CS772: Deep Learning for
Natural Language Processing
(DL-NLP)

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay
Week 5 of 31st Jan, 2022

Example (1/3)

. 4 words: heavy, light, rain, shower
- Heavy: U, <0,0,0,1>
. hght: U,: <0,0,1,0>
- rain: U,: <0,1,0,0>

- shower: U,: <1,0,0,0>
. We want to predict as follows:

- Heavy -2 rain
- Light =2 shower

Note

- Any bigram is theoretically possible,
but actual probability differs

- E.g., heavy-heavy, heavy-light are
possible, but unlikely to occur

- Language imposes constraints on
what bigrams are possible

. Domain and corpus impose further
restriction

Example (2/3)

. We will call input as U and output as V

- Heavy: U, <0,0,0,1>, light: U,: <0,0,1,0>,
rain: U,: <0,1,0,0>, shower: U,
<1,0,0,0>

. Heavy: V, <0,0,0,1>, light: V;: <0,0,1,0>,
rain: V,: <0,1,0,0>, shower: V,: <1,0,0,0>

Example (3/3)

. heavy -2 rain
- heavy: U, <0,0,0,1>
9
- rain: V,: <0,1,0,0>

. light =2 shower
. light: U;: <0,0,1,0>, =2 shower: V!
<1,0,0,0>

Word2vec n/w

Projection

(dim: 2) () 038

0 () () oo1
0 () O
]Icnput 0 O 0.01
or
‘heavy’ . O]E())lrJ'[put
‘rain

Uh
= Weights go from all neurons to

all neurons in the next layer; shown
For only one input and output

Chain of thinking

. P(rain|heavy) should be the highest

. S0 the output from V2 should be the
highest because of softmax

. This way of converting an English
statement into probability in insightful

Developing word2vec weight
change rule

lllustrated with 4 words only

Word2vec n/w

Convention: Capital letter for NAME of
neuron; small letter for output from the

same neuron O V3’ V3
Hy; hy

Us; Uy O
Uy, U, O
U, uy O

Diverging and converging

' Output
U u, () Weight (Word) vectors Outpu
V
Input Weights go from all neurons to
vector all neurons in the next layer; shown

U For only one input and output

Notation Convention

. Weights indicated by small ‘w’

. Index close to ‘W’ is for the
destination neuron
. The other index Is for the source

neuron

Us; Us
U, u,

Uy uy

Uos Ug

Input
vector
U

Word2vec n/w

Capital letter for NAME of neuron; small
letter for output from the same neuron

Hai hy Wyon1

W|-|1U() WV2H0

Ho; hy
Whouo

Weights go from all neurons to
all neurons in the next layer; shown
For only one input and output

Vs; V3
Vo, Vs
Vi vy
Vo Vo

Output
vector
V

More notation

- Net input to hidden and output layer
neurons play an important role in BP

- Net input to hidden layer neurons: net,,
and net, ,

- Net input to output layer neurons: net,,,,
nety,, nety,, net,;

Outputs at the outermost layer

. Uses softmax

nety,
V. =
0 net,, net,, net, net,,
e e t4e 24e "
nety,
\V, =
1 net,, net,, net, net,,
e P +e t+e e ¢
nety,
V., =
2 nety, net,, net, net,,
e P +e t+e Z+e °
nety,
V, =
3 net,, net,, net, net,,
e “+e *+e “+e 7

Note

- No non-linearity in the hidden layer
.- Why?

- Hidden layer should do ONLY
dimensionality reduction

. Can be proved: hidden layer with
linearity gives the principal
components (will discuss of which
Matrix)

Why Dimensionality Reduction?

- The vectors of words represent their
distributional similarity

- Dimensionality reduction achieves
capturing commonality of these
distributional similarities across
words

Softmax

What Is softmax

. Turns a vector of K real values into a

vector of K real values that sum to 1

- Input values can be positive,
negative, zero, or greater than one

. But softmax transforms them into

values between 0 and 1

- S0 that they can be interpreted
as probabilities.

Mathematical form

e’
K b}

>e

j=1
LHS is the i component
of the soft max output vector
S(.) Is the softmax function, returns a vector
Z 1S the input vector of size K

The RHS gives the i component of the output
vector

Input to softmax and output of softmax are of
the same dimension

S(i)i:

Example

i =<1 2 3>

,=1272,=2,27,=3

el =2.72,e% =7.39, e* =20.09

2.2 /.39 20.09

]] >
2.12+7.39+20.09 2.72+7.39+20.09 2.72+7.39+20.09
=<.09,0.24,0.67 >

o(Z) =<

Sigmoid neuron

Interpreting o,

- 0; value Is between 0 and 1
- Interpreted as probability

- 2-class situation, o, value Is looked upon as
probability of class being 1

- That is, P(Class=1 for it input)

= 0;=1/(1+e™"et)

- Each training data instance is labeled as 1 or
0

. Target value t=1/0, for i*" input

Generalizing 2-class to multiclass:
SOFTMAX

| _ eneté
0, = S(NET)), =

C]

Z o net|
k=1

. 2-class - multi-class (C classes)
- Sigmoid - softmax

. it input, ct class (small c), k varies over
classes

Softmax Neuron

L

e
| | i X! X! &\ netl
m X1 Xm2 X, "1 0 Y™

. o _ K=
Target Vector, T;: <t'- t'-,...t, t',> i for i input.

Only one of these C componets is 1, rest are O.

[

Compare and contrast Sigmoid and

Softmax
. 1 i -
sigmoid : 0, = ————, for i~ input
l+e ™
| net
softmax:o, = — ,
Zenetf(
k=1

ith input, ¢t class (small ¢), k varies
over classes 1to C

Interpreting o',

. 0. value is between 0 and 1
- Interpreted as probability

- Multi-class situation

- 0'. value is the probability of the class
being ‘¢’ for the ith input

- Thatis,

P(Class of it" input=c)=0'_

Derivatives

Derivative of sigmoid

1

0, = , for i™ input

" lye™™ P
Ino, =—In(1+e™™")

1 00, 1 L e
0. onet. 1+e ™ 1+e ™™
— O _ 0;(1-0)

:(1_Oi)

Derivative of Softmax

net,

i e
— c : |
Zenetf(
k=1

Ino! =e™ — In(Zenetk

" input pattern

Derivative of Softmax;: Case-1,
class ¢ for O and NET same

. . C i
Ino; =net, —In() e"™)
k=1

1 Oi 1 | .
B T
0. one net,
C C e k
0!

— ¢ —0'(1-0
onet (10)

Derivative of Softmax: Case-2,
class ¢’ in net'_. different from class

c of O
. . C i
Ino; = net, —In() e"™)
k=1
].i 880% —0— ' 1 .enet(';. =—O(i;-
0. onet. net,
C C e k
aolf i
— =—0'0"

onet’. ¢
C

Exercise

- Unify the two cases of derivatives

. Give a SINGLE expression

Back to word2vec

Us; Us
U, u,

Uy uy

Uos Ug

Input
vector
U

Word2vec n/w

Capital letter for NAME of neuron; small
letter for output from the same neuron

Hai hy Wyon1

W|-|1U() WV2H0

Ho; hy
Whouo

Weights go from all neurons to
all neurons in the next layer; shown
For only one input and output

Vs; V3
Vo, Vs
Vi vy
Vo Vo

Output
vector
V

Outputs at the outermost layer

. Uses softmax

nety,
V. =
0 net,, net,, net, net,,
e e t4e 24e "
nety,
\V, =
1 net,, net,, net, net,,
e P +e t+e e ¢
nety,
V., =
2 nety, net,, net, net,,
e P +e t+e Z+e °
nety,
V, =
3 net,, net,, net, net,,
e “+e *+e “+e 7

Developing "net,.” (1/2)

netvo =W,y Ny +W, , N

ly = Whu,Uo + Wiy, Uy + Wy, Uy + Wy, Us

N = WHluouo T WHlulul T WH1U2u2 T WH1U3u3

Developing “net,” (2/2)

. For "heavy’, only u, Is 1, u,;=u,=u,;=0

. S0,

More Notation

.- Weight vector FROM U, Is called
W, (capital ‘W’)

- Weight vector INTO V, iIs called W,,,

. Slight liberty with notation, but has
Intuitive advantage

For "heavy” (=U,), the value of
net,,

net, =W, W,

Us; Us
U, u,

Uy uy

Uos Ug

Input
vector
U

Word2vec n/w

Capital letter for NAME of neuron; small
letter for output from the same neuron

Hai hy Wyon1

W|-|1U() WV2H0

Ho; hy
Whouo

Weights go from all neurons to
all neurons in the next layer; shown
For only one input and output

Vs; V3
Vo, Vs
Vi vy
Vo Vo

Output
vector
V

For "heavy” (=U,), values of other
net, s

net, =W, W,
net, =W, W,
net, =W, W,

We want to maximize
P(‘rain’=V,|’heavy’=U,)

- This probabillity is In terms of
softmax.

P(rain'=V, ['heavy'=U,)

nety,

:VZI

nety,, nety, nety, + nety,

€ +€ +€

Equivalent to

. minimize -log[P(‘rain’=V,|’heavy’=U,)]

—log[P(‘rain'=V, |'heavy'=U,)]

t
=—net, +log(e™" +e" +e"" +e"*)

t t t t
=-W, W, +log(e™™ +e"" +e"" +e")

Equivalent to

. minimize -log[P(‘rain’=V,|’heavy’=U,)]

—log[P('rain’=V, ['heavy'=U,)]
=—net, +log(e"" +e"™ +e"" +e")
=W, W, +

Iog(eWVO Mo 4 g™t 4 g™ o 4 s 'W”°)

Error/Loss Function
- minimize -log[P(‘rain’=V,|’heavy’=U,)]

E =W, W, +

log (ewVO Wy, N ewV1 Wy, N evvv2 Wy, N eWV3 .WUO)

WVZ WUO — WVZHOWHOUO +WV2H1WH1U0

Us; Us
U, u,

Uy uy

Uos Ug

Input
vector
U

Word2vec n/w

Capital letter for NAME of neuron; small
letter for output from the same neuron

Hai hy Wyon1

W|-|1U() WV2H0

Ho; hy
Whouo

Weights go from all neurons to
all neurons in the next layer; shown
For only one input and output

Vs; V3
Vo, Vs
Vi vy
Vo Vo

Output
vector
V

Computing Aw,,,q
ok
&NVZHO

AW,y = =77

E=-W, W, +log(e"e™ ™" 4o 4 gMatin)
2 0

WVZ WUO - WVZHOWHOUO +WV2H1WH1UO

OF g2l

=W, +
S, HoUyq eWVO Wy ewV1 W, eWV2 Wy, eW\,3 .WUO)
2'10

— _WHOUO +V, 'WHOUO

— AWVZHO = 77(1_V2)-WHOUO = 77(1_V2)0H0

K/p'of hidden neuron H,

Interpretation of weight change rule
for V,

. If v2 Is close to 1, change in weight
too is small

+ Wyouo IS €qual to the input to H,
(since u,y=1) and to its output too,
since hidden neurons simply transmit
the output.

Change in other weights to output layer, say, V,,
due to input U,
AW — — i
V;H, Uanﬂ_lo

E =-W, W, +log(e"e™ +g""o g™ 4 gMeo
V2 UO

WVZ WUO - WVZHOWHOUO +WV2H1WH1U0

éE _ O N eWVl Wyg "
- W, W, W, W, W, W, Wo. W~ "VVH,U
&/VleO e Vo " Ug 4 e Vi -"Uq +e Vo -¥¥Uq +e vz -YVuq) ovo
= V. Wy U,

= AW,y = =1V Wy, = —7V;0y,

Interpretation of weight change rule for V,

- Assume w4, to be positive

- For training U0O2V2, i.e., ‘heavy =2 rain’, if v, IS
not 1, Aw,,,,, IS +ve

- For the same input, Aw,,,,, IS negative

- SO0 the two weight changes are of opposite
sign.

- The effect Is that while v, increases, v,
decrease for the input U,, as it should be since

we want to increase P(‘rain’|’heavy’) and
depress all other probabillities

Weight change for input to hidden layer, say,

Whouo
ok

AW, b, = =7

E =-W, W, +log(e"e™ +g""o g™ 4 gMeo
V2 UO

WVZ WUO - WVZHOWHOUO + WV2H1WH1U0

Cntd: Weight change for input to hidden layer,

Say, Whouo
ok
OW
HOUO
W,,.. W, W, W W, W, W, ..W
W, € Yoo + W, € o + W, € v2Ho + W, € Vet
— _WV2H0 T eWVO W, + ew\,1 W, 4 eWV2 Wy, + ew\,3 .WUO)

= Wy h, TWH, Vo Wy Vo FW Vo + Wy Vs

= AWy, y, = nld- VZ)WV2H0 —Wy

0

Ho Vo _Wleo Vi _WV3H0 V3]

Need for efficiency

. Hierarchical softmax

- Negative sampling

- We have to update |H|.|V| weights In the
nidden to output layer

H|=dimension of hidden layer, |V|=vocab size

- For 300 dimension word vector and 100,000
words vocabulary, 30 million weights need to
be updated for every input word!!

. Efficiency measures to be discussed

Feedforward Network and
Backpropagation

Example - XOR

0=05
w;=1 w,=1

X1 X5l +1 —1 X%

1 1 -1

X1 X5

Alternative network for XOR

H,H, (AND)
©=1.5
w; =1 w, =1
X, X, X+ X,
157 T 101 —
-1 1

0.5

XOR: not possible using a single
perceptron

Hidden layer gives more
computational capability

Deep neural network: With multiple
hidden layers

Kolmogorov’s theorem of
equivalence proves equivalence of
multiple layer neural network to a
single layer neural network, and
each neuron have to correspond to
an appropriate functions.

Compositionality

. XOR being computed as OR(X,’X,,

X, X,) oras AND((X, +X,),(X1+X2)) Iis
an example of a nonlinearly separable
function computed as composition of
linearly separable functions)

. In general not possible for most
practical situations like weather
prediction, stock market prediction etc.

XOR neuron with sin() X1 X, | Output

0 0 0
0 1 1
™2 1 0)
1 1 0

v

sin{(x,;+X,)1/2}

Question

. SIince SINE can compute XOR, why
do not we use sine neuron for
practical applications?

Exercise: Back-propagation

. Implement back-propagation for XOR
network

. Observe
. Check If it converges (error falls below a
limit)

- What Is being done at the hidden layer

What a neural network can represent
INn NLP: Indicative diagram

o Each layer of the neural network possibly represents
different NLP stages!!

Morph pos
NER
ology tagging

\
\
Vo 4AVA 4Wi 4

NUA AWA A i
M/ el

Batch learning versus Incremental
learning

Batch learning is updating the parameters after ONE

PASS over the whole dataset
Incremental learning updates parameters after seeing

each PATTERN (input-ouput pair)
An epoch is ONE PASS over the entire dataset

- Take XOR: data set is V,=(<0,0>, 0), V,=(<0,1>, 1),
V,=(<1,0>, 1), V,=(<1,1>, 0)

- If the weight values are changed after each of Vi, then
this is incremental learning

- If the weight values are changed after one pass over
all V;s, then it is bathc learning

Can we use PTA for training FFN?

-1,0,0 0 1,0,0 0
0,0 0
-1,0,1 1 -1,0,1 1
0,1 1 ‘
—> | 110 L 110 1
1,0 1
1,1,1 0 1,-1,-1 0
1,1 0

No, else the individual neurons are solving XOR, which is
Impossible.

Also, for the hidden layer neurons we do nothave the i/o
behaviour.

Note: This n/w is NOT a pure FFNN; there is jJumping of lair.

Gradient Descent Technique

- Let E be the error at the output layer
- 1 goes over N neurons in the o/p layer, | goes

over P patterns

P N

E=2> > (-0

j=1 i=1

- 1, = target output; o, = observed output

- E.g.: XOR:—= P=4 and N=1

Weights in a FF NN

* W, IS the weight of the b
connection from the at" neuron Wha
to the bt neuron
(a

- Evs w surfaceis a complex
surface in the space defined by
the weights w;

gives the direction In OE

W, AW, oC
which a movement of the OW,,

operating point in the w,, co-
ordinate space will result in
maximum decrease Iin error

a

Intuition for gradient descent

AL <Xp,Y1>, W;
should be
incremented Al <X3,Y,>, W;
should be
decremented

g- global
minimum

<0,0> Ji

Pertains to life!!

. Gradient descent in greedy In nature,
E ALWAYS decreases

. Can get stuck in local minimum, miss
global minimum

. S0: "greed does not always pay’,
“short term gains may not lead to long
term gains”, “local optimizations need
not always lead to global

optimizations”

Step function v/s Sigmoid function

0 0= f(Zwx,)
= f (net)
So partial derivative of O w.r.t.netis

D
Xp e Xp X4 onet

High watermark
Low watermark

> >

Non-differentiable Differentiable

Sigmoid function

y = 1
1+ e_yx_ﬁ

=y(d-y)

2

dx

Sigmoid function

/ EE(X)} 1+E "
(x) _ d
0.5 dx o (1+f_=—-"f)
— E‘
/ 17
I | g | 1 | — (]_ —)

—X X
6 -4 -2 0 2 4 6 1+E 1"‘*’3

= f(x).(1 - f(x))

() = T

Interesting point

- Biological (neurophysical) plausibility of
sigmoid function

- The saturating behaviour of sigmoid neuron

for very large signals (derivative -0) Is said to
be a “saviour” for the brain

- Intense emotions (joy, sorrow, anger) produce
large signals in brain neurons which through
positive feedback can lead to brain damage
(haemorrhage)

. Saturation avoids this danger

Backpropagation algorithm

cee — Output layer
Q Q QJ Q (m o/p neurons)
Q Q| Q T
/ Hidden layers
O O O
O O () —— Inputlayer

(n i/p neurons)

- Fully connected feed forward
network

. Pure FF network (no jumping of
connections over layers)

Gradient Descent Equations

OE .
Aw;, = -1 —— (n7 = learning rate, 0 <77 <1)

onet.
ok _ & O, (net, =input at the | neuron)
ow; onet; o,

ji

onet; 56
P A quantity of great

I]
importance

AWji =nd

Backpropagation — for outermost
layer

ok éE 0.
oj=———= J net; =input at the " laver
) 5netj 50 met (P J yer)

1 N
:E-Z_ll(tj_oj)z
Hence, §j = —(—(t, —0,)0,(1-0,))
Aw;, =n(t;, —0,)0,(1-0;)o

Observations from Aw;;

Aw;; =n(t; —0,;)0,(1-0;)0,

Aw;; =0 If,
1.01.—>tj ano

2.0j —1 ana

jor

jor

3.0j —>0 ano

4.0 >0

jor

> Saturation behaviour

J

| Credit/Blame assignment

Backpropagation for hidden layers

k . — Output layer
8@/0 Q (m o/p neurons)
J

Q Qi g > Hidden layers
() () = () —— Inputlayer

(n i/p neurons)

& Is propagated backwards to find value of &

Backpropagation — for hidden

layers
AWji =100,

5 = — ok éE 50
5netj 50 5net

E
— - xo0,(1-0))
s, T

This recursion can OE éhetk
give rise to vanishing = — Z () X0, (l 0.)
and exploding kenext layer 5l1€t 501

Gradient problem

Hence,5;, =— Y (-6, xW,)x0,(1-0;)
\ kenext layer
= Z(ij5k)0j(1—0j)

kenext layer

Back-propagation- for hidden layers:
Impact on net input on a neuron

o Oj affects the net

‘ Input coming to all
W] the neurons in

“'g‘ next layer

-
T

i AN
‘K‘:‘X‘ .
i \

General Backpropagation Rule

« General weight updating rule:
AWji =10Jo,

* Where

6; =(t; —0;)0;(1—0;) for outermost layer

- Z (ij5k)0j (1- 0;)0, for hidden layers

kenext layer

How does it work?

Input propagation forward and error
propagation backward (e.g. XOR)

XXy ——1 —1 XX,

Optional Assignment

- Implement your OWN BP on XOR

- Observe what the hidden layer neurons
compute

