CS772: Deep Learning for Natural Language Processing (DL-NLP)

Word2Vec, FFNN, BP

Pushpak Bhattacharyya

Computer Science and Engineering

Department

IIT Bombay

Week 5 of 31st Jan, 2022

Example (1/3)

- 4 words: heavy, light, rain, shower
 - Heavy: $U_0 < 0.0, 0.0, 1 > 0.0$
 - *light:* U_1 : <0,0,1,0>
 - rain: U_2 : <0,1,0,0>
 - shower: U₃: <1,0,0,0>
- We want to predict as follows:
 - 。Heavy → rain
 - Light → shower

Note

 Any bigram is theoretically possible, but actual probability differs

- E.g., heavy-heavy, heavy-light are possible, but unlikely to occur
- Language imposes constraints on what bigrams are possible
- Domain and corpus impose further restriction

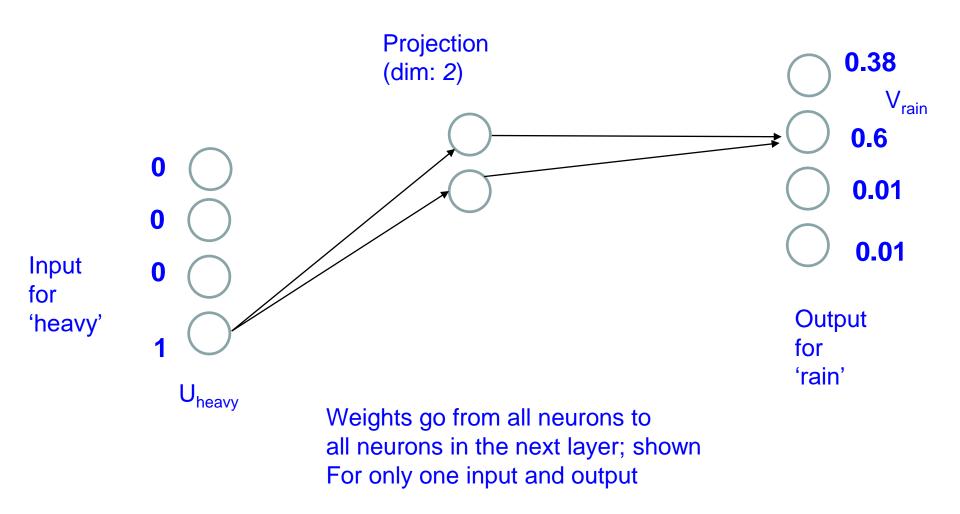
Example (2/3)

- We will call input as U and output as V
 - Heavy: U₀ <0,0,0,1>, light: U₁: <0,0,1,0>, rain: U₂: <0,1,0,0>, shower: U₃: <1,0,0,0>
 - Heavy: V₀ <0,0,0,1>, light: V₁: <0,0,1,0>,
 rain: V₂: <0,1,0,0>, shower: V₃: <1,0,0,0>

Example (3/3)

- heavy → rain
 - heavy: U₀ <0,0,0,1>
 - **>**
 - rain: V_2 : <0,1,0,0>
- light → shower
 - light: U₁: <0,0,1,0>, → shower: V₃:
 <1,0,0,0>

Word2vec n/w



Chain of thinking

P(rain|heavy) should be the highest

 So the output from V2 should be the highest because of softmax

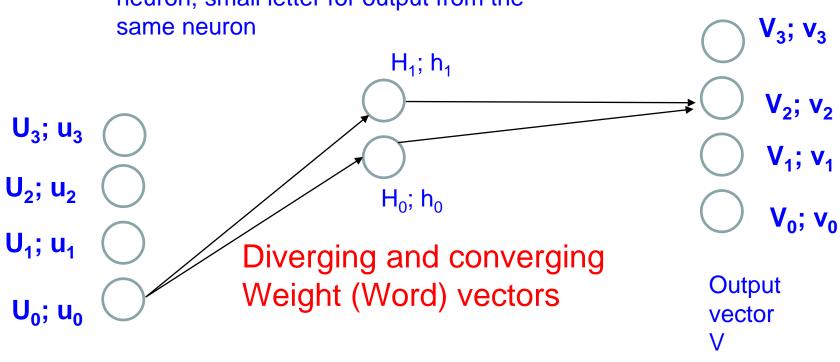
 This way of converting an English statement into probability in insightful

Developing word2vec weight change rule

Illustrated with 4 words only

Word2vec n/w

Convention: Capital letter for NAME of neuron; small letter for output from the same neuron



Input vector U

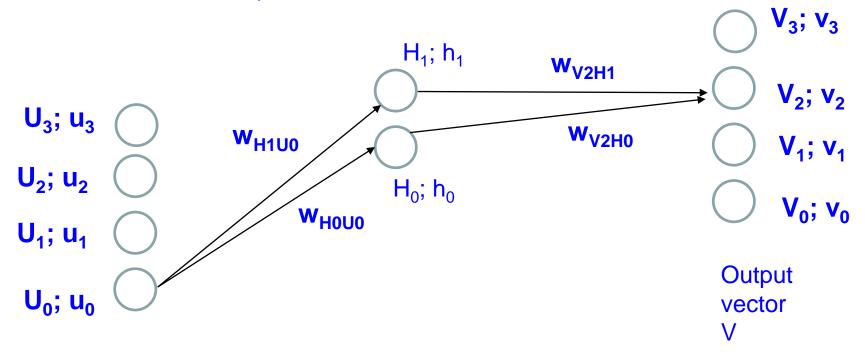
Weights go from all neurons to all neurons in the next layer; shown For only one input and output

Notation Convention

- Weights indicated by small 'w'
- Index close to 'w' is for the destination neuron
- The other index is for the source neuron

Word2vec n/w

Capital letter for NAME of neuron; small letter for output from the same neuron



Input vector U

Weights go from all neurons to all neurons in the next layer; shown For only one input and output

More notation

 Net input to hidden and output layer neurons play an important role in BP

 Net input to hidden layer neurons: net_{H0} and net_{H1}

 Net input to output layer neurons: net_{V0}, net_{V1}, net_{V2}, net_{V3}

Outputs at the outermost layer

Uses softmax

$$v_{0} = \frac{e^{net_{V_{0}}}}{e^{net_{V_{0}}} + e^{net_{V_{1}}} + e^{net_{V_{2}}} + e^{net_{V_{3}}}}$$

$$v_{1} = \frac{e^{net_{V_{0}}}}{e^{net_{V_{0}}} + e^{net_{V_{1}}} + e^{net_{V_{2}}} + e^{net_{V_{3}}}}$$

$$v_{2} = \frac{e^{net_{V_{0}}}}{e^{net_{V_{0}}} + e^{net_{V_{1}}} + e^{net_{V_{2}}} + e^{net_{V_{3}}}}$$

$$v_{3} = \frac{e^{net_{V_{0}}}}{e^{net_{V_{0}}} + e^{net_{V_{1}}} + e^{net_{V_{2}}} + e^{net_{V_{3}}}}$$

Note

- No non-linearity in the hidden layer
- Why?
- Hidden layer should do ONLY dimensionality reduction
- Can be proved: hidden layer with linearity gives the principal components (will discuss of which Matrix)

Why Dimensionality Reduction?

The vectors of words represent their distributional similarity

 Dimensionality reduction achieves capturing commonality of these distributional similarities across words

Softmax

What is softmax

- Turns a vector of K real values into a vector of K real values that sum to 1
- Input values can be positive, negative, zero, or greater than one
- But softmax transforms them into values between 0 and 1
- so that they can be interpreted as probabilities.

Mathematical form

$$S(Z)_{i} = \frac{e^{Z_{i}}}{\sum_{j=1}^{K} e^{Z_{j}}},$$

LHS is the ith component of the soft max output vector

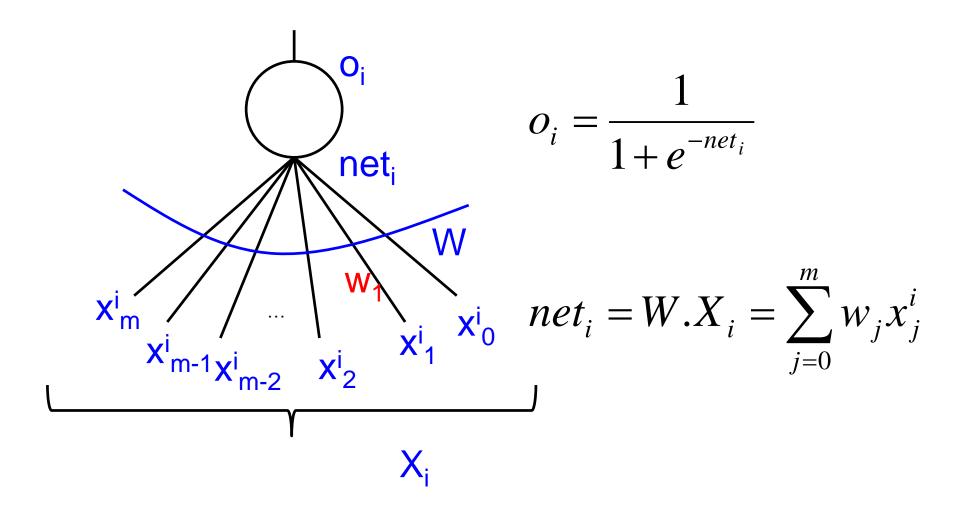
- S(.) is the softmax function, returns a vector
- Z is the input vector of size K
- The RHS gives the ith component of the output vector
- Input to softmax and output of softmax are of the same dimension

Example

$$Z = <1, 2, 3>$$
 $Z_1 = 1, Z_2 = 2, Z_3 = 3$
 $e^1 = 2.72, e^2 = 7.39, e^3 = 20.09$

$$\sigma(Z) = <\frac{2.72}{2.72 + 7.39 + 20.09}, \frac{7.39}{2.72 + 7.39 + 20.09}, \frac{20.09}{2.72 + 7.39 + 20.09}>$$
 $= <.09, 0.24, 0.67>$

Sigmoid neuron



Interpreting o_i

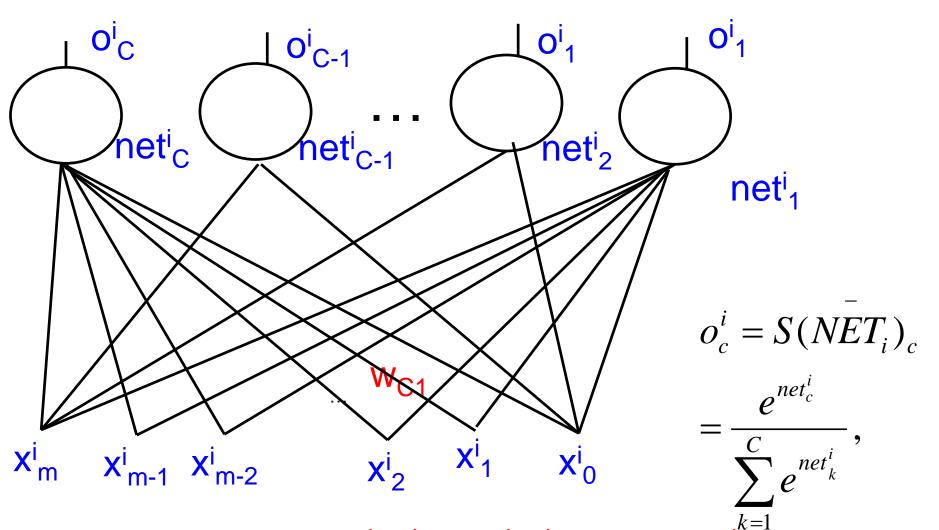
- o_i value is between 0 and 1
- Interpreted as probability
- 2-class situation, o_i value is looked upon as probability of class being 1
- That is, $P(Class=1 \text{ for } i^{th} \text{ input})$ = $o_i=1/(1+e^{-neti})$
- Each training data instance is labeled as 1 or 0
- Target value $t_i=1/0$, for i^{th} input

Generalizing 2-class to multiclass: SOFTMAX

$$o_c^i = S(NET_i)_c = \frac{e^{net_c^i}}{\sum_{k=1}^{C} e^{net_k^i}},$$

- 2-class → multi-class (C classes)
- Sigmoid → softmax
- ith input, cth class (small c), k varies over classes

Softmax Neuron



Target Vector, T_i : $\langle t^i_C t^i_{C-1}...t^i_2 t^i_1 \rangle$, $i \rightarrow$ for i^{th} input. Only one of these C componets is 1, rest are 0.

Compare and contrast Sigmoid and Softmax

$$sigmoid: o_i = \frac{1}{1 + e^{-net_i}}, for i^{th} input$$

$$soft \max : o_c^i = \frac{e^{net_c^i}}{\sum_{k=1}^C e^{net_k^i}},$$

ith input, cth class (small c), k varies over classes 1 to C

Interpreting oⁱ_c

- oⁱ_c value is between 0 and 1
- Interpreted as probability
- Multi-class situation
- oⁱ_c value is the probability of the class being 'c' for the ith input

That is,
 P(Class of ith input=c)=oⁱ_c

Derivatives

Derivative of sigmoid

$$o_{i} = \frac{1}{1 + e^{-net_{i}}}, \text{ for } i^{th} \text{ input}$$

$$\ln o_{i} = -\ln(1 + e^{-net_{i}})$$

$$\frac{1}{o_{i}} \frac{\partial o_{i}}{\partial net_{i}} = -\frac{1}{1 + e^{-net_{i}}}. -e^{-net_{i}} = \frac{e^{-net_{i}}}{1 + e^{-net_{i}}} = (1 - o_{i})$$

$$\Rightarrow \frac{\partial o_{i}}{\partial net_{i}} = o_{i}(1 - o_{i})$$

Derivative of Softmax

$$o_c^i = \frac{e^{net_c^i}}{\sum_{k=1}^C e^{net_k^i}}, i^{th} input pattern$$

$$\ln o_c^i = e^{net_c^i} - \ln(\sum_{k=1}^C e^{net_k^i})$$

Derivative of Softmax: Case-1, class c for O and NET same

$$\ln o_c^i = net_c^i - \ln(\sum_{k=1}^C e^{net_k^i})$$

$$\frac{1}{o_c^i} \frac{\partial o_c^i}{\partial net_c^i} = 1 - \frac{1}{\sum_{k=1}^C e^{net_k^i}} e^{net_c^i} = 1 - o_c^i$$

$$\Rightarrow \frac{\partial o_c^i}{\partial net_c^i} = o_c^i (1 - o_c^i)$$

Derivative of Softmax: Case-2, class c' in $net_{c'}^i$ different from class c' of c'

$$\ln o_c^i = net_c^i - \ln(\sum_{k=1}^C e^{net_k^i})$$

$$\frac{1}{o_c^i} \frac{\partial o_c^i}{\partial net_c^i} = 0 - \frac{1}{\sum_{k=1}^C e^{net_k^i}} e^{net_c^i} = -o_c^i$$

$$\Rightarrow \frac{\partial O_k^c}{\partial net_c^i} = -o_c^i o_c^i$$

Exercise

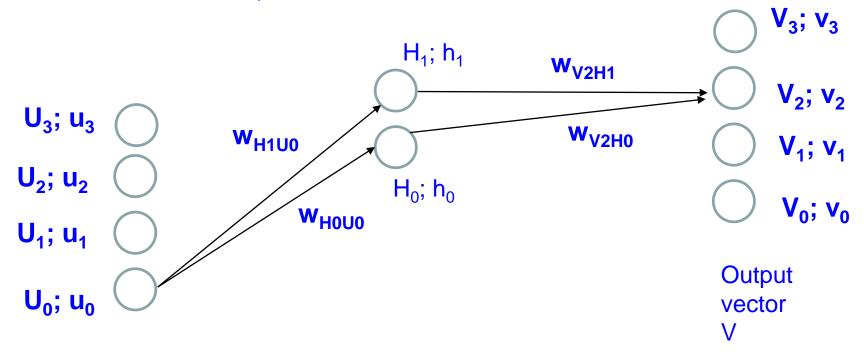
Unify the two cases of derivatives

Give a SINGLE expression

Back to word2vec

Word2vec n/w

Capital letter for NAME of neuron; small letter for output from the same neuron



Input vector U

Weights go from all neurons to all neurons in the next layer; shown For only one input and output

Outputs at the outermost layer

Uses softmax

$$v_{0} = \frac{e^{net_{V_{0}}}}{e^{net_{V_{0}}} + e^{net_{V_{1}}} + e^{net_{V_{2}}} + e^{net_{V_{3}}}}$$

$$v_{1} = \frac{e^{net_{V_{0}}}}{e^{net_{V_{0}}} + e^{net_{V_{1}}} + e^{net_{V_{2}}} + e^{net_{V_{3}}}}$$

$$v_{2} = \frac{e^{net_{V_{0}}}}{e^{net_{V_{0}}} + e^{net_{V_{1}}} + e^{net_{V_{2}}} + e^{net_{V_{3}}}}$$

$$v_{3} = \frac{e^{net_{V_{0}}}}{e^{net_{V_{0}}} + e^{net_{V_{1}}} + e^{net_{V_{2}}} + e^{net_{V_{3}}}}$$

Developing "net_{vi}" (1/2)

$$net_{V_0} = w_{V_0H_0}h_0 + w_{V_0H_1}h_1$$

$$h_0 = w_{H_0U_0}u_0 + w_{H_0U_1}u_1 + w_{H_0U_2}u_2 + w_{H_0U_3}u_3$$

$$h_1 = w_{H_1U_0}u_0 + w_{H_1U_1}u_1 + w_{H_1U_2}u_2 + w_{H_1U_3}u_3$$

Developing "net_{vi}" (2/2)

- For "heavy", only u_0 is 1, $u_1=u_2=u_3=0$
- So,

$$h_0 = w_{H_0 U_0}$$
 $h_1 = w_{H_1 U_0}$
 $net_{v_0} = w_{V_0 H_0} w_{H_0 U_0} + w_{V_0 H_1} w_{H_1 U_0}$

More Notation

• Weight vector FROM U_0 is called W_{U0} (capital 'W')

• Weight vector INTO V_0 is called W_{V0}

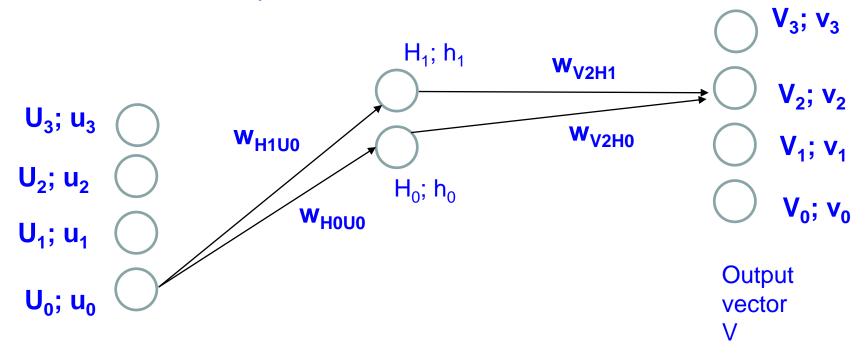
Slight liberty with notation, but has intuitive advantage

For "heavy" (= U_0), the value of net_{v0}

$$net_{V_0} = W_{V_0}.W_{U_0}$$

Word2vec n/w

Capital letter for NAME of neuron; small letter for output from the same neuron



Input vector U

Weights go from all neurons to all neurons in the next layer; shown For only one input and output

For "heavy" (= U_0), values of other $net_{vi}s$

$$net_{V_1} = W_{V_1}.W_{U_0}$$
 $net_{V_2} = W_{V_2}.W_{U_0}$
 $net_{V_3} = W_{V_3}.W_{U_0}$

We want to maximize $P(\text{'rain'}=V_2|\text{'heavy'}=U_0)$

This probability is in terms of softmax.

$$P('rain'=V_2 \mid 'heavy'=U_1)$$

$$= v_2 = \frac{e^{net_{V_2}}}{e^{net_{V_0}} + e^{net_{V_1}} + e^{net_{V_2}} + e^{net_{V_3}}}$$

Equivalent to

minimize -log[P('rain'=V₂|'heavy'=U₀)]

$$-\log[P('rain'=V_{2} | 'heavy'=U_{1})]$$

$$=-net_{V_{2}} + \log(e^{net_{V_{0}}} + e^{net_{V_{1}}} + e^{net_{V_{2}}} + e^{net_{V_{3}}})$$

$$=-W_{V_{2}} \cdot W_{U_{0}} + \log(e^{net_{V_{0}}} + e^{net_{V_{1}}} + e^{net_{V_{2}}} + e^{net_{V_{3}}})$$

Equivalent to

minimize -log[P('rain'=V₂|'heavy'=U₀)]

$$-\log[P('rain'=V_{2} | 'heavy'=U_{0})]$$

$$=-net_{V_{2}} + \log(e^{net_{V_{0}}} + e^{net_{V_{1}}} + e^{net_{V_{2}}} + e^{net_{V_{3}}})$$

$$=-W_{V_{2}}.W_{U_{0}} + e^{W_{V_{1}}.W_{U_{0}}} + e^{W_{V_{2}}.W_{U_{0}}} + e^{W_{V_{3}}.W_{U_{0}}})$$

Error/Loss Function

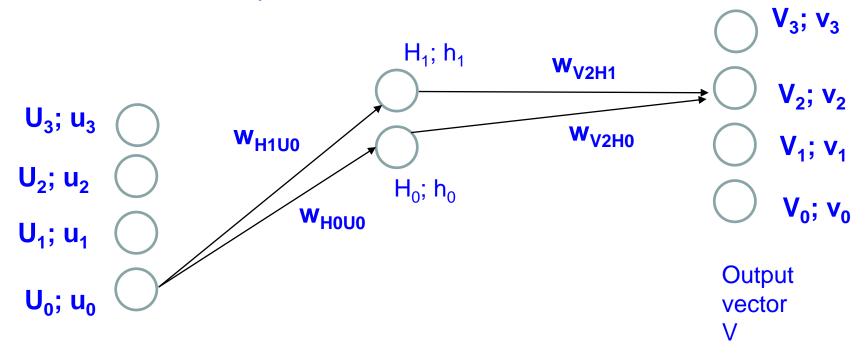
minimize -log[P('rain'=V₂|'heavy'=U₀)]

$$E = -W_{V_2}.W_{U_0} + \log(e^{W_{V_0}.W_{U_0}} + e^{W_{V_1}.W_{U_0}} + e^{W_{V_2}.W_{U_0}} + e^{W_{V_3}.W_{U_0}})$$

$$W_{V_2}.W_{U_0} = w_{V_2H_0}w_{H_0U_0} + w_{V_2H_1}w_{H_1U_0}$$

Word2vec n/w

Capital letter for NAME of neuron; small letter for output from the same neuron



Input vector U

Weights go from all neurons to all neurons in the next layer; shown For only one input and output

Computing ΔW_{V2H0}

$$\Delta w_{V_2 H_0} = -\eta \frac{\delta E}{\delta w_{V_2 H_0}}$$

$$E = -W_{V_2}.W_{U_0} + \log(e^{W_{V_0}.W_{U_0}} + e^{W_{V_1}.W_{U_0}} + e^{W_{V_2}.W_{U_0}} + e^{W_{V_3}.W_{U_0}})$$

$$W_{V_2}.W_{U_0} = w_{V_2H_0}w_{H_0U_0} + w_{V_2H_1}w_{H_1U_0}$$

$$\begin{split} \frac{\delta E}{\delta w_{V_2 H_0}} &= -w_{H_0 U_0} + \frac{e^{W_{V_2}.W_{U_0}}}{e^{W_{V_0}.W_{U_0}} + e^{W_{V_1}.W_{U_0}} + e^{W_{V_2}.W_{U_0}} + e^{W_{V_3}.W_{U_0}}}.w_{H_0 U_0} \\ &= -w_{H_0 U_0} + v_2.w_{H_0 U_0} \\ \Rightarrow \Delta w_{V_2 H_0} &= \eta (1 - v_2).w_{H_0 U_0} = \eta (1 - v_2)o_{H_0} \\ & \text{O/p of hidden neuron H}_0 \end{split}$$

Interpretation of weight change rule for V_2

 If v2 is close to 1, change in weight too is small

• w_{H0U0} is equal to the input to H_0 (since u_0 =1) and to its output too, since hidden neurons simply transmit the output.

Change in other weights to output layer, say, V_1 , due to input U_0

$$\Delta w_{V_1 H_0} = -\eta \frac{\delta E}{\delta w_{V_1 H_0}}$$

$$E = -W_{V_2}.W_{U_0} + \log(e^{W_{V_0}.W_{U_0}} + e^{W_{V_1}.W_{U_0}} + e^{W_{V_2}.W_{U_0}} + e^{W_{V_3}.W_{U_0}})$$

$$W_{V_2}.W_{U_0} = w_{V_2H_0}w_{H_0U_0} + w_{V_2H_1}w_{H_1U_0}$$

$$\begin{split} \frac{\delta E}{\delta w_{V_1 H_0}} &= -0 + \frac{e^{W_{V_1} \cdot W_{U_0}}}{e^{W_{V_0} \cdot W_{U_0}} + e^{W_{V_1} \cdot W_{U_0}} + e^{W_{V_2} \cdot W_{U_0}} + e^{W_{V_3} \cdot W_{U_0}}} \cdot w_{H_0 U_0} \\ &= v_1 \cdot w_{H_0 U_0} \\ \Rightarrow \Delta w_{V_1 H_0} &= -\eta v_1 w_{H_0 U_0} = -\eta v_1 o_{H_0} \end{split}$$

Interpretation of weight change rule for V_1

- Assume w_{HOUO} to be positive
- For training $U0 \rightarrow V2$, i.e., 'heavy' \rightarrow ' rain', if v_2 is not 1, Δw_{V2H0} is +ve
- For the same input, Δw_{V1H0} is negative
- So the two weight changes are of opposite sign.
- The effect is that while v₂ increases, v₁
 decrease for the input U₀, as it should be since
 we want to increase P('rain'|'heavy') and
 depress all other probabilities

Weight change for input to hidden layer, say,

$$\Delta w_{H_0 U_0} = -\eta \frac{\delta E}{\delta w_{H_0 U_0}}$$

$$E = -W_{V_2}.W_{U_0} + \log(e^{W_{V_0}.W_{U_0}} + e^{W_{V_1}.W_{U_0}} + e^{W_{V_2}.W_{U_0}} + e^{W_{V_3}.W_{U_0}})$$

$$W_{V_2}.W_{U_0} = w_{V_2H_0}w_{H_0U_0} + w_{V_2H_1}w_{H_1U_0}$$

Cntd: Weight change for input to hidden layer, say, w_{HOUO}

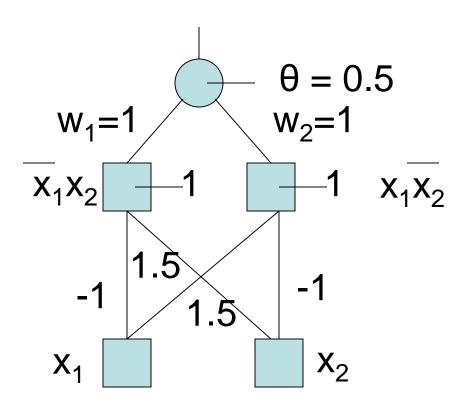
$$\begin{split} &\frac{\partial E}{\delta w_{H_0 U_0}} \\ &= -w_{V_2 H_0} + \frac{w_{V_0 H_0} e^{W_{V_0} \cdot W_{U_0}} + w_{V_1 H_0} e^{W_{V_1} \cdot W_{U_0}} + w_{V_2 H_0} e^{W_{V_2} \cdot W_{U_0}} + w_{V_3 H_0} e^{W_{V_3} \cdot W_{U_0}}}{e^{W_{V_0} \cdot W_{U_0}} + e^{W_{V_1} \cdot W_{U_0}} + e^{W_{V_2} \cdot W_{U_0}} + e^{W_{V_3} \cdot W_{U_0}}}) \\ &= -w_{V_2 H_0} + w_{V_0 H_0} v_0 + w_{V_1 H_0} v_1 + w_{V_2 H_0} v_2 + w_{V_3 H_0} v_3 \\ \Rightarrow \Delta w_{H_0 U_0} = \eta [(1 - v_2) w_{V_2 H_0} - w_{V_0 H_0} v_0 - w_{V_1 H_0} v_1 - w_{V_3 H_0} v_3] \end{split}$$

Need for efficiency

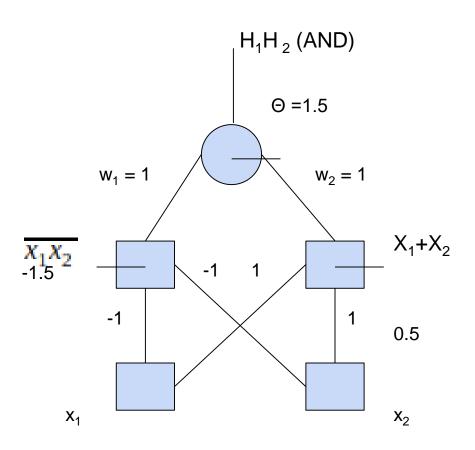
- Hierarchical softmax
- Negative sampling
- We have to update |H|.|V| weights in the hidden to output layer
- |H|=dimension of hidden layer, |V|=vocab size
- For 300 dimension word vector and 100,000 words vocabulary, 30 million weights need to be updated for every input word!!
- Efficiency measures to be discussed

Feedforward Network and Backpropagation

Example - XOR



Alternative network for XOR

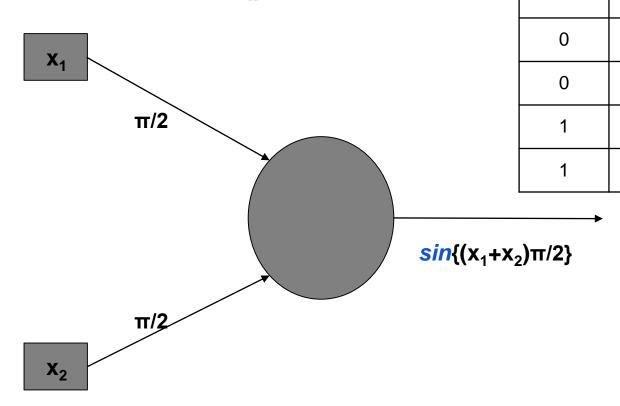


- XOR: not possible using a single perceptron
- Hidden layer gives more computational capability
- Deep neural network: With multiple hidden layers
- Kolmogorov's theorem of equivalence proves equivalence of multiple layer neural network to a single layer neural network, and each neuron have to correspond to an appropriate functions.

Compositionality

- XOR being computed as OR(X₁'X₂, X₁X₂') or as AND((X₁'+X₂'),(X1+X2)) is an example of a nonlinearly separable function computed as composition of linearly separable functions)
- In general not possible for most practical situations like weather prediction, stock market prediction etc.

XOR neuron with sin()



Output

0

1

1

0

 $\mathbf{X_2}$

0

 \mathbf{X}_{1}

Question

 Since SINE can compute XOR, why do not we use sine neuron for practical applications?

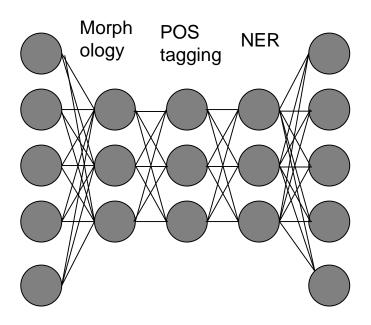
Exercise: Back-propagation

 Implement back-propagation for XOR network

- Observe
 - Check if it converges (error falls below a limit)
 - What is being done at the hidden layer

What a neural network can represent in NLP: Indicative diagram

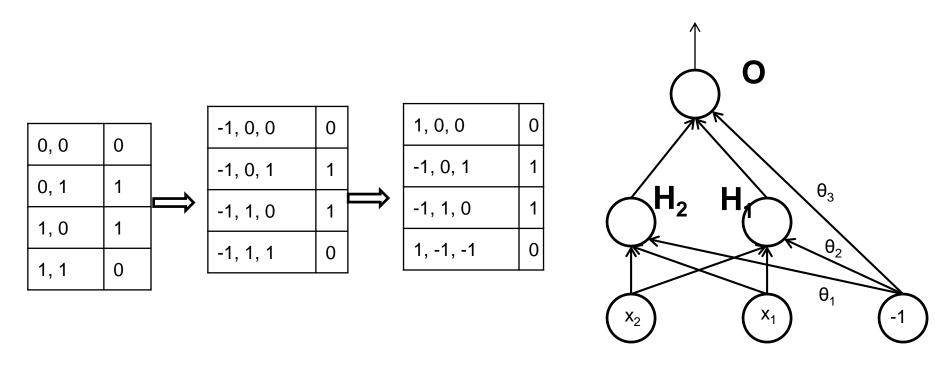
 Each layer of the neural network possibly represents different NLP stages!!



Batch learning versus Incremental learning

- Batch learning is updating the parameters after ONE PASS over the whole dataset
- Incremental learning updates parameters after seeing each PATTERN (input-ouput pair)
- An epoch is ONE PASS over the entire dataset
 - Take XOR: data set is $V_1 = (<0,0>, 0)$, $V_2 = (<0,1>, 1)$, $V_3 = (<1,0>, 1)$, $V_4 = (<1,1>, 0)$
 - If the weight values are changed after each of Vi, then this is incremental learning
 - If the weight values are changed after one pass over all V_is, then it is bathc learning

Can we use PTA for training FFN?



No, else the individual neurons are solving XOR, which is impossible.

Also, for the hidden layer neurons we do nothave the i/o behaviour.

Note: This n/w is NOT a pure FFNN; there is jumping of lair.

Gradient Descent Technique

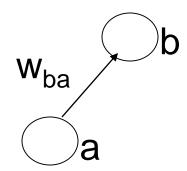
- Let E be the error at the output layer
- i goes over N neurons in the o/p layer, j goes over P patterns

$$E = \frac{1}{2} \sum_{j=1}^{P} \sum_{i=1}^{N} (t_i - o_i)_j^2$$

- t_i = target output; o_i = observed output
- E.g.: XOR:- *P*=4 and *N*=1

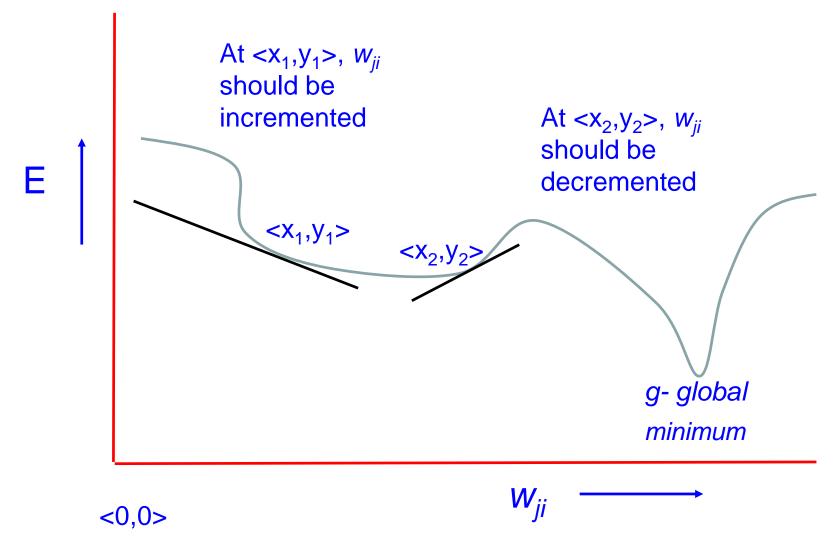
Weights in a FF NN

- w_{ba} is the weight of the connection from the ath neuron to the bth neuron
- E vs \overline{w} surface is a complex surface in the space defined by the weights w_{ij}
- $-\frac{\delta E}{\delta w_{ba}}$ gives the direction in which a movement of the operating point in the w_{mn} coordinate space will result in maximum decrease in error



$$\Delta w_{ba} \propto -rac{\delta\!E}{\delta\!w_{ba}}$$

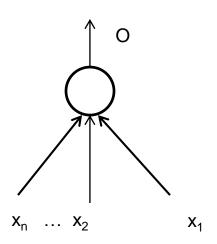
Intuition for gradient descent



Pertains to life!!

- Gradient descent in greedy in nature,
 E ALWAYS decreases
- Can get stuck in local minimum, miss global minimum
- So: "greed does not always pay", "short term gains may not lead to long term gains", "local optimizations need not always lead to global optimizations"

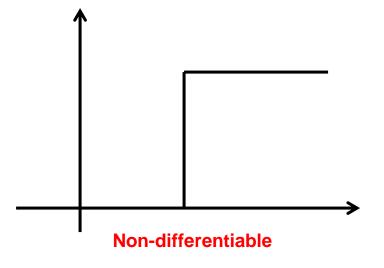
Step function v/s Sigmoid function

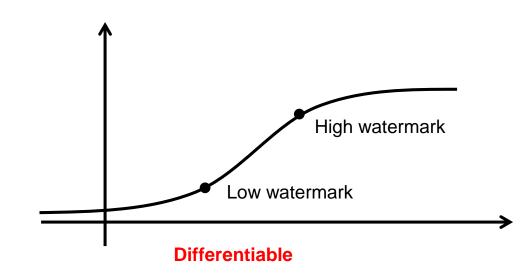


$$O = f(\sum w_i x_i)$$
$$= f(net)$$

So partial derivative of O w.r.t.net is

$$\frac{\delta O}{\delta net}$$



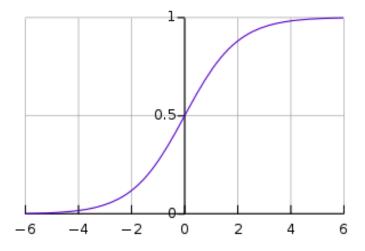


Sigmoid function

$$y = \frac{1}{1 + e^{-x}}$$

$$\frac{dy}{dx} = y(1 - y)$$

Sigmoid function



$$f(x) = \frac{1}{1 + e^{-x}}$$

$$f(x) = \frac{1}{1+e^{-x}}$$

$$\frac{df(x)}{dx} = \frac{d}{dx} \left(\frac{1}{1+e^{-x}} \right)$$

$$= \frac{e^{-x}}{(1+e^{-x})^{-2}}$$

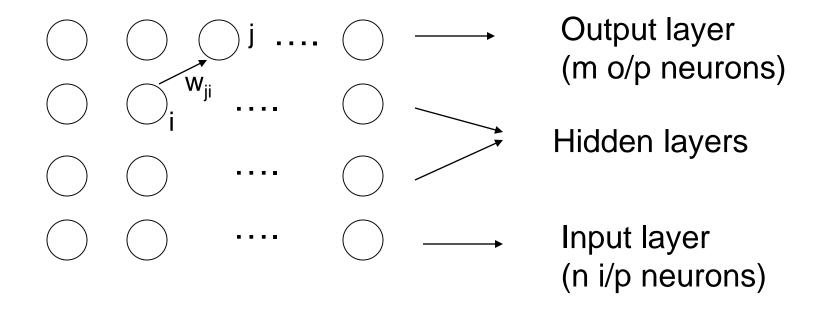
$$= \frac{1}{1+e^{-x}} \left(1 - \frac{1}{1+e^{-x}} \right)$$

$$= f(x).(1 - f(x))$$

Interesting point

- Biological (neurophysical) plausibility of sigmoid function
- The saturating behaviour of sigmoid neuron for very large signals (derivative →0) is said to be a "saviour" for the brain
- Intense emotions (joy, sorrow, anger) produce large signals in brain neurons which through positive feedback can lead to brain damage (haemorrhage)
- Saturation avoids this danger

Backpropagation algorithm



- Fully connected feed forward network
- Pure FF network (no jumping of connections over layers)

Gradient Descent Equations

$$\Delta w_{ji} = -\eta \frac{\delta E}{\delta w_{ji}} (\eta = \text{learning rate}, 0 \le \eta \le 1)$$

$$\frac{\delta E}{\delta w_{ji}} = \frac{\delta E}{\delta net_j} \times \frac{\delta net_j}{\delta w_{ji}} (net_j = \text{input at the j}^{th} \text{ neuron})$$

$$\frac{\delta E}{\delta net_j} = -\delta j$$

$$\Delta w_{ji} = \eta \delta j \frac{\delta net_j}{\delta w_{ji}} = \eta \delta j o_i$$

A quantity of great importance

Backpropagation – for outermost layer

$$\delta j = -\frac{\delta E}{\delta net_j} = -\frac{\delta E}{\delta o_j} \times \frac{\delta o_j}{\delta net_j} (net_j = \text{input at the } j^{th} \text{ layer})$$

$$E = \frac{1}{2} \sum_{j=1}^{N} (t_j - o_j)^2$$

Hence,
$$\delta j = -(-(t_j - o_j)o_j(1 - o_j))$$

$$\Delta w_{ji} = \eta(t_j - o_j)o_j(1 - o_j)o_i$$

Observations from Δw_{jj}

$$\Delta w_{ji} = \eta(t_j - o_j)o_j(1 - o_j)o_i$$

$$\Delta w_{ii} \rightarrow 0$$
 if,

$$1.o_j \rightarrow t_j$$
 and/or

$$2.o_j \rightarrow 1$$
 and/or

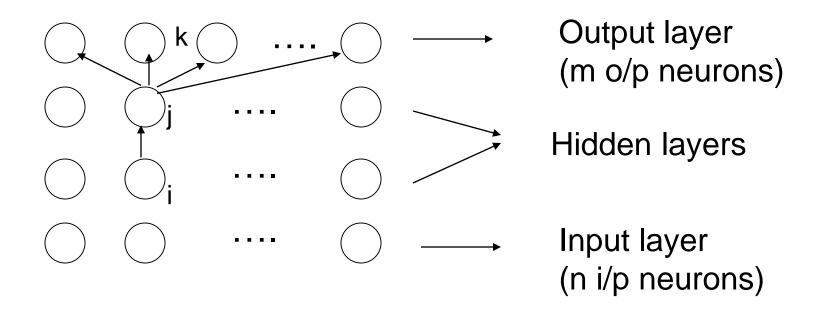
$$3.o_i \rightarrow 0$$
 and/or

$$4.o_i \rightarrow 0$$

Saturation behaviour

Credit/Blame assignment

Backpropagation for hidden layers



 δ_k is propagated backwards to find value of δ_j

Backpropagation – for hidden layers

$$\Delta w_{ji} = \eta \delta j o_{i}$$

$$\delta j = -\frac{\delta E}{\delta net_{j}} = -\frac{\delta E}{\delta o_{j}} \times \frac{\delta o_{j}}{\delta net_{j}}$$

$$= -\frac{\delta E}{\delta o_{j}} \times o_{j} (1 - o_{j})$$

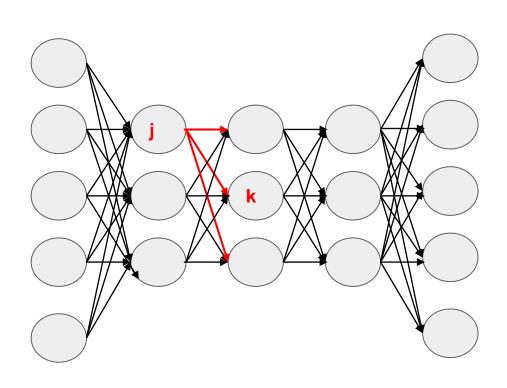
This recursion can give rise to vanishing and exploding Gradient problem

$$= -\sum_{k \in \text{next layer}} (\frac{\delta E}{\delta net_k} \times \frac{\delta net_k}{\delta o_j}) \times o_j (1 - o_j)$$

$$\text{Hence, } \delta_j = -\sum_{k \in \text{next layer}} (-\delta_k \times w_{kj}) \times o_j (1 - o_j)$$

$$= \sum_{k \in \text{next layer}} (w_{kj} \delta_k) o_j (1 - o_j)$$

Back-propagation- for hidden layers: Impact on net input on a neuron



 O_j affects the net input coming to all the neurons in next layer

General Backpropagation Rule

General weight updating rule:

$$\Delta w_{ji} = \eta \delta j o_i$$

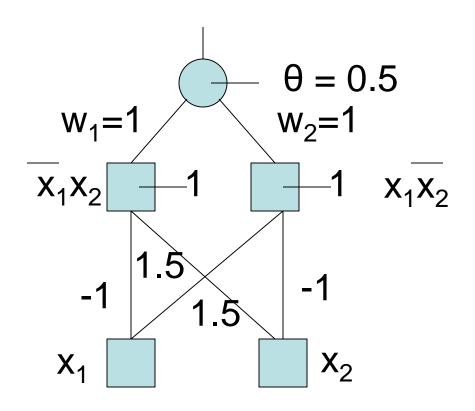
Where

$$\delta_j = (t_j - o_j)o_j(1 - o_j)$$
 for outermost layer

$$= \sum_{k \in \text{next layer}} (w_{kj} \delta_k) o_j (1 - o_j) o_i \text{ for hidden layers}$$

How does it work?

Input propagation forward and error propagation backward (e.g. XOR)



Optional Assignment

- Implement your OWN BP on XOR
- Observe what the hidden layer neurons compute