CS772: Deep Learning for
Natural Language Processing
(DL-NLP)

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay
Week 3 of 17t Jan, 2022

Skip Gram

Skip Gram

DXV

Input Layer Hidden Lay /
0 i \
. VXD
0] / !
0 . _
V-dim D-dim \

DXV

/|

Softmax
Layer

Truth

_ O o O

Input Layer

VXD

VXD

I
»

—
N

D-dim

CBOW

Hidden Layer

.

DXV

V-dim

Softmax
Layer

Learning objective (skip gram)
Center word whose

Representation Is to B t
be learnt arameters

T To be learnt
Y@ =211 1w \w 93/

t=1 —m<j<m

J#0 Context
.

1(0) = %H H p(w,,, W

t= j<m

T

Minimize L_—Z > log[p(w,, ; | W;8)]

t=1 —m<j<m
j=0

Modelling P(context word|input word)

(1/2)
We want, say, P(‘bark’|’dog’)

Take the weight vector FROM ‘dog’ neuron
'O projection layer (call this Uy,,)

"ake the weight vector TO ‘bark’ neuron
FROM projection layer (call this U, ;)

When initialized, U,,, and Uy, give the initial
estimates of word vectors of ‘dog’ and ‘bark’

The weights and therefore the word vectors
get fixed by back propagation

Modelling P(context word|input word)
212)

* To model the probability, first compute dot
product of uy,, and vy,
* EXxponentiate the dot product

* Take softmax over all dot products over the
whole vocabulary

N exP(U 400U bk)
P(‘bark'|'dog') = 5 e‘;é(&ku)
dog™~ R

R&Vocabulary

Input to Projection (shown for one

neuron only) oupu O
for
]Icgfut O Pr_oje.zction park O
dog O (dim: d) O
O 1
O /”?
®
: //»o
1 C)é]
o T
O

P(‘bark’|’dog’) (1/2)

exp(U cTogU bark)
Y. exp(UgeUp)

ReVocabulary

P('bark'['dog") =

log(P(‘bark''dog")) =UgoUpar —109(D, exp(Ug,U¢))

R&Vocabulary

P(‘bark’|’dog’) (2/2)
Let u¥y,, be the jth component of the weight
vector from the ‘1’ neuron of input to the
projection layer

T ! 1 2 2 D ,,D
UdogUbark o (udogubark + udogubark Tt udogubark)

_ k k
o Z udog ubark
k=1,D

log(P('bark'|'dog"))
= Z uél(oguti)(ark_log(Z eXp(Z Ugogug))

k=1,D Revocab k=1,D

Skip Gram

DXV

Input Layer Hidden Lay /
0 i \
. VXD
0] / !
0 . _
V-dim D-dim \

DXV

/|

Softmax
Layer

Truth

_ O o O

Back to Loss Function (skip gram)

word

Minimize L:—i > Iog[p(w{h‘vt;ﬁ)]

t=1 -—-m<j<m
j#0

T

L==> > [X ufuf;—log(Y exp(> ufuy)) |

t=1 -m<j<m k=1,D Revocab k=1,D
j#0
t goes over the whole corpus,
] goes over the context words
k goes over the weight vector

Apply Gradient Descent

Change of weight Is proportional to negative
gradient of Loss wrt to that particular weight

oL
ou/

Auoo

T

L==>" > [> ufu,—log(> exp(> ufug

t=1 -m<j<m k=1,D Revocab k=1,D
j=0

Exercise

- Derive the weight change rule for Skip

Gram

14

Assignment

- Implement skip gram and study word
vectors; corpus and the exact statement for
the assignment will be specified.

15

Neurons

Al Perspective (post-web)

NLP

Search,
Reasoning, IR
Learning

Planging

Computer
Vision

Symbolic Al

Connectionist Al I1s contrasted with
Symbolic Al

Symbolic Al - Physical Symbol
System Hypothesis

Every intelligent system can be

constructed by storing and
processing symbols and nothing
more IS necessatry.

Symbolic Al has a bearing on models
of computation such as

Turing Machine & Von Neumann

Qﬁ Processor(Finite State Machine

Read Write Head

q\bcd

™~
Input/Output Memory (Tape)

Turing machine

CPU | Memory

VonNeumann Machine

Challenges to Symbolic Al
* Motivation for challenging Symbolic Al

* A large number of computations and
Information process tasks that living
beings are comfortable with, are not
performed well by computers!

 The Differences

Brain computation in living beings ~ TM computation in computers

Pattern Recognition Numerical Processing
Learning oriented Programming oriented
Distributed & parallel processing Centralized & serial
processing

« Content addressable Location addressable

Two aims of advancing computers

- More speed- pushes frontiers In
hardware, architecture, systems,
programming languages

- More Intelligence- pushes frontiers In
endowing computers with human like
abilities, e.g., language processing

. Synergistic aims: faster helps in taking up
more complex tasks; more complex tasks
demand faster machines

Symbolic and connectionist
representation of words

- A snapshot of wordnet subgraph is a
symbolic representation of words

. A word vector on the other hand Is a
connectionist representation of words

2P lectures:Pushpak

WordNet Sub-Graph

Hyppnymy
A\ 4
Hypernymy
Hyppnymy
bedroom
e \ 4
r Gloss
y guarters of one or mor efamilies
y

The human brain

« Seat of consciousness and cognition

* Perhaps the most complex information
processing machine in nature

Higher brain (responsible for higher needs)

3- Layers:

Cerebrum

Cerebellum

Cerebrum
(crucial for survival)

Higher brain

Maslow’s Hierarchy

MASLOW'S MOTIVATION MODEL

%)
©
gg Transcendence
Z
<
<
o
O
Aesthetic Needs
Cognitive Needs
”
§ Esteem Needs
()]
i Belonging and Love Needs
=
0
o Safety Needs
A
)
)

Physiological Needs

Neuron - “classical’

Dendrites

— Recelving stations of neurons
— Don't generate action potentials

Cell body

)

) 4{

Myelin Sheath
= e

Cell Bod) \

— Site at which information
received is integrated

AXO N Synaptic Clr
— Generate and relay action

Synapse

lmpulsc

on Terminals

//

potential |
— Terminal "'m“"“'z FD/’_//((K)\

* Relays information to

www.educarer.org

next neuron in the pathway http:/ /www.educater.com/images/brain-nerve-axon.jpg

Perceptron

The Perceptron Model

A perceptron is a computing element with input
lines having associated weights and the cell
having a threshold value. The perceptron model is
motivated by the biological neuron.

Output =y

Threshold = 6

Step function / Threshold function
y =1 for Zwixi >=0
=0 otherwise

Features of Perceptron

 Input output behavior is discontinuous and the
derivative does not exist at Zwixi =0

« ZWiXi - B Is the net input denoted as net

» Referred to as a linear threshold element -
linearity because of x appearing with power 1

- y=f(net): Relation between y and net is non-
linear

Computation of Boolean
functions

AND of 2 inputs

X1 X2 y
0 0 0
0 1 0
1 0 0
1 1 1

The parameter values (weights & thresholds) need to be found.

Computing parameter values

wl*0+w2*0 <=0=>0>= 0; since y=0
wl*0+w2 *1 <=0=>w2 <=0; since y=0
wl*1l+w2*0 <=0=> wl <=0, since y=0

wl*1l+w2 *1>0=>wl+w2>80; sincey=1
wl=w2= =0.5

satisfy these inequalities and find parameters to be
used for computing AND function.

Other Boolean functions

 OR can be computed using values of wl=w2=1
and =0.5

« XOR function gives rise to the following
Inequalities:
wl*0+w2*0 <=06=206>=0
wl*0+w2 *1 >0=>w2 >0
wl*1l+w2*0 >06=> wl >0
wl*1l+w2 *1<=0=>wl+w2<=0

No set of parameter values satisfy these inequalities.

XOR-line is not
Possible!! Cannot

™ Separate {<0,0>,<1,1>}

From {<0,1>, <1,0>}

Threshold functions

N # Boolean functions (222"n) #Threshold Functions (2"?)
1 4 4

2 16 14

3 256 128

4 64K 1008

 Functions computable by perceptrons - threshold

functions

« #TF becomes negligibly small for larger values of
#BF.

 For n=2, all functions except XOR and XNOR are
computable.

Muroga.S, Threshold Logic and its Applications, John Wiley, 1972

AND of 2 inputs

X1 X2 y
0 0 0
0 1 0
1 0 0
1 1 1

The parameter values (weights & thresholds) need to be found.

Constraints on wl, w2 and ©

wl*0+w2*0 <=0 =>0>= 0; since y=0
Wl*0+w2 *1 <=0 = w2 <=0 since y=0
wl*1+w2*0 <=0=> wl <=0; since y=0

wl*1l+w2 *1>0=>wl+w2>0;since y=1
wl=w2= =05

These inequalities are satisfied by ONE particular region

Perceptron training

Perceptron Training Algorithm
(PTA)

Preprocessing:

1. The computation law i1s modified to
y=11f Ywx >0
y=0 if Ywx <0

PTA — preprocessing cont...

2. Absorb 6 as a weight. Comparing W.X with 0 Is
eqv to comparing (W.X- 0) with O

3. Negate all the zero-class examples

Example to demonstrate preprocessing

« OR perceptron
l-class <1,1>,<1,0>,<0,1>
O-class <0,0>

Augmented X vectors:-
l-class <-1,1,1>,<-1,1,0>,<-1,0,1>

O-class <-1,0,0>

Negate O-class:- <1,0,0>

Example to demonstrate preprocessing
cont..

Now the vectors are

H

|
=
-
=

X X X X
SN
-
o

h
.
o
o

Perceptron Training Algorithm

1. Start with a random value of w
ex: <0,0,0...>
2. Testforwx;, >0
If the test succeeds for i=1,2,...n
then return w
3. MOdlfy W, Wnext Wprev T Xfail

PTA on NAND

NAND: Y
X2 X1 Y '

0 0 1

0 1 1 W W1
1 0 1 / \
1 1 0 X2 X1

Converted To

Vy /m\ WO0= 0
X2 Xl X0=-1

Preprocessing

NAND Augmented.: NAND-O class Negated
X2 X1 X0 Y X2 X1 X0

0O 0 -1 1 VO: 0 0 -1

0 1 -1 1 vi: 0 1 -1

1 0 -1 1 v2: 1 0 -1

1 1 -1 0 Vv3: -1 -1 1

Vectors for which

W=<W2 W1 WO0> has to be
found such that

W.Vi>0

PTA Algo steps

Algorithm:
1. Initialize and Keep adding the failed vectors
until W. Vi > 0 is true.

Step0: W = <0,0, 0>
W1 = <0,0,0>+<0,0,-1> {Vo Falils}

= <0, 0, -1>

W2 = <0, 0, -1> +<-1, -1, 1> {V3 Falls}
= <-1,-1,0>

W3 = <-1,-1,0>+<0,0, -1> {Vo Fails}
=<1, -1, -1>

Wi = <-1,-1, -1> + <0, 1, -1> {V1 Fails}

= <-1,0, -2>

Trying convergence

Ws = <-1,0,-2>+<-1,-1,1> {V3 Falls}
= <-2,-1,-1>
We = <-2,-1,-1>+<0, 1, -1> {V1 Fails}
= <-2,0,-2>
W7z = <-2,0,-2>+<1,0,-1> {Vo Falls}
= <-1,0,-3>
Ws = <-1,0,-3>+<-1,-1,1> {V3 Fails}
= <-2,-1,-2>
Wo = <-2,-1,-2>+<1,0,-1> {V2 Fails}
= <-1,-1,-3>

Trying convergence

W10 = <-1,-1,-3>+<-1,-1,1> {V3 Fails}
= <-2,-2,-2>
Wi = <-2,-2,-2>+<0,1, -1> {V1 Fails}
= <-2,-1,-3>
W12 = <-2,-1,-3>+<-1,-1, 1> {V3 Fails}
= <-3,-2,-2>
W13 = <-3,-2,-2>+<0, 1, -1> {V1 Falls}
= <-3,-1,-3>
W14 = <-3,-1,-3>+<0,1,-1> {V2Fails}
= <-2,-1, -4>

W15 = <-2,-1,-4>+<-1,-1,1> {V3 Falls}
= <3, -2,-3>
W16 = <-3,-2,-3>+<],0, -1> {V2 Fails}
= <-2,-2,-4>
<-2,-2,-4>+<-1,-1,1> {V3 Falils}
= <3, -3,-3>
<-3,-3,-3>+<0,1, -1> {V1 Falils}
= <3, -2, -4>

W17

W18

W2= -3, Wil=-2, WO=0=-+4

N

Succeeds for all vectors

Where probability can come in (1/2)

- (1) in initialization: if we are lucky to
start close to the correct weight, then
the number of iterations will be small

. Question- Is it possible to have this
kind of serendipitous Initialization

- Answer: yes sometimes, if we have
domain knowledge and exploit this
knowledge along with task properties

Where probability can come in (2/2)

- (2) choosing the correct test vector: If we
go sequentially choosing the vectors to
test for W.X>0, then the failed vector may
come towards the end; this can slow
down the process if the input size Is large

. Question: can we test only a sample of
the input examples?

. Answer: yes, this is done for example In
stochastic gradient descent algo (to be
discussed later)

Assignment on skip gram

Steps (1/2)

. 1. Create a cluster of “animal words”:

cow, dog, bullock, cat ... (10 words)

. 2. Create a cluster of “bird words”:

cuckoo, parrot, crow, sparrow,... (10
words)

- 3. Run a concordance for obtaining the
neighboring words of these words (learn
what a concordancer Is)

Steps (2/2)

* (These animal words, bird words and concordance supplied
syntagmatic words form the universe of your words)

. 4. Train a skip gram model with these
words

. 5. Collect the word representations

. 6. Ensure that “animal” words are close
to another words and so are "bird” words;
Inter cluster distance should be large
compared to intra cluster distance; use
cosine similarity

IMP: skin aram code has to be vour OWN

PTA convergence

Statement of Convergence of
PTA

. Statement:

Whatever be the initial choice of weights and
whatever be the vector chosen for testing, PTA
converges if the vectors are from a linearly
separable function.

Proof of Convergence of PTA

. Suppose W, Is the weight vector at the
nth step of the algorithm.

. At the beginning, the weight vector Is w,

- Go from W;to W,,; when a vector X; falls
the test w;X; > 0 and update w; as

Wi = Wi+ X
. Since X|s form a linearly separable

function,
For all, W=, W*X; > O for all |

Proof of Convergence of PTA
(cntd.)

(for notational simplicity we will not use transpose of vectors)

Consider the exwessmn

) = W, |
W, |.]W " |cosd
— W
=W " |cos @

|IG(w,)| = |w*|,as -1 <cosO <17

Behavior of Numerator of G(W)
W W =W, +XEHW”

fail

=W W+ XMW

fail *

=W, +XTAOW + X W~

fail fail *

=W, W+ X0 W XE W+ X W

fail * fail * fail
=K, +8,+6, +...0_, Since W* is the separating
_ vector, its dot product with

So, numerator of G grows with n.

Behavior of Denominator of G(W)

W, =W, W,
— \/(\Nn—l + X ?z;ll)T (an—l + X ?a_ul1
= \/Wn2—1 + 2.\/Vn_1.X o + (X) Dot product of weight

fail fail _ _
Vector with failed vector must be non
positive

< \/an_l 1 (X2

fail

= WG+ (X 8)7 4 (X)P (X)’

fail fail

< \/KZ + nariax

[Xi| = anax (Max magnitude); So, Denom grows
as sqrt(n)

Some Observations

- Numerator of G grows as n

. Denominator of G grows as sqrt(n)
=> Numerator grows faster than
denominator

. If PTA does not terminate, G(w,)
values will become unbounded.

Some Observations contd.

. But, as |G(w,)| < |w*| which is finite,
n becoming infinite Is Impossible!

- Hence, PTA has to converge.

- Proof is due to Marvin Minsky.

A Problem that can be solved using the
proof of PTA

Problem: If a weight repeats while
training the perceptron, then the
function Is not linearly separable.

Proof

Let us prove first w,.w* Is an increasing
function.

From the proof of convergence of PTA,
we can write

W, W= (W, g + XM) W
=W, .W*+w* X1
Since w* Is optimal weight vector
therefore:
W* Xn-l

fall

>0

fall

Proof cntd.

Because In eveql iteration we are adding +ve
number W*, X1 .

Therefore:
W, W*>W_, W* (1)

Hence W, .W* is an increasing function.

If the weight repeats then the weight W, at a given
iteration no. i, will be equal to the weight W,,, at the
iteration no. (i+k) where k is a +ve number. So

Wi: Wi+k

Proof cntd.

Therefore:
W, .W* =W, .W* (2)

(2) contradicts the (1)
Hence no W* exists

So function is not linearly separable.

Some plan for the course: going
forward

Plan

. Task Front

— Language Model

— Build up to skip gram/cbow

« Auto-encoder, predicting the next word,
predicting context words

- Technique front

— Perceptron

— Feedforward NN with backpropagation
— Recurrent n/w

— Masked Models

