpus

- Each example is a tokenized sentence (sequence of words)

- At each time step, predict the distribution of the next word given all previous words

- Loss Function:

- Minimize cross-entropy between actual distribution and predicted distribution

- Equivalently, maximize the likelihood

At a single time-step:

𝐽𝑖 𝜃 = 𝐶𝐸 𝑧𝑖 , Ƹ𝑧𝑖 = −σ𝑤∈𝑉 𝑧𝑖
𝑤 log ෢𝑧𝑖

𝑤 = − log෢𝑧𝑖
𝐿

Average over time steps for example n:

𝐽𝑛 𝜃 =
1

𝑇
σ𝑖=1
𝑇 𝐽𝑖 𝜃

Average over entire corpus:

𝐽(𝜃) =
1

𝑁
σ𝑘=1
𝑁 𝐽𝑛 𝜃

How do we learn model

parameters?

More on that later!

where 𝑦𝑖 =
𝐿

How do we evaluate quality of language models?

Evaluate the ability to predict the next word given a

context

Evaluate the probability of a testset of

sentences
Standard testsets exist for evaluating language models: Penn Treebank, Billion Word Corpus,

WikiText

Evaluating Language Models

Evaluating LM (cntd.)

• Ram likes to play -----
– Cricket: high probability, low entropy, low perplexity

(relatively very high frequency for ‘like to play

cricket’)

– violin: -do- (relatively high frequency possibility for

‘like to play violin’

– Politics: moderate probability, moderate entropy,

moderate perplexity (relatively moderate frequency

‘like to play politics’

– milk: almost 0 probability, very high entropy, very

high perplexity (relatively very low possibility for ‘like

to play milk’

So an LM that predicts ‘milk’ is bad!

Language Model Perplexity

Perplexity: exp 𝐽 𝜃

𝐽(𝜃) is cross-entropy on the test set

Cross-entropy is measure of difference between actual and

predicted distribution

Lower perplexity and cross-entropy is better

Training objective matches evaluation metric

https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-

words/

n-gram

RNN variants

RNN models outperform n-gram models

A special kind of RNN network – LSTM- does even later  we will

see that soon

BPTT

The equivalence between feedforward nets and recurrent

nets

A B C

A0 B0 C0

A1 B1 C1

A3 B3 C3

A2 B2 C2

w1 w4

w2 w3

w1 w2 W3 W4

time=0

time=2

time=1

time=3

Assume that there is a time

delay of 1 in using each

connection.

The recurrent net is just a

layered net that keeps

reusing the same weights.

w1 w2 W3 W4

w1 w2 W3 W4

52

Loss/Error= E

BPTT illustration

A0 B0 C0

A1 B1 C1

A3 B3 C3

A2 B2 C2

w1 w2 W3 W4

time=0

time=2

time=1

time=3

w1 w2 W3 W4

w1 w2 W3 W4

53

Loss/Error= E

Δw3
i

Δw2
i

Δw1
i

Δwi= Δw3
i+ Δw2

i+ Δw1
i

Vanishing/Exploding

Gradient can strike!!!

BPTT important points

• The forward pass at each time step.

• The backward pass computes the error
derivatives at each time step.

• After the backward pass we add together
the derivatives at all the different times
for each weight.

54

A few points about FFNN BP

x2 x1

h2 h1

33 cxmy 

11 cxmy 22 cxmy 

1221111)(cxwxwmh 

22
)(22111 cxwxwmh 

32211

32615)(

kxkxk

chwhwOut





Can Linear Neurons Work?

Local Minima

Due to the Greedy

nature of BP, it can

get stuck in local

minimum m and will

never be able to

reach the global

minimum g as the

error can only

decrease by weight

change.

57

Momentum factor

1. Introduce momentum factor.

 Accelerates the movement out of the trough.

 Dampens oscillation inside the trough.

 Choosing β : If β is large, we may jump over

the minimum.

iterationthnjiijiterationnthji wOw  )1()()(

58

Symmetry breaking

• If mapping demands different weights, but we start with
the same weights everywhere, then BP will never
converge.

w2=1w1=1
θ = 0.5

x1x2 x1x2

-1

x1 x2

-1
1.5

1.5

1 1

XOR n/w: if we s

started with identical

weight everywhere, BP

will not converge

Symmetry breaking: understanding

with proper diagram

w32

x1x2 x1x2

w12

x2

x1

w11

w22 w21

1 1

w31

ᶱ Symmetry

About

The red

Line should

Be broken

Note: The whole structure shown in earlier slide is reducible

to a single neuron with given behavior

Claim: A neuron with linear I-O behavior can’t compute X-

OR.

Proof: Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds]

For (0,0), Zero class:

For (0,1), One class:

32211 kxkxkOut 

1.0.

1.0)0.0.(21









mc

cwwm

9.0..

9.0)0.1.(

1

21





cmwm

cwwm





For (1,0), One class:

For (1,1), Zero class:

These equations are inconsistent. Hence X-OR can’t be computed.

Observations:

1. A linear neuron can’t compute X-OR.

2. A multilayer FFN with linear neurons is collapsible to a

single linear neuron, hence no a additional power due

to hidden layer.

3. Non-linearity is essential for power.

9.0..
2

 cmwm 

1.0..
21

 cmwm 

An application in Medical Domain

Expert Systems also called

Knowledge Based Systems (KBS)

• Expert Systems aim to mimic experts:

e.g., doctors, lawyers, metallurgists and

so on

• Expert knowledge is encoded in either of

the two forms
– An elaborate set of rules, or

– Neural net

• The latter is called a connectionist expert

system

Expert System for Skin Diseases

Diagnosis

• Bumpiness and scaliness of skin

• Mostly for symptom gathering and for

developing diagnosis skills

• Not replacing doctor’s diagnosis

Architecture of the FF NN

• 96-20-10
• 96 input neurons, 20 hidden layer neurons, 10

output neurons
• Inputs: skin disease symptoms and their

parameters
– Location, distribution, shape, arrangement, pattern,

number of lesions, presence of an active norder,
amount of scale, elevation of papuls, color, altered
pigmentation, itching, pustules, lymphadenopathy,
palmer thickening, results of microscopic
examination, presence of herald pathc, result of
dermatology test called KOH

Output

• 10 neurons indicative of the

diseases:
– psoriasis, pityriasis rubra pilaris, lichen

planus, pityriasis rosea, tinea versicolor,

dermatophytosis, cutaneous T-cell

lymphoma, secondery syphilis, chronic

contact dermatitis, soberrheic dermatitis

Figure : Explanation of dermatophytosis diagnosis using the DESKNET expert system.

5

(Dermatophytosis node)

0

(Psoriasis node)

Disease

diagnosis

19

14

13

0

1.62

1.68

Symptoms & parameters
Duration

of lesions : weeks 0

1

6

10

36

171

95

96

Duration

of lesions : weeks

Minimal itching

Positive

KOH test

Lesions located

on feet

Minimal

increase

in pigmentation

Positive test for

pseudohyphae

And spores

Bias

Internal

representation

20
Bias

9

(Seborrheic dermatitis node)

Training data

• Input specs of 10 model diseases

from 250 patients

• 0.5 is some specific symptom value

is not known

• Trained using standard error

backpropagation algorithm

Testing

• Previously unused symptom and disease data of 99
patients

• Result:

• Correct diagnosis achieved for 70% of papulosquamous
group skin diseases

• Success rate above 80% for the remaining diseases
except for psoriasis

• psoriasis diagnosed correctly only in 30% of the cases

• Psoriasis resembles other diseases within the
papulosquamous group of diseases, and is somewhat
difficult even for specialists to recognise.

Explanation capability

• Rule based systems reveal the explicit
path of reasoning through the textual
statements

• Connectionist expert systems reach
conclusions through complex, non linear
and simultaneous interaction of many
units

• Analysing the effect of a single input or a
single group of inputs would be difficult
and would yield incorrect results

Explanation contd.

• The hidden layer re-represents the

data

• Outputs of hidden neurons are

neither symtoms nor decisions

Discussion

• Symptoms and parameters

contributing to the diagnosis found

from the n/w

• Standard deviation, mean and other

tests of significance used to arrive at

the importance of contributing

parameters

• The n/w acts as apprentice to the

expert

CS772 midsem questions in 2021 on FFNN

(10, 11, 12) (cntd.)

The inputoutput patterns are <X2, X1> <O2,

O1>:

<0,0><1,0>

<0,1><0,1>

<1,0><0,1>

<1,1><1,0>

• I.e., o1 computes XOR and o2 computes XNOR

• The values of all weights are initialized to 1; also

there are no bias terms.

Q10
Q10. For the input <0,1>,

the outputs from H1, H2,

O1, O2 are respectively

(a) 1, 1, 0.5, 0.5

(b) 1,0.5, 1, 0.5

(c) 0.5,0.5, 1, 1

(d) 0.5, 1, 0.5, 1

Ans: (a)

O2

H2

X2

O1

H1

X1

W1
11

W1
21

W1
22

W1
21

W2
11W2

22

W2
21

W2
12

net2 net1

Elaboration:

X1=1, X2=0  netH1=1, netH2=1

h1=relu(netH1)=1, h2=relu(netH2)=1

net1=2, net2=2

o1=enet1/(enet1+enet2)=0.5, o2=enet2/(enet1+enet2)=0.5

Q11
Q11. The cross entropy error value for

the input <1,1> (X2, X1) with respect to

Q10 is (assume weight changes are

posted only after a complete epoch, and

initial weights are all 1):

(a) 1/loge2

(b) loge2

(c) 2loge(0.5)

(d) None of the above

Ans: (b)

Elaboration:

X1=1, X2=1  netH1=2, netH2=2 h1=2, h2=2 net1=4, net2=4

o1=enet1/(enet1+enet2)=0.5, o2=enet2/(enet1+enet2)=0.5, t1=0, t2=1

E= -1loge(0.5)-0loge0= loge2

net1

O2

H2

X2

O1

H1

X1

W1
11

W1
21

W1
22

W1
21

W2
22

W2
21

W2
12

net2

W2
11

Q12
Q12. Again consider the network of Q10,

with same input-output patterns and initial

values of weights (all 1). Assume the

learning rate to be 0.5. The weight change

values for the connections X1-to-H1 and

H1-to-O1 given the input <0,1> (X2, X1) are:

(a) 0, 0.5

(b) -0.5, 1

(c) 0.25, 0

(d) None of the above

Ans: (d)

O2

H2

X2

O1

H1

X1

W1
11

W1
21

W1
22

W1
21

W2
22

W2
21

W2
12

net2

W2
11

net1

Elaboration: next slide

Q12 (cntd.)
O2

H2

X2

O1

H1

X1

W1
11

W1
21

W1
22

W1
21

W2
22

W2
21

W2
12

net2

W2
11

net1

Elaboration:

X1=1, X2=0  o1= 0.5, o2= 0.5, t1=1,

t2=0 δo1=t1-o1=0.5, δo2=t2-o2=-0.5

 ΔWo1H1=ηδo1h1=0.5.0.5.1=0.25,

δH1=(W2
11δo1+W2

21δo2).r’(H1)

= (1X0.5+1X-0.5).1=0

 ΔWH1X1=ηδH1X1=0.5X0X1=0

