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Skip gram- an example of FFNN

For CBOW:

Just reverse the

Input-Ouput



Skip Gram: more details



Feedforward Network and 

Backpropagation



Example - XOR 
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Alternative network for XOR

Θ =1.5

x1 x2

w1 = 1 w2 = 1
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● XOR: not possible using a single 

perceptron

● Hidden layer gives more 

computational capability

● Deep neural network: With multiple 

hidden layers

● Kolmogorov’s theorem of 

equivalence proves equivalence of 

multiple layer neural network to a 

single layer neural network, and 

each neuron have to correspond to 

an appropriate functions.
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Compositionality

• XOR being computed as OR(X1’X2, 

X1X2’) or as AND((X1’+X2’),(X1+X2)) is 

an example of a nonlinearly separable 

function computed as composition of 

linearly separable functions)

• In general not possible for most 

practical situations like weather 

prediction, stock market prediction  etc.
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XOR neuron with sin()



Question

• Since SINE can compute XOR, why 

do not we use sine neuron for 

practical applications?



Exercise: Back-propagation 

● Implement back-propagation for XOR 

network

● Observe

○ Check if it converges (error falls below a 

limit)

○ What is being done at the hidden layer



What a neural network can represent 

in NLP: Indicative diagram
● Each layer of the neural network possibly represents 

different NLP stages!!
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Batch learning versus Incremental 

learning
● Batch learning is updating the parameters after ONE 

PASS over the whole dataset

● Incremental learning updates parameters after seeing 

each PATTERN (input-ouput pair)

● An epoch is ONE PASS over the entire dataset

○ Take XOR: data set is V1=(<0,0>, 0), V2=(<0,1>, 1), 

V3=(<1,0>, 1), V4=(<1,1>, 0)

○ If the weight values are changed after each of Vi, then

this is incremental learning

○ If the weight values are changed after one pass over 

all Vis, then it is bathc learning



Can we use PTA for training FFN?

1, 0, 0 0

-1, 0, 1 1

-1, 1, 0 1

1, -1, -1 0

0, 0 0

0, 1 1

1, 0 1

1, 1 0

-1, 0, 0 0

-1, 0, 1 1

-1, 1, 0 1

-1, 1, 1 0

No, else the individual neurons are solving XOR, which is 

impossible.

Also, for the hidden layer neurons we do nothave the i/o 

behaviour.

Note: This n/w is NOT a pure FFNN; there is jumping of lair.
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Gradient Descent Technique

• Let E be the error at the output layer

• i goes over N neurons in the o/p layer, j goes 

over P patterns  

• ti = target output; oi = observed output

• E.g.: XOR:– P=4 and N=1
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Weights in a FF NN

• wba is the weight of the 

connection from the ath neuron 

to the bth neuron

• E vs surface is a complex 

surface in the space defined by 

the weights wij

• gives the direction in 

which a movement of the 

operating point in the wmn co-

ordinate space will result in 

maximum decrease in error
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Intuition for gradient descent

<0,0>

E

wji

<x1,y1>
<x2,y2>

At <x1,y1>, wji

should be 

incremented At <x2,y2>, wji

should be 

decremented

g- global

minimum



Pertains to life!!

• Gradient descent in greedy in nature, 

E ALWAYS decreases

• Can get stuck in local minimum, miss 

global minimum

• So: “greed does not always pay”, 

“short term gains may not lead to long 

term gains”, “local optimizations need 

not always lead to global 

optimizations”



Step function v/s Sigmoid function
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Sigmoid function
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Sigmoid function



Interesting point

• Biological (neurophysical) plausibility of 

sigmoid function

• The saturating behaviour of sigmoid neuron 

for very large signals (derivative 0) is said to 

be a “saviour” for the brain

• Intense emotions (joy, sorrow, anger) produce 

large signals in brain neurons which through 

positive feedback can lead to brain damage 

(haemorrhage) 

• Saturation avoids this danger



Backpropagation algorithm

• Fully connected feed forward 
network

• Pure FF network (no jumping of 
connections over layers)

Hidden layers

Input layer            

(n i/p neurons)

Output layer    

(m o/p neurons)
j

i

wji

….

….

….

….



Gradient Descent Equations
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Backpropagation – for outermost 

layer
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Observations from ∆wji
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Backpropagation for hidden layers

Hidden layers

Input layer            

(n i/p neurons)

Output layer    

(m o/p neurons)
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k is propagated backwards to find value of j



Backpropagation – for hidden 

layers
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Back-propagation- for hidden layers: 

Impact on net input on a neuron

j

k

● Oj affects the net 

input coming to all 

the neurons in 

next layer



General Backpropagation Rule

ijj

k

kkj ooow )1()(
layernext 

 




)1()( jjjjj ooot 

iji jow 
• General weight updating rule:

• Where 

for outermost layer

for hidden layers



How does it work?

Input propagation forward and error 

propagation backward (e.g. XOR)
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Optional Assignment 

• Implement your OWN BP on XOR

• Observe what the hidden layer neurons 

compute



An application in Medical Domain



Expert System for Skin Diseases 

Diagnosis

• Bumpiness and scaliness of skin

• Mostly for symptom gathering and for 

developing diagnosis skills

• Not replacing doctor’s diagnosis



Architecture of the FF NN

• 96-20-10
• 96 input neurons, 20 hidden layer neurons, 10 

output neurons
• Inputs: skin disease symptoms and their 

parameters
– Location, distribution, shape, arrangement, pattern, 

number of lesions, presence of an active norder, 
amount of scale, elevation of papuls, color, altered 
pigmentation, itching, pustules, lymphadenopathy, 
palmer thickening, results of microscopic 
examination, presence of herald pathc, result of 
dermatology test called KOH



Output

• 10 neurons indicative of the 

diseases:
– psoriasis, pityriasis rubra pilaris, lichen 

planus, pityriasis rosea, tinea versicolor, 

dermatophytosis, cutaneous T-cell 

lymphoma, secondery syphilis, chronic 

contact dermatitis, soberrheic dermatitis



Figure : Explanation of dermatophytosis diagnosis using the DESKNET expert system.
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Training data

• Input specs of 10 model diseases 

from 250 patients

• 0.5 is some specific symptom value 

is not known

• Trained using standard error 

backpropagation algorithm



Testing

• Previously unused symptom and disease data of 99 
patients

• Result:

• Correct diagnosis achieved for 70% of papulosquamous 
group skin diseases

• Success rate above 80% for the remaining diseases 
except for psoriasis

• psoriasis diagnosed correctly only in 30% of the cases

• Psoriasis resembles other diseases within the 
papulosquamous group of diseases, and is somewhat 
difficult even for specialists to recognise.



Explanation capability

• Rule based systems reveal the explicit 
path of reasoning through the textual 
statements

• Connectionist expert systems reach 
conclusions through complex, non linear 
and simultaneous interaction of many 
units

• Analysing the effect of a single input or a 
single group of inputs would be difficult 
and would yield incorrect results



Explanation contd.

• The hidden layer re-represents the 

data

• Outputs of hidden neurons are 

neither symtoms nor decisions



Discussion

• Symptoms and parameters 

contributing to the diagnosis found 

from the n/w 

• Standard deviation, mean and other 

tests of significance used to arrive at 

the importance of contributing 

parameters

• The n/w acts as apprentice to the 

expert
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Note: The whole structure shown in earlier slide is reducible 

to a single neuron with given behavior

Claim: A neuron with linear I-O behavior can’t compute X-

OR.

Proof: Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds]

For (0,0), Zero class:

For (0,1), One class:
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For (1,0), One class:

For (1,1), Zero class:

These equations are inconsistent. Hence X-OR can’t be computed.

Observations:

1. A linear neuron can’t compute X-OR.

2. A multilayer FFN with linear neurons is collapsible to a 

single linear neuron, hence no a additional power due 

to hidden layer.

3. Non-linearity is essential for power.
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Local Minima

Due to the Greedy 

nature of BP, it can 

get stuck in local 

minimum m and will 

never be able to 

reach the global 

minimum g as the 

error can only 

decrease by weight 

change.



Momentum factor

1. Introduce momentum factor.

 Accelerates the movement out of the trough.

 Dampens oscillation inside the trough.

 Choosing  β : If β is large, we may jump over 

the minimum.
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Vanishing/Exploding Gradient
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Vanishing/Exploding Gradient
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Vanishing/Exploding Gradient
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Symmetry breaking

• If mapping demands different weights, but we start with 
the same weights everywhere, then BP will  never 
converge.
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weight everywhere, BP

will not converge



Symmetry breaking: understanding 

with proper diagram
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