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multiclass: SOFTMAX

• 2-class  multi-class (C classes)

• Sigmoid  softmax

• ith input, cth class (small c), k varies over 

classes 
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Softmax Neuron
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Target Vector, Ti: <tiC tiC-1…ti2 ti1>, i for ith input. 

Only one of these C componets is 1, rest are 0.



Compare and contrast Sigmoid and 

Softmax
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over classes 1 to C



Interpreting oi
c

• oi
c value is between 0 and 1

• Interpreted as probability

• Multi-class situation

• oi
c value is the probability of the class 

being ‘c’ for the ith input

• That is, 

P(Class of ith input=c)=oi
c



Derivatives



Derivative of Softmax
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Derivative of Softmax: Case-1, 

class c for O and NET same
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Derivative of Softmax: Case-2, 

class c’ in netic’ different from class 
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FFNN: Working with RELU

Rectifier Linear Unit



What is RELU

y=relu(x)=max(0,x)

dy/dx 

= 0 for x<o

= 1 for x>0

= 0  (forced to be 0 at x=0, though 

does not exit)



Output sigmod and hidden neurons 

as RELU
o
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Backpropagation – for outermost 

layer
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Backpropagation – for hidden 

layers
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This recursion can

give rise to vanishing

and exploding

Gradient problem



Backpropagation Rule for weight 

change with RELU, Sigmoid and TSS
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Softmax, Cross Entropy and 

RELU 



Cross Entropy Function


x

xQxPQPH )(log)(),( 2

P is target distribution, Q is observed 

distribution

e.g., Positive, Negative, Neutral Sentiment

x: input sentence: The movie was excellent

P(x): <1,0,0>, Q(x): <0.9,0.02,0.08>, (say)

H(P,Q)=-log0.9=log(10/9)



Deriving weight change rules

Cross Entropy Softmax combination

A very ubiquitous combination in neural 

combination 



Foundation: Gradient descent

Change is weight Δwji= -

ηδL/ δwji

η= learning rate, L=loss, 

wji= weight of connection 

from the ith neuron to jth

L 

wji

B 

A 

At A, δL/ δwji is negative, so 

Δwji is positive. At B, δL/ δwji

Is positive, so so Δwji is 

negative. L *always 

decreases. Greedy algo.



Single neuron: sigmoid+cross

entropy loss
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FFNN with O1-O2 softmax, all hidden neurons 

RELU, Cross Entropy Loss
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Gradient Descent Rule and the 

General Weight Change Equation
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Weight Change for Hidden Layer, W21,11
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2021: Midsem questions on FFNN (10, 11, 

12)

There is a pure feedforward network 2-2-2 

(2 input, 2 hidden and 2 output neurons). 

Input neurons are called X1 and X2 (right 

to left when drawn on paper, X1 to the 

right of X2). Similarly hidden neurons are 

H1 and H2 (right to left) and output 

neurons are O1 and O2 (right to left). H1

and H2 are RELU neurons. O1 and O2

form a softmax layer. 



Remember: weight change rules
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Why is RELU a solution for 

vanishing or exploding gradient?



Vanishing/Exploding Gradient
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Vanishing/Exploding Gradient
28
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Vanishing/Exploding Gradient
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How can gradients explode

• Station derivatives multiply

• If <0, progressive attenuation of product

• Now the sigmoid function can be in the form 

of y=K[1/(1+e-x)]

• Derivative= K.y.(1-y)

• If K is more than 1, the product of gradients 

can become larger and larger, leading to 

explosion of gradient 

• K needs to be >1, to avoid saturation of 

neurons



Can happen for tanh too

• Tanh: y=[(ex-e-x)/(ex+e-x)]

• Derivative= (1-y)(1+y)

• If we take a neuron with K.tanh, we can 

again have explosion of gradient if K>1

• Why K needs to be >1?

• To take care of situations where #inputs 

and individual components of input are 

large

• This is to avoid saturation of the neuron



Recurrent Neural Network

Acknowledgement:
1. http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-

introduction-to-rnns/

By Denny Britz

2. Introduction to RNN by Jeffrey Hinton

http://www.cs.toronto.edu/~hinton/csc2535/lectures.html

3. Dr. Anoop Kunchukuttan, Microsoft and ex-CFILT
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Sequence processing m/c

33



Meaning of state
• State vector  constituted of states of neurons

• State of a neuron  activation, i.e., output of 

the neuron corresponding to an input

• E.g., state vector for the XOR n/w is <h1, h2, o>

o

w22

x2 x1

w11

w12 w21

H2 H1

w31
w32



E.g. POS Tagging

35

Purchased Videocon machine

VBD NNP NN

Note that POS of “purchased” is ambiguous

With possibilities as VBD or VBN or JJ (“I purchased Videocon machine” 

vs. 

“my purchased Videocon machine is running well”



I

h0 h1

o1 o2
o3 o4

c1

a11 a12 a13

a14

Decision on a piece of text

E.g. Sentiment Analysis
36



I

h0 h1

o1 o2
o3 o4

c2

a21 
a22

a23

a24

like

h2
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I

h0 h1

o1 o2
o3 o4

c3

a31 a32 a33

a34

like the

h3
h2
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I

h0 h1

o1 o2
o3 o4

c4

a41 

a42
a43

a44

like the

h3
h2

camera

h4
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I

h0 h1

o1 o2
o3 o4

c5

a51 

a52
a53

a54

like the

h3
h2

camera <EOS>

h4 h5

Positive 

sentiment
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Recurrent Neural Networks: two 

key Ideas

𝑥𝑖−1𝑥2𝑥1 𝑐(𝑥𝑖)

1. Summarize context information into a single vector

𝑐(𝑥𝑖) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑖−1)

Nature of 𝑷(. )

n-gram LM: look-up table

FF LM: 𝑐 𝑥𝑖 = 𝐺 𝑥𝑖−1, 𝑥𝑖−2 (trigram LM)

RNN LM: 𝑐 𝑥𝑖 = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑖−1) (unbounded 

context)

𝑃(𝑥𝑖|𝑐 𝑥𝑖 )

Function G requires 

all context inputs at 

once

How does RNN 

address this 

problem?



Two Key Ideas (cntd)

𝑥3𝑥2𝑥1

𝑐(𝑥2)

2. Recursively construct the 

context

𝑐(𝑥3)𝑐(𝑥1)𝑐(𝑥0)

𝑐(𝑥𝑖) = 𝐹(𝑐 𝑥𝑖−1 , 𝑥𝑖)

We just need two inputs to construct the context 

vector:

- Context vector of previous timestep

- Current input
The context vector  state/hidden state/contextual representation

𝐹 . can be implemented as

𝑐(𝑥𝑖) = 𝜎 𝑊𝑐𝑐(𝑥𝑖−1 +𝑊𝑥 𝑥𝑖 + 𝑏1)

Like a feed-forward network

𝑊𝑥 𝑊𝑥 𝑊𝑥

𝑊𝑐 𝑊𝑐 𝑊𝑐



𝑥3𝑥2𝑥1

𝑜1 𝑜2 𝑜3

𝑜(𝑥𝑖) = 𝑊𝑜𝑐(𝑥𝑖) + 𝑏2
We are generally interested in categorical outputs

Ƹ𝑧𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑜(𝑥𝑖))
= 𝑃(𝑦𝑖|𝑐𝑡𝑥(𝑥𝑖))

𝑐(𝑥2) 𝑐(𝑥3)𝑐(𝑥1)
𝑐(𝑥0)

Ƹ𝑧1 Ƹ𝑧2 Ƹ𝑧3

𝑊𝑐 𝑊𝑐 𝑊𝑐

𝑊𝑥 𝑊𝑥 𝑊𝑥

𝑊𝑜𝑊𝑜𝑊𝑜

The same parameters are used at each time-step

Model size does not depend on sequence length

Long range context is modeled

𝑦1 𝑦2 𝑦3

෢𝑧𝑖
𝑤 = 𝑃(𝑦𝑖 = 𝑤|𝑐𝑡𝑥(𝑥𝑖))

Generate output give the current input and 

state/context

Wo=wt. for output layer; 

Wc= wt. for generating next state 

(context); 

Wx= wt. for the input layer 



Input Sequence: (𝑥1 𝑥2 𝑥3 𝑥4… . . 𝑥𝑖 …… . 𝑥𝑁)

Output Sequence: (𝑦1 𝑦2 𝑦3 𝑦4… . . 𝑦𝑖 …… . 𝑦𝑁)

Sequence  Labelling Task

Input and output sequences have the same length 

Variable length input

Output contains categorical labels

Output at any time-step typically depends on neighbouring output labels and input 

elements 

Part-of-speech 

tagging

Recurrent Neural Network is a powerful model to learn sequence labelling 

tasks



How do we model language 

modeling as a sequence labeling 

task?

The capital of Maharashtra is Mumbai

capital of Maharashtra is MumbaiThe

<BOS>

<EOS>

The output sequence is one-time step ahead of the input sequence



Training Language Models
Input: large monolingual corpus

- Each example is a tokenized sentence (sequence of words)

- At each time step, predict the distribution of the next word given all previous words 

- Loss Function: 

- Minimize cross-entropy between actual distribution  and predicted distribution 

- Equivalently, maximize the likelihood

At a single time-step:

𝐽𝑖 𝜃 = 𝐶𝐸 𝑧𝑖 , Ƹ𝑧𝑖 = −σ𝑤∈𝑉 𝑧𝑖
𝑤 log ෢𝑧𝑖

𝑤 = − log෢𝑧𝑖
𝐿

Average over time steps for example n:

𝐽𝑛 𝜃 =
1

𝑇
σ𝑖=1
𝑇 𝐽𝑖 𝜃

Average over entire corpus:

𝐽(𝜃) =
1

𝑁
σ𝑘=1
𝑁 𝐽𝑛 𝜃

How do we learn model 

parameters? 

More on that later!

where 𝑦𝑖 =
𝐿



How do we evaluate quality of language models?

Evaluate the ability to predict the next word given a 

context

Evaluate the probability of a testset of 

sentences
Standard testsets exist for evaluating language models: Penn Treebank, Billion Word Corpus, 

WikiText

Evaluating Language Models



Evaluating LM (cntd.)

• Ram likes to play -----
– Cricket: high probability, low entropy, low perplexity 

(relatively very high frequency for ‘like to play 

cricket’)

– violin: -do- (relatively high frequency possibility for 

‘like to play violin’

– Politics: moderate probability, moderate entropy, 

moderate perplexity (relatively moderate frequency 

‘like to play politics’

– milk: almost 0 probability, very high entropy, very 

high perplexity (relatively very low possibility for ‘like 

to play milk’

So an LM that predicts ‘milk’ is bad!



Language Model Perplexity

Perplexity: exp 𝐽 𝜃

𝐽(𝜃) is cross-entropy on the test set

Cross-entropy is measure of difference between actual and 

predicted distribution 

Lower perplexity and cross-entropy is better

Training objective matches evaluation metric



https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-

words/

n-gram

RNN variants 

RNN models outperform n-gram models

A special kind of RNN network – LSTM- does even later  we will 

see that soon



BPTT



The equivalence between feedforward nets and recurrent 

nets

A B C

A0 B0 C0

A1 B1 C1

A3 B3 C3

A2 B2 C2

w1 w4

w2 w3

w1  w2  W3     W4

time=0

time=2

time=1

time=3

Assume that there is a time 

delay of 1 in using each 

connection.

The recurrent net is just a 

layered net that keeps 

reusing the same weights.

w1  w2  W3     W4

w1  w2  W3     W4
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Loss/Error= E



BPTT illustration

A0 B0 C0

A1 B1 C1

A3 B3 C3

A2 B2 C2

w1    w2  W3     W4

time=0

time=2

time=1

time=3

w1    w2  W3     W4

w1    w2  W3     W4
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Loss/Error= E

Δw3
i

Δw2
i

Δw1
i

Δwi= Δw3
i+ Δw2

i+ Δw1
i

Vanishing/Exploding

Gradient can strike!!!



BPTT important points

• The forward pass at each time step.

• The backward pass computes the error 
derivatives at each time step. 

• After the backward pass we add together 
the derivatives at all the different times 
for each weight.
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A few points about FFNN BP



x2 x1

h2 h1

33 cxmy 

11 cxmy 22 cxmy 

1221111 )( cxwxwmh 

22
)( 22111 cxwxwmh 

32211

32615 )(

kxkxk

chwhwOut





Can Linear Neurons Work?



Local Minima

Due to the Greedy 

nature of BP, it can 

get stuck in local 

minimum m and will 

never be able to 

reach the global 

minimum g as the 

error can only 

decrease by weight 

change.
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Momentum factor

1. Introduce momentum factor.

 Accelerates the movement out of the trough.

 Dampens oscillation inside the trough.

 Choosing  β : If β is large, we may jump over 

the minimum.

iterationthnjiijiterationnthji wOw   )1()()( 
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Symmetry breaking

• If mapping demands different weights, but we start with 
the same weights everywhere, then BP will  never 
converge.

w2=1w1=1
θ = 0.5

x1x2 x1x2

-1

x1 x2

-1
1.5

1.5

1 1

XOR n/w: if we s

started with identical

weight everywhere, BP

will not converge



Symmetry breaking: understanding 

with proper diagram

w32

x1x2 x1x2

w12

x2

x1

w11

w22 w21

1 1

w31

ᶱ Symmetry

About

The red

Line should

Be broken



Note: The whole structure shown in earlier slide is reducible 

to a single neuron with given behavior

Claim: A neuron with linear I-O behavior can’t compute X-

OR.

Proof: Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds]

For (0,0), Zero class:

For (0,1), One class:

32211 kxkxkOut 

1.0.

1.0)0.0.( 21









mc

cwwm

9.0..

9.0)0.1.(

1

21





cmwm

cwwm







For (1,0), One class:

For (1,1), Zero class:

These equations are inconsistent. Hence X-OR can’t be computed.

Observations:

1. A linear neuron can’t compute X-OR.

2. A multilayer FFN with linear neurons is collapsible to a 

single linear neuron, hence no a additional power due 

to hidden layer.

3. Non-linearity is essential for power.

9.0..
2

 cmwm 

1.0..
21

 cmwm 



An application in Medical Domain



Expert Systems also called 

Knowledge Based Systems (KBS)

• Expert Systems aim to mimic experts: 

e.g., doctors, lawyers, metallurgists and 

so on

• Expert knowledge is encoded in either of 

the two forms
– An elaborate set of rules, or

– Neural net

• The latter is called a connectionist expert 

system



Expert System for Skin Diseases 

Diagnosis

• Bumpiness and scaliness of skin

• Mostly for symptom gathering and for 

developing diagnosis skills

• Not replacing doctor’s diagnosis



Architecture of the FF NN

• 96-20-10
• 96 input neurons, 20 hidden layer neurons, 10 

output neurons
• Inputs: skin disease symptoms and their 

parameters
– Location, distribution, shape, arrangement, pattern, 

number of lesions, presence of an active norder, 
amount of scale, elevation of papuls, color, altered 
pigmentation, itching, pustules, lymphadenopathy, 
palmer thickening, results of microscopic 
examination, presence of herald pathc, result of 
dermatology test called KOH



Output

• 10 neurons indicative of the 

diseases:
– psoriasis, pityriasis rubra pilaris, lichen 

planus, pityriasis rosea, tinea versicolor, 

dermatophytosis, cutaneous T-cell 

lymphoma, secondery syphilis, chronic 

contact dermatitis, soberrheic dermatitis



Figure : Explanation of dermatophytosis diagnosis using the DESKNET expert system.

5

(Dermatophytosis node)

0

( Psoriasis node )

Disease 

diagnosis
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13

0
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Duration 

of lesions : weeks 0

1

6
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36

171

95

96

Duration 

of  lesions : weeks

Minimal itching

Positive 

KOH test 
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on feet
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in pigmentation

Positive test for

pseudohyphae

And spores

Bias

Internal

representation 

20
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Training data

• Input specs of 10 model diseases 

from 250 patients

• 0.5 is some specific symptom value 

is not known

• Trained using standard error 

backpropagation algorithm



Testing

• Previously unused symptom and disease data of 99 
patients

• Result:

• Correct diagnosis achieved for 70% of papulosquamous 
group skin diseases

• Success rate above 80% for the remaining diseases 
except for psoriasis

• psoriasis diagnosed correctly only in 30% of the cases

• Psoriasis resembles other diseases within the 
papulosquamous group of diseases, and is somewhat 
difficult even for specialists to recognise.



Explanation capability

• Rule based systems reveal the explicit 
path of reasoning through the textual 
statements

• Connectionist expert systems reach 
conclusions through complex, non linear 
and simultaneous interaction of many 
units

• Analysing the effect of a single input or a 
single group of inputs would be difficult 
and would yield incorrect results



Explanation contd.

• The hidden layer re-represents the 

data

• Outputs of hidden neurons are 

neither symtoms nor decisions



Discussion

• Symptoms and parameters 

contributing to the diagnosis found 

from the n/w 

• Standard deviation, mean and other 

tests of significance used to arrive at 

the importance of contributing 

parameters

• The n/w acts as apprentice to the 

expert



CS772 midsem questions in 2021 on FFNN 

(10, 11, 12) (cntd.)

The inputoutput patterns are <X2, X1> <O2, 

O1>:

<0,0><1,0>

<0,1><0,1>

<1,0><0,1>

<1,1><1,0>

• I.e., o1 computes XOR and o2 computes XNOR

• The values of all weights are initialized to 1; also 

there are no bias terms.



Q10
Q10. For the input <0,1>, 

the outputs from H1, H2, 

O1, O2 are respectively

(a) 1, 1, 0.5, 0.5

(b) 1,0.5, 1, 0.5  

(c) 0.5,0.5, 1, 1  

(d) 0.5, 1, 0.5, 1  

Ans: (a)

O2

H2

X2

O1

H1

X1

W1
11

W1
21

W1
22

W1
21

W2
11W2

22

W2
21

W2
12

net2 net1

Elaboration: 

X1=1, X2=0  netH1=1, netH2=1 

h1=relu(netH1)=1, h2=relu(netH2)=1 

net1=2, net2=2 

o1=enet1/(enet1+enet2)=0.5, o2=enet2/(enet1+enet2)=0.5



Q11
Q11. The cross entropy error value for 

the input <1,1> (X2, X1) with respect to 

Q10 is (assume weight changes are 

posted only after a complete epoch, and 

initial weights are all 1):

(a) 1/loge2

(b) loge2

(c) 2loge(0.5)

(d) None of the above

Ans: (b)

Elaboration: 

X1=1, X2=1  netH1=2, netH2=2 h1=2, h2=2 net1=4, net2=4 

o1=enet1/(enet1+enet2)=0.5, o2=enet2/(enet1+enet2)=0.5, t1=0, t2=1 

E= -1loge(0.5)-0loge0= loge2

net1

O2

H2

X2

O1

H1

X1

W1
11

W1
21

W1
22

W1
21

W2
22

W2
21

W2
12

net2

W2
11



Q12
Q12. Again consider the network of Q10, 

with same input-output patterns and initial 

values of weights (all 1). Assume the 

learning rate to be 0.5. The weight change 

values for the connections X1-to-H1 and 

H1-to-O1 given the input <0,1> (X2, X1) are:

(a) 0, 0.5

(b) -0.5, 1

(c) 0.25, 0

(d) None of the above

Ans: (d)

O2

H2

X2

O1

H1

X1

W1
11

W1
21

W1
22

W1
21

W2
22

W2
21

W2
12

net2

W2
11

net1

Elaboration: next slide



Q12 (cntd.)
O2

H2

X2

O1

H1

X1

W1
11

W1
21

W1
22

W1
21

W2
22

W2
21

W2
12

net2

W2
11

net1

Elaboration: 

X1=1, X2=0  o1= 0.5, o2= 0.5, t1=1, 

t2=0 δo1=t1-o1=0.5, δo2=t2-o2=-0.5 

 ΔWo1H1=ηδo1h1=0.5.0.5.1=0.25,

δH1=(W2
11δo1+W2

21δo2).r’(H1)

= (1X0.5+1X-0.5).1=0

 ΔWH1X1=ηδH1X1=0.5X0X1=0


