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Learning objective (skip gram)
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Modelling P(context word|input word) 

(1/2)
• We want, say, P(‘bark’|’dog’)

• Take the weight vector FROM ‘dog’ neuron 

TO projection layer (call this Udog)

• Take the weight vector TO ‘bark’ neuron 

FROM projection layer (call this Ubark)

• When initialized, Udog and Ubark give the initial 

estimates of word vectors of ‘dog’ and ‘bark’

• The weights and therefore the word vectors 

get fixed by back propagation



Modelling P(context word|input word) 

(2/2)
• To model the probability, first compute dot 

product of udog and vbark

• Exponentiate the dot product

• Take softmax over all dot products over the 

whole vocabulary
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Input to Projection (shown for one 

neuron only)

Input

for

‘dog’

Projection

(dim: d)

Udog

Output

for

‘bark’

1

1

Ubark



P(‘bark’|’dog’) (1/2)
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P(‘bark’|’dog’) (2/2)

Let uk
dog be the jth component of the weight 

vector from the ‘1’ neuron of input to the 

projection layer 
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Skip Gram
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Back to Loss Function (skip gram)

)];|(log[

0
1

tjt

j
mjm

T

t

wwpLMinimize 






word

 ))exp(log(
,1,1

0
1

k

R

k

t

DkvocabR

k

jt

k

t

Dk
j

mjm

T

t

uuuuL 











t goes over the whole corpus,

j goes over the context words

k goes over the weight vector



Apply Gradient Descent

Change of weight is proportional to negative 

gradient of Loss wrt to that particular weight
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• Derive the weight change rule for Skip 

Gram

14

Exercise



• Implement skip gram and study word 

vectors; corpus and the exact statement for 

the assignment will be specified.

15

Assignment



Neurons



AI Perspective (post-web)

Planning

Computer

Vision

NLP

Expert

Systems

Robotics

Search, 

Reasoning,

Learning
IR



Symbolic AI

• Connectionist AI is contrasted with 

Symbolic AI

• Symbolic AI - Physical Symbol 

System Hypothesis

• Every intelligent system can be 

constructed by storing and 

processing symbols and nothing 

more is necessary.

• Symbolic AI has a bearing on models 

of computation such as

• Turing Machine



Turing Machine & Von Neumann 

Machine



Challenges to Symbolic AI

• Motivation for challenging Symbolic AI

• A large number of computations and 

information process tasks that living 

beings are comfortable with, are not 

performed well by computers!

• The Differences
• Brain computation in living beings TM computation in computers

• Pattern Recognition Numerical Processing

• Learning oriented Programming oriented

• Distributed & parallel processing Centralized & serial 

processing

• Content addressable Location addressable



Two aims of advancing computers

• More speed- pushes frontiers in 

hardware, architecture, systems, 

programming languages

• More Intelligence- pushes frontiers in 

endowing computers with human like 

abilities, e.g., language processing 

• Synergistic aims: faster helps in taking up 

more complex tasks; more complex tasks 

demand faster machines



Symbolic and connectionist 

representation of words

• A snapshot of wordnet subgraph is a 

symbolic representation of words

• A word vector on the other hand is a 

connectionist representation of words



Gloss

study

Hyponymy

Hyponymy

Dwelling,abode

bedroom

kitchen

house,home

A place that serves as the living 

quarters of one or mor efamilies

guestroom

veranda

bckyard

hermitage cottage

Meronymy

Hyponymy

M

e
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n

y

m

y

Hypernymy

WordNet Sub-Graph

7jul1910 nlp lectures:Pushpak23



• The human brain

• Seat of consciousness and cognition

• Perhaps the most complex information 
processing  machine in nature





Maslow’s Hierarchy



Neuron - “classical”

• Dendrites
– Receiving stations of neurons

– Don't generate action potentials

• Cell body
– Site at which information 

received is integrated

• Axon
– Generate and relay action 

potential

– Terminal

• Relays information to 

next neuron in the pathway http://www.educarer.com/images/brain-nerve-axon.jpg



Perceptron



The Perceptron Model

A perceptron is a computing element with input 

lines having associated weights and the cell 

having a threshold value. The perceptron model is 

motivated by the biological neuron.

Output = y

wn
Wn-1

w1

Xn-1

x1

Threshold = θ



θ

1
y

Step function / Threshold function

y = 1 for  Σwixi >=θ

=0 otherwise

Σwixi



Features of Perceptron

• Input output behavior is discontinuous and the 

derivative does not exist at Σwixi = θ

• Σwixi - θ is the net input denoted as net

• Referred to as a linear threshold element -

linearity because of x appearing with power 1

• y= f(net): Relation between y and net is non-

linear



Computation of Boolean 

functions

AND of 2 inputs

X1 x2 y
0 0 0

0 1 0

1 0 0

1 1 1

The parameter values (weights & thresholds) need to be found.

y

w1 w2

x1
x2

θ



Computing parameter values

w1 * 0 + w2 * 0  <= θ θ >=  0; since y=0

w1 * 0 + w2  * 1  <= θ w2  <= θ; since y=0

w1 * 1 + w2 * 0  <= θ w1  <= θ; since y=0

w1 * 1 + w2  *1 > θ w1 + w2 > θ; since y=1

w1 = w2 =  = 0.5

satisfy these inequalities and find parameters to be 

used for computing AND function.



Other Boolean functions

• OR can be computed using values of w1 = w2 = 1 

and  = 0.5

• XOR function gives rise to the following 

inequalities:

w1 * 0 + w2 * 0  <= θ θ >=  0

w1 * 0 + w2  * 1  > θ w2  > θ

w1 * 1 + w2 * 0  > θ w1  > θ

w1 * 1 + w2  *1 <= θ w1 + w2 <= θ

No set of parameter values satisfy these inequalities.



<0,0>

<1,1>

<1,0>

<0,1>

AND-line

OR-line

XOR-line is not 

Possible!! Cannot

Separate {<0,0>,<1,1>}

From {<0,1>, <1,0>}



Threshold functions
n # Boolean functions (2^2^n) #Threshold Functions (2n2)

1 4 4

2 16 14

3 256 128

4 64K 1008

• Functions computable by perceptrons - threshold 

functions

• #TF becomes negligibly small for larger values of 

#BF.

• For n=2, all functions except XOR and XNOR are 

computable.

Muroga.S, Threshold Logic and its Applications, John Wiley, 1972



AND of 2 inputs

X1 x2 y
0 0 0

0 1 0

1 0 0

1 1 1

The parameter values (weights & thresholds) need to be found.

y

w1 w2

x1
x2

θ



Constraints on w1, w2 and θ

w1 * 0 + w2 * 0  <= θ θ >=  0; since y=0

w1 * 0 + w2  * 1  <= θ w2  <= θ; since y=0

w1 * 1 + w2 * 0  <= θ w1  <= θ; since y=0

w1 * 1 + w2  *1 > θ w1 + w2 > θ; since y=1

w1 = w2 =  = 0.5

These inequalities are satisfied by ONE particular region



Perceptron training



Perceptron Training Algorithm 

(PTA)

Preprocessing:

1. The computation law is modified to

y = 1  if  ∑wixi > θ

y = o  if  ∑wixi < θ



.   .   . 

θ, ≤

w1 w2 wn

x1 x2 x3 xn

.   .   . 

θ, <

w1 w2 w3
wn

x1 x2 x3 xn

w3



PTA – preprocessing cont…

2. Absorb θ as a weight. Comparing W.X with θ is 
eqv to comparing (W.X- θ) with 0



3. Negate all the zero-class examples

.   .   . 

0

w1 w2 w3 wn

x2 x3 xn
x1

w0=θ

x0= -1

.   .   . 

θ

w1 w2 w3 wn

x2 x3 xn
x1



Example to demonstrate preprocessing

• OR perceptron

1-class <1,1> , <1,0> , <0,1>

0-class <0,0>

Augmented x vectors:-

1-class <-1,1,1> , <-1,1,0> , <-1,0,1>

0-class <-1,0,0>

Negate 0-class:- <1,0,0>



Example to demonstrate preprocessing 

cont..

Now the vectors are

x0 x1 x2

X1 -1   0   1

X2 -1   1   0

X3 -1   1   1

X4 1   0   0



Perceptron Training Algorithm

1. Start with a random value of w

ex: <0,0,0…>

2. Test for wxi > 0

If the test succeeds for i=1,2,…n

then return w

3. Modify w, wnext = wprev + xfail



PTA on NAND

NAND: Y

X2    X1    Y

0     0      1                      

0     1     1 W2          W1 

1     0      1               

1     1      0                       X2                X1 

Converted To   

W2     W1 W0= Θ

X2     X1        X0=-1

Θ

Θ



Preprocessing

NAND Augmented:         NAND-0 class Negated

X2    X1    X0    Y                  X2     X1     X0 

0     0     -1     1           V0:      0       0     -1

0     1     -1 1 V1:     0       1     -1 

1     0     -1     1           V2: 1       0     -1 

1     1     -1     0           V3:   -1       -1     1 

Vectors for which 

W=<W2 W1 W0> has to be 

found such that 

W. Vi > 0



PTA Algo steps

Algorithm:

1.  Initialize and Keep adding the failed vectors

until  W. Vi > 0 is true.

Step 0:  W    =  <0, 0, 0>

W1 =  <0, 0, 0> + <0, 0, -1>     {V0 Fails}

=  <0, 0, -1>

W2 =  <0, 0, -1> + <-1, -1, 1>  {V3 Fails}

=  <-1, -1, 0> 

W3 =  <-1, -1, 0> + <0, 0, -1>    {V0 Fails}

=  <-1, -1, -1>

W4 =  <-1, -1, -1> + <0, 1, -1>  {V1 Fails}

=  <-1, 0, -2>



Trying convergence

W5 =  <-1, 0, -2> + <-1, -1, 1>     {V3 Fails}

=  <-2, -1, -1>

W6 =  <-2, -1, -1> + <0, 1, -1>       {V1 Fails}

=  <-2, 0, -2> 

W7 =  <-2, 0, -2> + <1, 0, -1>       {V0 Fails}

=  <-1, 0, -3>

W8 =  <-1, 0, -3> + <-1, -1, 1>     {V3 Fails}

=  <-2, -1, -2>

W9 =  <-2, -1, -2> + <1, 0, -1>      {V2 Fails}

=  <-1, -1, -3>



Trying convergence

W10 =  <-1, -1, -3> + <-1, -1, 1>     {V3 Fails}

=  <-2, -2, -2>

W11 =  <-2, -2, -2> + <0, 1, -1>       {V1 Fails}

=  <-2, -1, -3> 

W12 =  <-2, -1, -3> + <-1, -1, 1>    {V3 Fails}

=  <-3, -2, -2>

W13 =  <-3, -2, -2> + <0, 1, -1>       {V1 Fails}

=  <-3, -1, -3>

W14 =  <-3, -1, -3> + <0, 1, -1>      {V2 Fails}

=  <-2, -1, -4>



W15  =  <-2, -1, -4> + <-1, -1, 1>     {V3 Fails}
=  <-3, -2, -3>

W16  =  <-3, -2, -3> + <1, 0, -1>       {V2 Fails}
=  <-2, -2, -4> 

W17  =  <-2, -2, -4> + <-1, -1, 1>    {V3 Fails}
=  <-3, -3, -3>

W18  =  <-3, -3, -3> + <0, 1, -1>       {V1 Fails}
=  <-3, -2, -4>

W2 =  -3,   W1 = -2,   W0 = Θ = -4

Succeeds for all vectors



Where probability can come in (1/2)

• (1) in initialization: if we are lucky to 

start close to the correct weight, then 

the number of iterations will be small

• Question- is it possible to have this 

kind of serendipitous initialization

• Answer: yes sometimes, if we have 

domain knowledge and exploit this 

knowledge along with task properties



Where probability can come in (2/2)

• (2) choosing the correct test vector: if we 

go sequentially choosing the vectors to 

test for W.X>0, then the failed vector may 

come towards the end; this can slow 

down the process if the input size is large

• Question: can we test only a sample of 

the input examples?

• Answer: yes, this is done for example in 

stochastic gradient descent algo (to be 

discussed later)



Assignment on skip gram



Steps (1/2)

• 1. Create a cluster of “animal words”: 

cow, dog, bullock, cat … (10 words)

• 2. Create a cluster of “bird words”: 

cuckoo, parrot, crow, sparrow,… (10 

words)

• 3. Run a concordance for obtaining the 

neighboring words of these words (learn 

what a concordancer is)



Steps (2/2)

• (These animal words, bird words and concordance supplied 

syntagmatic words form the universe of your words)

• 4. Train a skip gram model with these 

words

• 5. Collect the word representations

• 6. Ensure that “animal” words are close 

to another words and so are “bird” words; 

Inter cluster distance should be large 

compared to intra cluster distance; use 

cosine similarity

IMP: skip gram code has to be your OWN



PTA convergence



Statement of Convergence of 

PTA

• Statement:

Whatever be the initial choice of weights and 

whatever be the vector chosen for testing, PTA 

converges if the vectors are from a linearly 

separable function.



Proof of Convergence of PTA

• Suppose Wn is the weight vector at the 

nth step of the algorithm. 

• At the beginning, the weight vector is w0

• Go from Wi to Wi+1 when a vector Xj fails 

the test wiXj > 0 and update wi as 

Wi+1 = Wi + Xj

• Since Xjs form a linearly separable 

function, 
For all, W*, W*Xj > 0 for all j



Proof of Convergence of PTA 
(cntd.)

(for notational simplicity we will not use transpose of vectors)

Consider the expression

|G(wn)| ≤ |w*|, as -1 ≤ cosθ ≤ 1
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Behavior of Numerator of G(Wn)

So, numerator of G grows with n.
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Behavior of Denominator of G(Wn)

|Xj| ≤ αmax (max magnitude); So, Denom grows 

as sqrt(n)
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Dot product of weight
Vector with failed vector must be non 

positive



Some Observations 

• Numerator of G grows as n

• Denominator of G grows as sqrt(n)

=> Numerator grows faster than 

denominator

• If PTA does not terminate, G(wn)

values will become unbounded.



Some Observations contd. 

• But, as |G(wn)| ≤ |w*|  which is finite, 

n becoming infinite is impossible!

• Hence, PTA has to converge. 

• Proof is due to Marvin Minsky.



A Problem that can be solved using the 

proof of PTA

Problem: If a weight repeats while

training the perceptron, then the

function is not linearly separable.



Proof

Let us prove first  wn .w* is an increasing  

function.

From the proof of convergence of PTA, 

we can write

wn .w*= (wn-1 + Xn-1
fail ) .w*

= wn-1 .w* + w*. Xn-1
fail 

Since w* is optimal weight vector 

therefore:

w*. Xn-1
fail > 0



Proof cntd.

Because in every iteration we are adding +ve
number  W*. Xn-1

fail

Therefore:
Wn .W* > Wn-1 .W* (1)

Hence Wn .W* is  an increasing  function.

If the weight repeats then the weight Wi at a given 
iteration no. i, will be equal to the weight Wi+k at the 
iteration no. (i+k) where k is a +ve number. So

Wi= Wi+k



Proof cntd.

Therefore:

Wi .W* =Wi+k .W* (2)

(2) contradicts the (1)

Hence no W* exists

So function is not linearly separable.



Some plan for the course: going 

forward



Plan

• Task Front
– Language Model

– Build up to skip gram/cbow

• Auto-encoder, predicting the next word, 

predicting context words

• Technique front
– Perceptron

– Feedforward NN with backpropagation

– Recurrent n/w

– Masked Models


