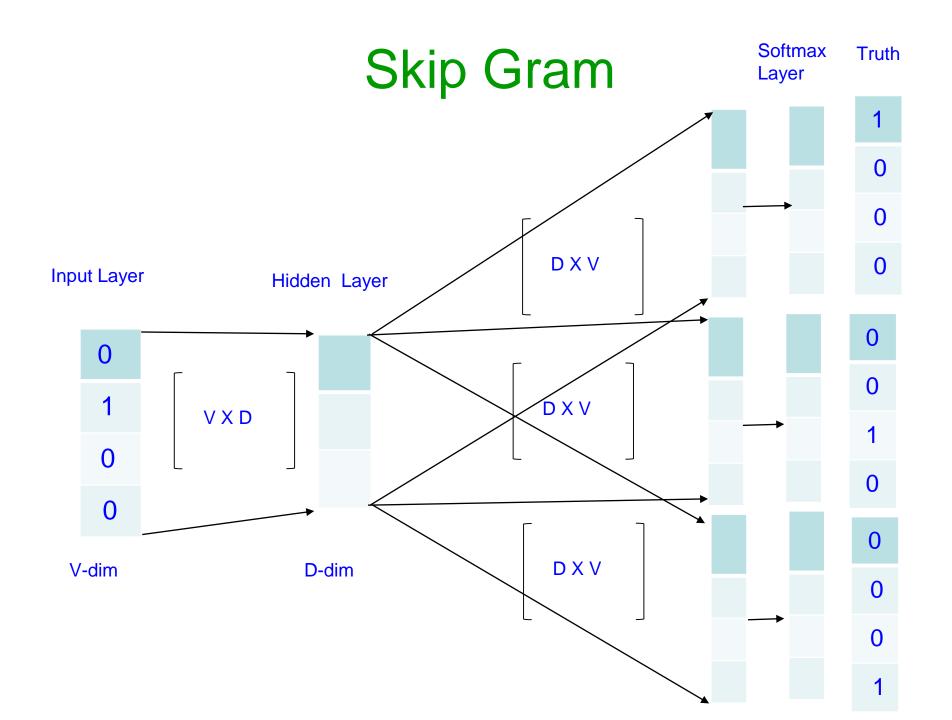
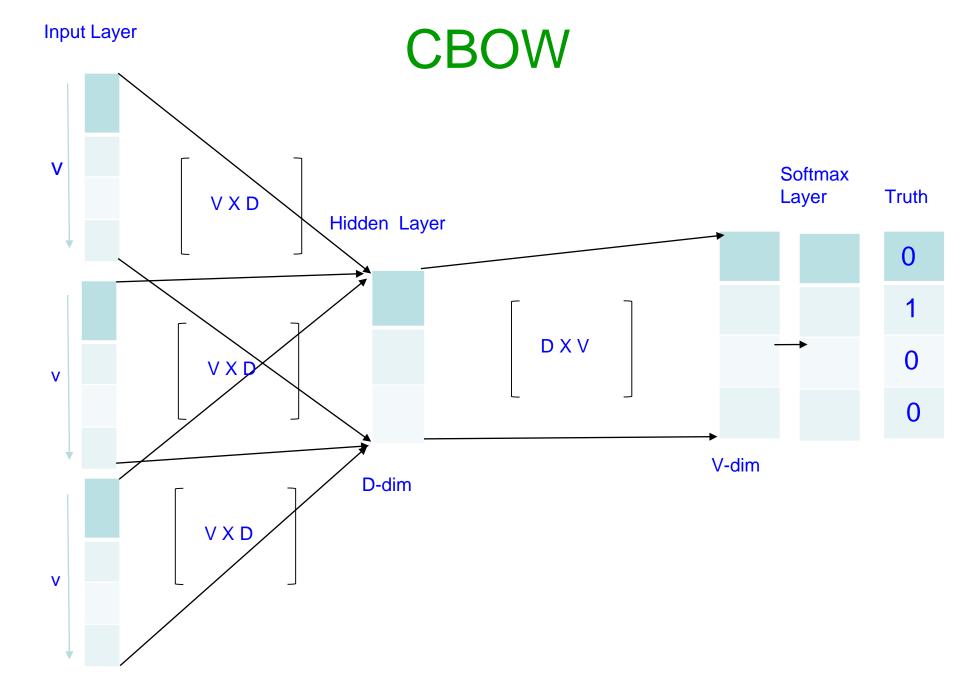
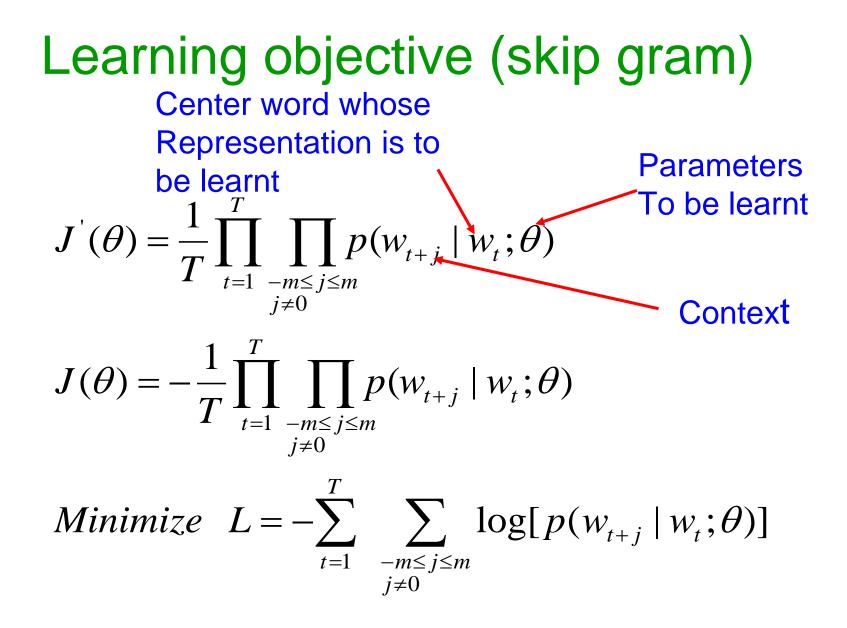
CS772: Deep Learning for Natural Language Processing (DL-NLP)

Skip Gram, Perceptron Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay Week 3 of 17th Jan, 2022

Skip Gram







Modelling P(context word|input word) (1/2) • We want, say, P('bark']'dog')

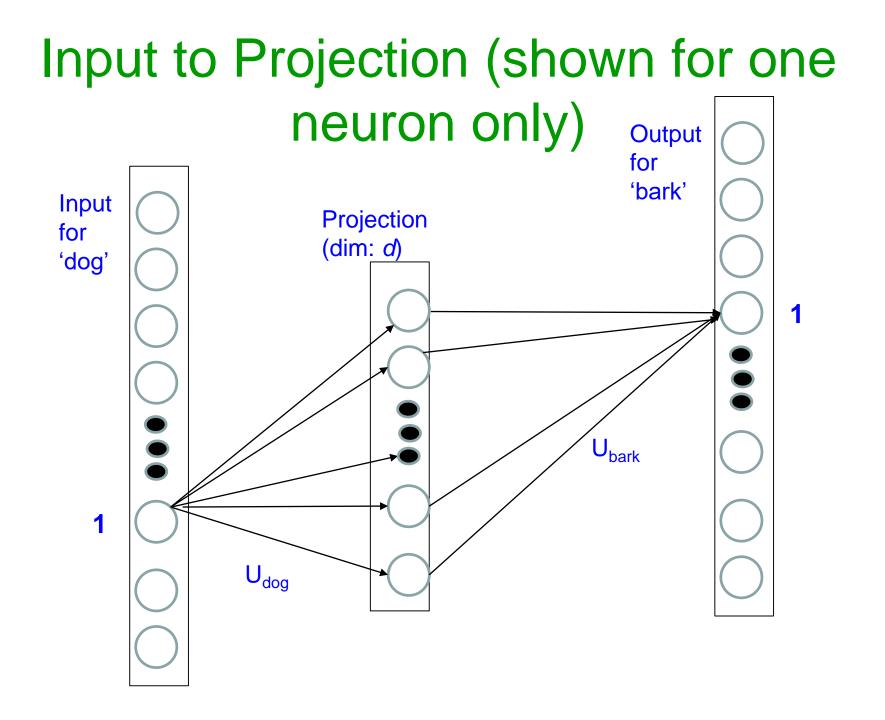
- Take the weight vector **FROM** 'dog' neuron **TO** projection layer (call this U_{dog})
- Take the weight vector **TO** 'bark' neuron **FROM** projection layer (call this *U*_{bark})
- When initialized, U_{dog} and U_{bark} give the initial estimates of word vectors of 'dog' and 'bark'
- The weights and therefore the word vectors get fixed by back propagation

Modelling P(context word|input word) (2/2)

- To model the probability, first compute dot product of u_{dog} and v_{bark}
- Exponentiate the dot product
- Take softmax over all dot products over the whole vocabulary

$$P('bark'|'dog') = \frac{\exp(U_{dog}^T U_{bark})}{\sum_{R \in Vocashulary}} \exp(U_{dog}^T U_R)$$

R*ɛVocabulary*



P('bark' | 'dog') (1/2)

 $P('bark'|'dog') = \frac{\exp(U_{dog}^T U_{bark})}{\sum \exp(U_{dog}^T U_R)}$ *RɛVocabulary*

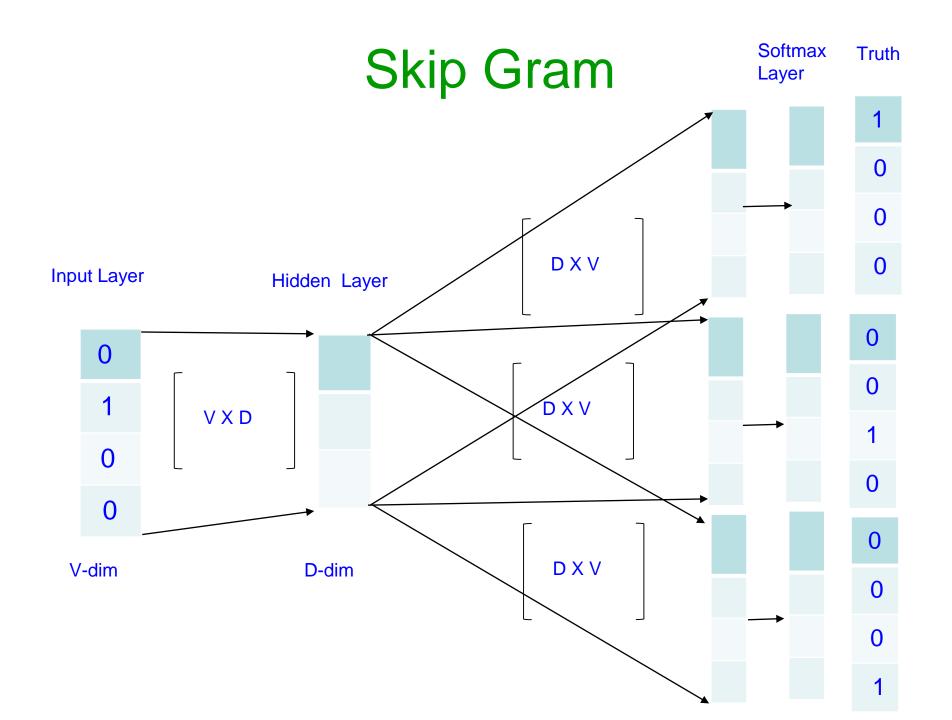
 $\log(P('bark'|'dog')) = U_{dog}^T U_{bark} - \log(\sum_{k=1}^{T} \exp(U_{dog}^T U_{k}))$ **R***ɛVocabulary*

P('bark'|'dog') (2/2)

Let u^k_{dog} be the jth component of the weight vector from the '1' neuron of input to the projection layer

$$U_{dog}^{T}U_{bark} = (u_{dog}^{1}u_{bark}^{1} + u_{dog}^{2}u_{bark}^{2} + \dots + u_{dog}^{D}u_{bark}^{D})$$
$$= \sum_{k=1,D} u_{dog}^{k}u_{bark}^{k}$$

$$\log(P('bark'|'dog')) = \sum_{k=1,D} u_{dog}^{k} u_{bark}^{k} - \log(\sum_{R \in vocab} \exp(\sum_{k=1,D} u_{dog}^{k} u_{R}^{k}))$$



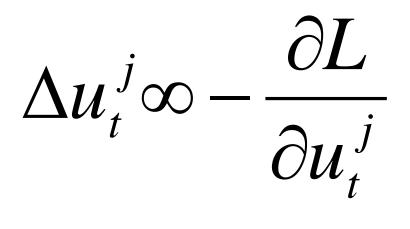
Back to Loss Function (skip gram) word *Minimize* $L = -\sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \log[p(w_{t+j} | w_t; \theta)]$

$$L = -\sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \left[\sum_{k=1,D} u_{t}^{k} u_{t+j}^{k} - \log(\sum_{R \in vocab} \exp(\sum_{k=1,D} u_{t}^{k} u_{R}^{k})) \right]$$

t goes over the whole corpus, *j* goes over the context words *k* goes over the weight vector

Apply Gradient Descent

Change of weight is proportional to negative gradient of Loss wrt to that particular weight



 $L = -\sum_{k=1}^{k} \sum_{k=1}^{k} \left[\sum_{k=1}^{k} u_{t+j}^{k} - \log(\sum_{k=1}^{k} u_{t}^{k} u_{R}^{k})) \right]$ $R \in vocab$ k=1,Dt=1 $-m \le j \le m$ k=1,D*i*≠0

Exercise

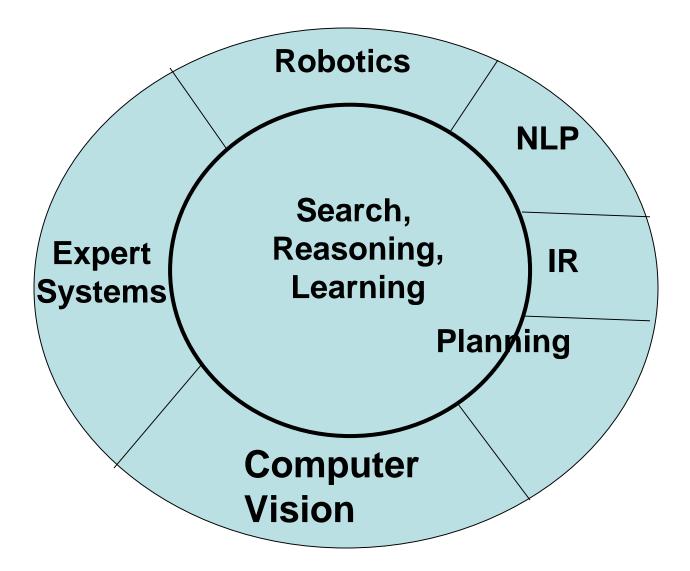
 Derive the weight change rule for Skip Gram

Assignment

 Implement skip gram and study word vectors; corpus and the exact statement for the assignment will be specified.

Neurons

Al Perspective (post-web)

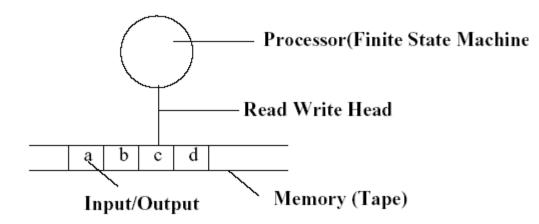


Symbolic Al

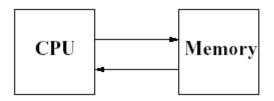
- Connectionist AI is contrasted with Symbolic AI
- Symbolic AI Physical Symbol System Hypothesis
- Every intelligent system can be constructed by storing and processing symbols and nothing more is necessary.

• Symbolic AI has a bearing on models of computation such as

Turing Machine & Von Neumann



Turing machine



VonNeumann Machine

Challenges to Symbolic AI

- Motivation for challenging Symbolic AI
- A large number of computations and information process tasks that living beings are comfortable with, are not performed well by computers!
- The Differences
- Brain computation in living beings
- Pattern Recognition
- Learning oriented
- Distributed & parallel processing
 processing
- Content addressable

TM computation in computers Numerical Processing Programming oriented Centralized & serial

Location addressable

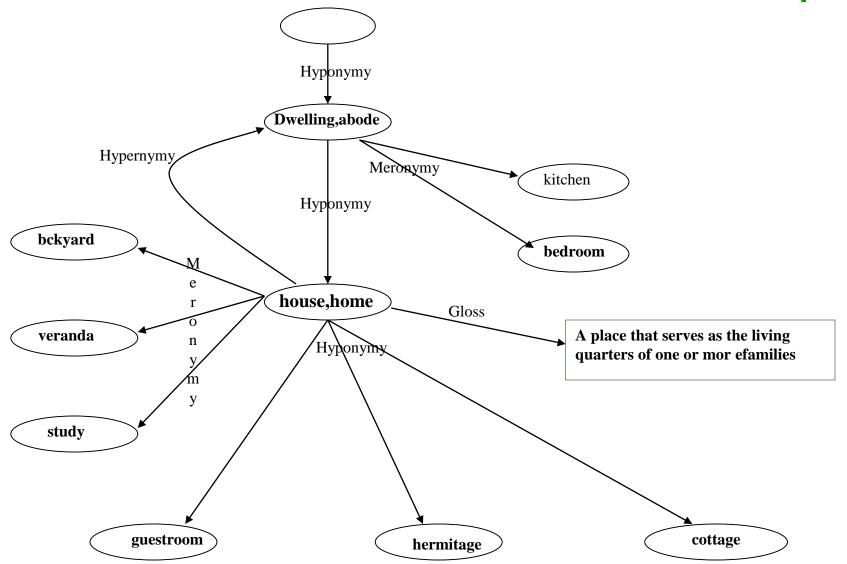
Two aims of advancing computers

- More speed- pushes frontiers in hardware, architecture, systems, programming languages
- More Intelligence- pushes frontiers in endowing computers with human like abilities, e.g., language processing
- Synergistic aims: faster helps in taking up more complex tasks; more complex tasks demand faster machines

Symbolic and connectionist representation of words

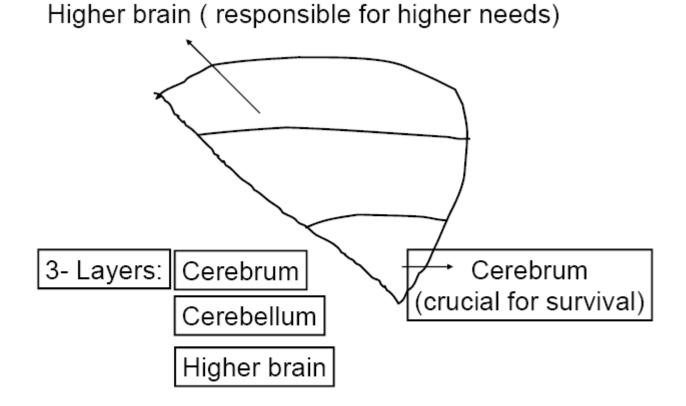
- A snapshot of wordnet subgraph is a symbolic representation of words
- A word vector on the other hand is a connectionist representation of words

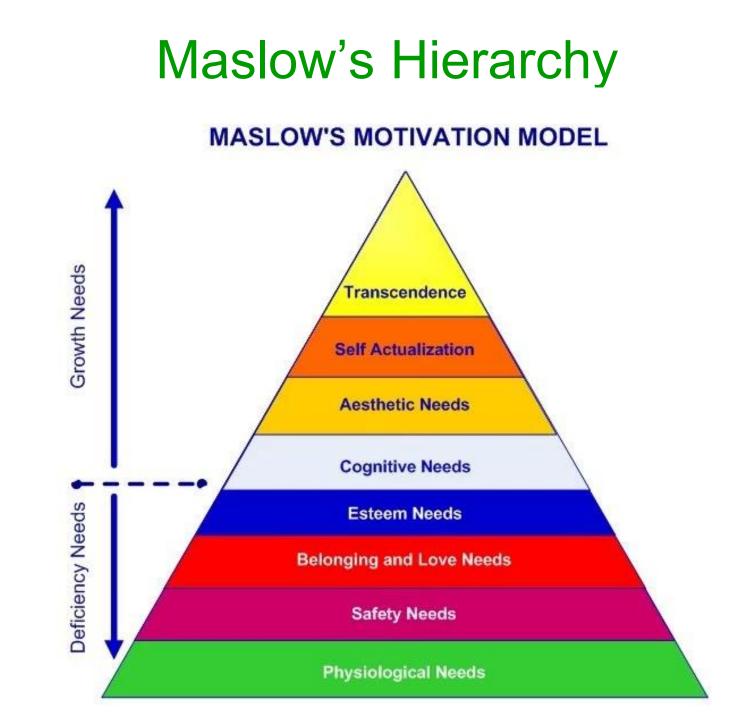
WordNet Sub-Graph



. The human brain

- Seat of consciousness and cognition
- Perhaps the most complex information processing machine in nature

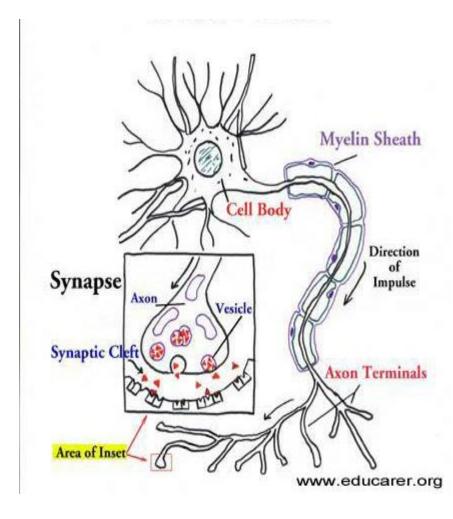




Neuron - "classical"

Dendrites

- Receiving stations of neurons
- Don't generate action potentials
- Cell body
 - Site at which information received is integrated
- Axon
 - Generate and relay action potential
 - Terminal
 - Relays information to next neuron in the pathway

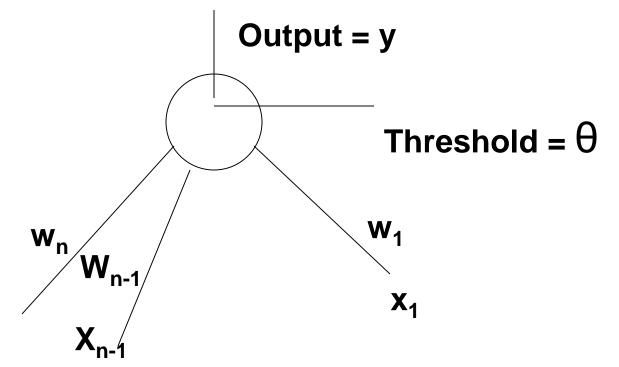


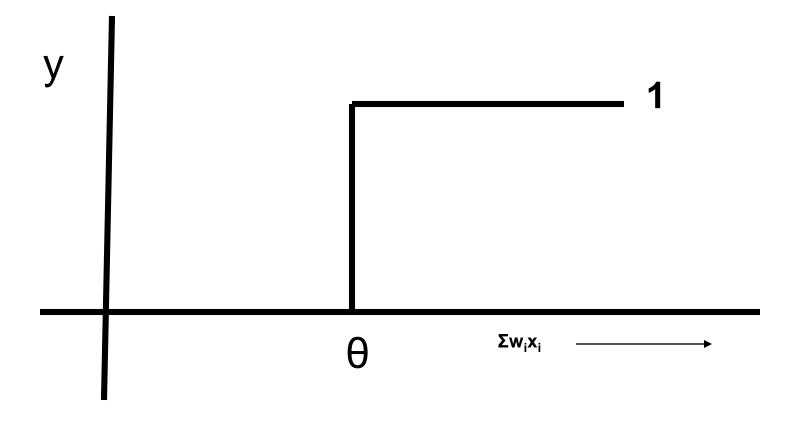
http://www.educarer.com/images/brain-nerve-axon.jpg

Perceptron

The Perceptron Model

A perceptron is a computing element with input lines having associated weights and the cell having a threshold value. The perceptron model is motivated by the biological neuron.





Step function / Threshold functiony = 1 for Σ wixiy = 0 otherwise

Features of Perceptron

- Input output behavior is discontinuous and the derivative does not exist at Σ wixi = θ
- Σ wixi θ is the net input denoted as net
- Referred to as a linear threshold element linearity because of x appearing with power 1
- y= f(net): Relation between y and net is nonlinear

Computation of Boolean functions

 X1
 x2
 y

 0
 0
 0

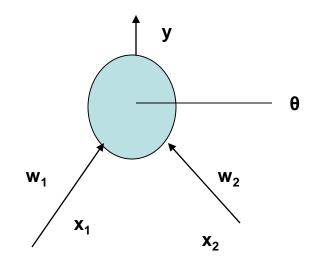
 0
 1
 0

 1
 0
 0

 1
 1
 1

 The parameter values (weights & thresholds) need to be found.

AND of 2 inputs



Computing parameter values

w1 * 0 + w2 * 0 <= $\theta \rightarrow \theta$ >= 0; since y=0

w1 * 0 + w2 * 1 <= $\theta \rightarrow w2$ <= θ ; since y=0

w1 * 1 + w2 * 0 <= $\theta \rightarrow$ w1 <= θ ; since y=0

w1 * 1 + w2 *1 > θ → w1 + w2 > θ ; since y=1 w1 = w2 = = 0.5

satisfy these inequalities and find parameters to be used for computing AND function.

Other Boolean functions

- OR can be computed using values of w1 = w2 = 1 and = 0.5
- XOR function gives rise to the following inequalities:

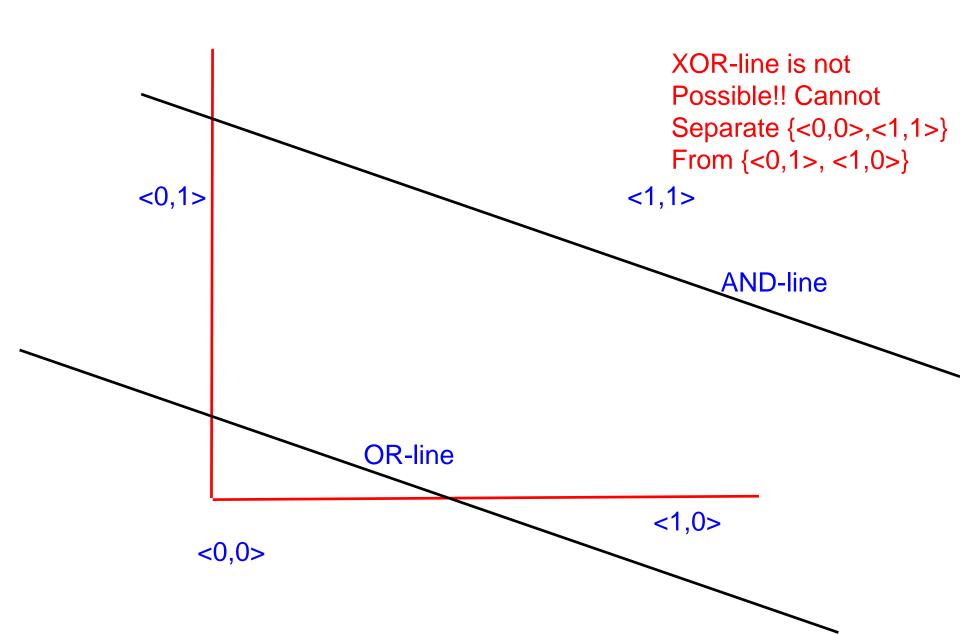
w1 * 0 + w2 * 0 <= $\theta \rightarrow \theta >= 0$

w1 * 0 + w2 * 1 > $\theta \rightarrow$ w2 > θ

w1 * 1 + w2 * 0 > θ > w1 > θ

w1 * 1 + w2 *1 <= $\theta \rightarrow$ w1 + w2 <= θ

No set of parameter values satisfy these inequalities.



Threshold functions

n # Boolean functions (2²/_n) #Threshold Functions (2ⁿ²)

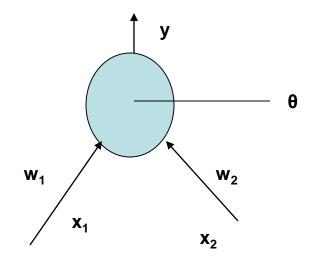
1	4	4
2	16	14
3	256	128
4	64K	1008

- Functions computable by perceptrons threshold functions
- #TF becomes negligibly small for larger values of #BF.
- For n=2, all functions except XOR and XNOR are computable.

Muroga.S, Threshold Logic and its Applications, John Wiley, 1972

AND of 2 inputs

X1	x2	У	
0	0	0	
0	1	0	
1	0	0	
1	1	1	
The parameter values (weights & thresholds) need to be found.			



Constraints on w1, w2 and θ

w1 * 0 + w2 * 0 <= $\theta \rightarrow \theta >= 0$; since y=0 w1 * 0 + w2 * 1 <= $\theta \rightarrow w2 <= \theta$; since y=0 w1 * 1 + w2 * 0 <= $\theta \rightarrow w1 <= \theta$; since y=0 w1 * 1 + w2 * 1 > $\theta \rightarrow w1 + w2 > \theta$; since y=1 w1 = w2 = = 0.5

These inequalities are satisfied by ONE particular region

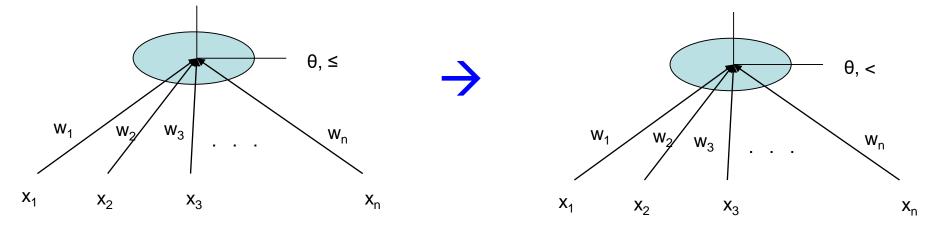
Perceptron training

Perceptron Training Algorithm (PTA)

Preprocessing:

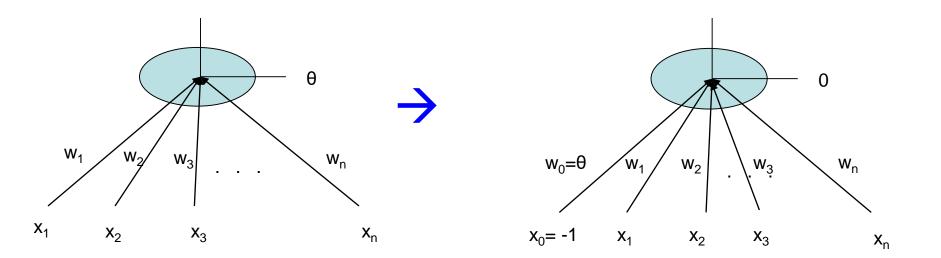
1. The computation law is modified to

 $y = 1 \quad \text{if} \quad \sum w_i x_i > \theta$ $y = 0 \quad \text{if} \quad \sum w_i x_i < \theta$



PTA – preprocessing cont...

2. Absorb θ as a weight. Comparing W.X with θ is eqv to comparing (W.X- θ) with 0



3. Negate all the zero-class examples

Example to demonstrate preprocessing

- OR perceptron
- 1-class <1,1>, <1,0>, <0,1> 0-class <0,0>

Augmented x vectors:-1-class <-1,1,1> , <-1,1,0> , <-1,0,1> 0-class <-1,0,0>

Negate 0-class:- <1,0,0>

Example to demonstrate preprocessing cont..

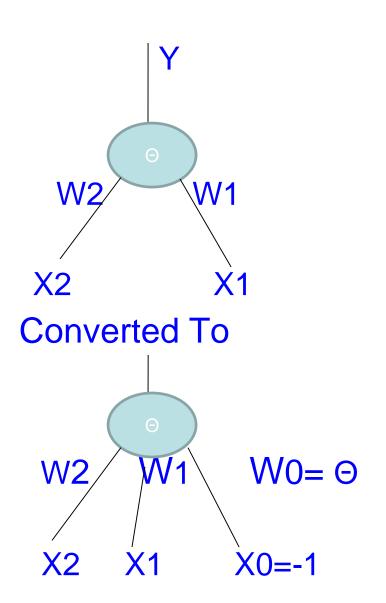
Now the vectors are

Perceptron Training Algorithm

- Start with a random value of w ex: <0,0,0...>
- 2. Test for wx_i > 0
 If the test succeeds for i=1,2,...n
 then return w
- 3. Modify w, $w_{next} = w_{prev} + x_{fail}$

PTA on NAND

NAND:X2X1Y001011101110



Preprocessing

NAND Augmented: NAND-0 class Negated

- X2 X1 X0 Y
- 0 0 -1 1
- 0 1 -1 1
- 1 0 -1 1
- 1 1 -1 0
- X2 X1 X0 V0: 0 0 -1 V1: 0 1 -1 V2: 1 0 -1 V3: -1 -1 1

Vectors for which W=<W2 W1 W0> has to be found such that W. Vi > 0

PTA Algo steps

Algorithm:

1. Initialize and Keep adding the failed vectors until W. Vi > 0 is true.

Trying convergence

 $W_5 = \langle -1, 0, -2 \rangle + \langle -1, -1, 1 \rangle$ {V₃ Fails} = <-2, -1, -1> $W_6 = \langle -2, -1, -1 \rangle + \langle 0, 1, -1 \rangle$ {V1 Fails} = <-2, 0, -2> $W_7 = \langle -2, 0, -2 \rangle + \langle 1, 0, -1 \rangle$ {Vo Fails} = <-1, 0, -3> $W_8 = \langle -1, 0, -3 \rangle + \langle -1, -1, 1 \rangle$ {V₃ Fails} = <-2, -1, -2> $W_9 = \langle -2, -1, -2 \rangle + \langle 1, 0, -1 \rangle$ {V₂ Fails} = <-1. -1. -3>

Trying convergence

W2 = -3, W1 = -2, $W0 = \Theta = -4$

Succeeds for all vectors

Where probability can come in (1/2)

- (1) in initialization: if we are lucky to start close to the correct weight, then the number of iterations will be small
- Question- is it possible to have this kind of serendipitous initialization
- Answer: yes sometimes, if we have domain knowledge and exploit this knowledge along with task properties

Where probability can come in (2/2)

- (2) choosing the correct test vector: if we go sequentially choosing the vectors to test for W.X>0, then the failed vector may come towards the end; this can slow down the process if the input size is large
- Question: can we test only a sample of the input examples?
- Answer: yes, this is done for example in stochastic gradient descent algo (to be discussed later)

Assignment on skip gram

Steps (1/2)

- 1. Create a cluster of "animal words": cow, dog, bullock, cat ... (10 words)
- Create a cluster of "bird words": cuckoo, parrot, crow, sparrow,... (10 words)
- 3. Run a concordance for obtaining the neighboring words of these words (learn what a concordancer is)

Steps (2/2)

- (These animal words, bird words and concordance supplied syntagmatic words form the universe of your words)
- 4. Train a skip gram model with these words
- 5. Collect the word representations
- 6. Ensure that "animal" words are close to another words and so are "bird" words; Inter cluster distance should be large compared to intra cluster distance; use cosine similarity
- IMP: skip gram code has to be your OWN

PTA convergence

Statement of Convergence of PTA

Statement:

Whatever be the initial choice of weights and whatever be the vector chosen for testing, PTA converges if the vectors are from a linearly separable function.

Proof of Convergence of PTA

- Suppose W_n is the weight vector at the n^{th} step of the algorithm.
- At the beginning, the weight vector is w₀
- Go from W_i to W_{i+1} when a vector X_j fails the test $w_i X_j > 0$ and update w_i as

 $W_{i+1} = W_i + X_j$

Since Xis form a linearly separable function,

For all, W^* , $W^*X_j > 0$ for all j

Proof of Convergence of PTA (cntd.)

(for notational simplicity we will not use transpose of vectors)

Consider the expression $G(W_n) = \frac{W_n W}{|W_n|}$ $|W_n|.|W^*|\cos\theta$ $|W_{n}|$ $=|W^*|\cos\theta$

 $|G(w_n)| \le |w^*|$, as $-1 \le \cos\theta \le 1$

Behavior of Numerator of $G(W_n)$ $W_n.W^* = (W_{n-1} + X_{fail}^{n-1}).W^*$ $= W_{n-1}.W^* + X_{fail}^{n-1}.W^*$ $= (W_{n-2} + X_{fail}^{n-2}).W^* + X_{fail}^{n-1}.W^*$ $= \dots$ $=W_0.W^* + X_{fail}^0.W^* + X_{fail}^1.W^* + ...X_{fail}^{n-1}.W^*$ Since W* is the separating $= K_1 + \delta_0 + \delta_1 + \dots \delta_{n-1}$ vector, its dot product with $\geq K_1 + n\delta_{\min}, \quad \forall i, \delta_i > 0$ any X_i is >0

So, numerator of G grows with n.

Behavior of Denominator of $G(W_n)$

$$\begin{split} |W_{n}| &= \sqrt{W_{n}^{T}.W_{n}} \\ &= \sqrt{(W_{n-1} + X_{fail}^{n-1})^{T}(W_{n-1} + X_{fail}^{n-1})} \\ &= \sqrt{W_{n-1}^{2} + 2.W_{n-1}.X_{fail}^{n-1} + (X_{fail}^{n-1})^{2}} \\ &= \sqrt{W_{n-1}^{2} + (X_{fail}^{n-1})^{2}} \\ &= \sqrt{W_{n-1}^{2} + (X_{fail}^{n-1})^{2} + (X_{fail}^{1})^{2} + ...(X_{fail}^{n-1})^{2}} \\ &= \sqrt{W_{0}^{2} + (X_{fail}^{0})^{2} + (X_{fail}^{1})^{2} + ...(X_{fail}^{n-1})^{2}} \\ &\leq \sqrt{K_{2} + n\alpha_{max}^{2}} \\ |X_{j}| \leq \alpha_{max} \text{ (max magnitude); So, Denom grows as sart(n)} \end{split}$$

Some Observations

- Numerator of G grows as n
- Denominator of G grows as sqrt(n)
 => Numerator grows faster than denominator
- If PTA does not terminate, $G(w_n)$ values will become unbounded.

Some Observations contd.

- But, as $|G(w_n)| \le |w^*|$ which is finite, *n* becoming infinite is impossible!
- Hence, PTA has to converge.
- Proof is due to Marvin Minsky.

A Problem that can be solved using the proof of PTA

Problem: If a weight repeats while training the perceptron, then the function is not linearly separable.

Proof

Let us prove first $w_n . w^*$ is an increasing function.

From the proof of convergence of PTA, we can write

$$W_{n} \cdot W^{*} = (W_{n-1} + X^{n-1}_{fail}) \cdot W^{*}$$
$$= W_{n-1} \cdot W^{*} + W^{*} \cdot X^{n-1}_{fail}$$

Since *w** is optimal weight vector therefore:

$$W^*. X^{n-1}_{fail} > 0$$

Proof cntd.

Because in every iteration we are adding +ve number W^* . X^{n-1}_{fail}

Therefore:

$$W_n . W^* > W_{n-1} . W^*$$
 (1)

Hence $W_n \cdot W^*$ is an increasing function.

If the weight repeats then the weight W_i at a given iteration no. *i*, will be equal to the weight W_{i+k} at the iteration no. (*i+k*) where k is a +ve number. So $W_{i=} W_{i+k}$

Proof cntd.

Therefore: $W_i . W^* = W_{i+k} . W^*$ (2)

(2) contradicts the (1)

Hence no W* exists

So function is not linearly separable.

Some plan for the course: going forward

Plan

- Task Front
 - Language Model
 - Build up to skip gram/cbow
 - Auto-encoder, predicting the next word, predicting context words
- Technique front
 - Perceptron
 - Feedforward NN with backpropagation
 - Recurrent n/w
 - Masked Models