
CS772: Deep Learning for

Natural Language Processing

(DL-NLP)

Skip Gram, Perceptron

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay

Week 3 of 17th Jan, 2022

Skip Gram

Skip Gram

0

1

0

0

Input Layer

V-dim

Hidden Layer

D-dim

V X D

D X V

D X V

D X V

Softmax

Layer
Truth

1

0

0

0

0

0

0

1

0

0

1

0

CBOW

v

v

v

V X D

V X D

V X D

D X V

Input Layer

Hidden Layer

D-dim

Softmax

Layer

V-dim

0

1

0

0

Truth

Learning objective (skip gram)

)];|(log[

);|(
1

)(

);|(
1

)(

0
1

1
0

1
0

'

tjt

j
mjm

T

t

tjt

T

t
j

mjm

tjt

T

t
j

mjm

wwpLMinimize

wwp
T

J

wwp
T

J

Context

Parameters

To be learnt

Center word whose

Representation is to

be learnt

Modelling P(context word|input word)

(1/2)
• We want, say, P(‘bark’|’dog’)

• Take the weight vector FROM ‘dog’ neuron

TO projection layer (call this Udog)

• Take the weight vector TO ‘bark’ neuron

FROM projection layer (call this Ubark)

• When initialized, Udog and Ubark give the initial

estimates of word vectors of ‘dog’ and ‘bark’

• The weights and therefore the word vectors

get fixed by back propagation

Modelling P(context word|input word)

(2/2)
• To model the probability, first compute dot

product of udog and vbark

• Exponentiate the dot product

• Take softmax over all dot products over the

whole vocabulary

)exp(

)exp(
)'|''('

R

T

dog

VocabularyR

bark

T

dog

UU

UU
dogbarkP

Input to Projection (shown for one

neuron only)

Input

for

‘dog’

Projection

(dim: d)

Udog

Output

for

‘bark’

1

1

Ubark

P(‘bark’|’dog’) (1/2)

)exp(

)exp(
)'|''('

R

T

dog

VocabularyR

bark

T

dog

UU

UU
dogbarkP

))exp(log())'|''('log(R

T

dog

VocabularyR

bark

T

dog UUUUdogbarkP

P(‘bark’|’dog’) (2/2)

Let uk
dog be the jth component of the weight

vector from the ‘1’ neuron of input to the

projection layer

k

bark

k

dog

Dk

D

bark

D

dogbarkdogbarkdogbark

T

dog

uu

uuuuuuUU

,1

2211)...(

))exp(log(

))'|''('log(

,1,1

k

R

k

dog

DkvocabR

k

bark

k

dog

Dk

uuuu

dogbarkP

Skip Gram

0

1

0

0

Input Layer

V-dim

Hidden Layer

D-dim

V X D

D X V

D X V

D X V

Softmax

Layer
Truth

1

0

0

0

0

0

0

1

0

0

1

0

Back to Loss Function (skip gram)

)];|(log[

0
1

tjt

j
mjm

T

t

wwpLMinimize

word

))exp(log(
,1,1

0
1

k

R

k

t

DkvocabR

k

jt

k

t

Dk
j

mjm

T

t

uuuuL

t goes over the whole corpus,

j goes over the context words

k goes over the weight vector

Apply Gradient Descent

Change of weight is proportional to negative

gradient of Loss wrt to that particular weight

j

t

j

t
u

L
u

))exp(log(
,1,1

0
1

k

R

k

t

DkvocabR

k

jt

k

t

Dk
j

mjm

T

t

uuuuL

• Derive the weight change rule for Skip

Gram

14

Exercise

• Implement skip gram and study word

vectors; corpus and the exact statement for

the assignment will be specified.

15

Assignment

Neurons

AI Perspective (post-web)

Planning

Computer

Vision

NLP

Expert

Systems

Robotics

Search,

Reasoning,

Learning
IR

Symbolic AI

• Connectionist AI is contrasted with

Symbolic AI

• Symbolic AI - Physical Symbol

System Hypothesis

• Every intelligent system can be

constructed by storing and

processing symbols and nothing

more is necessary.

• Symbolic AI has a bearing on models

of computation such as

• Turing Machine

Turing Machine & Von Neumann

Machine

Challenges to Symbolic AI

• Motivation for challenging Symbolic AI

• A large number of computations and

information process tasks that living

beings are comfortable with, are not

performed well by computers!

• The Differences
• Brain computation in living beings TM computation in computers

• Pattern Recognition Numerical Processing

• Learning oriented Programming oriented

• Distributed & parallel processing Centralized & serial

processing

• Content addressable Location addressable

Two aims of advancing computers

• More speed- pushes frontiers in

hardware, architecture, systems,

programming languages

• More Intelligence- pushes frontiers in

endowing computers with human like

abilities, e.g., language processing

• Synergistic aims: faster helps in taking up

more complex tasks; more complex tasks

demand faster machines

Symbolic and connectionist

representation of words

• A snapshot of wordnet subgraph is a

symbolic representation of words

• A word vector on the other hand is a

connectionist representation of words

Gloss

study

Hyponymy

Hyponymy

Dwelling,abode

bedroom

kitchen

house,home

A place that serves as the living

quarters of one or mor efamilies

guestroom

veranda

bckyard

hermitage cottage

Meronymy

Hyponymy

M

e

r

o

n

y

m

y

Hypernymy

WordNet Sub-Graph

7jul1910 nlp lectures:Pushpak23

• The human brain

• Seat of consciousness and cognition

• Perhaps the most complex information
processing machine in nature

Maslow’s Hierarchy

Neuron - “classical”

• Dendrites
– Receiving stations of neurons

– Don't generate action potentials

• Cell body
– Site at which information

received is integrated

• Axon
– Generate and relay action

potential

– Terminal

• Relays information to

next neuron in the pathway http://www.educarer.com/images/brain-nerve-axon.jpg

Perceptron

The Perceptron Model

A perceptron is a computing element with input

lines having associated weights and the cell

having a threshold value. The perceptron model is

motivated by the biological neuron.

Output = y

wn
Wn-1

w1

Xn-1

x1

Threshold = θ

θ

1
y

Step function / Threshold function

y = 1 for Σwixi >=θ

=0 otherwise

Σwixi

Features of Perceptron

• Input output behavior is discontinuous and the

derivative does not exist at Σwixi = θ

• Σwixi - θ is the net input denoted as net

• Referred to as a linear threshold element -

linearity because of x appearing with power 1

• y= f(net): Relation between y and net is non-

linear

Computation of Boolean

functions

AND of 2 inputs

X1 x2 y
0 0 0

0 1 0

1 0 0

1 1 1

The parameter values (weights & thresholds) need to be found.

y

w1 w2

x1
x2

θ

Computing parameter values

w1 * 0 + w2 * 0 <= θ θ >= 0; since y=0

w1 * 0 + w2 * 1 <= θ w2 <= θ; since y=0

w1 * 1 + w2 * 0 <= θ w1 <= θ; since y=0

w1 * 1 + w2 *1 > θ w1 + w2 > θ; since y=1

w1 = w2 = = 0.5

satisfy these inequalities and find parameters to be

used for computing AND function.

Other Boolean functions

• OR can be computed using values of w1 = w2 = 1

and = 0.5

• XOR function gives rise to the following

inequalities:

w1 * 0 + w2 * 0 <= θ θ >= 0

w1 * 0 + w2 * 1 > θ w2 > θ

w1 * 1 + w2 * 0 > θ w1 > θ

w1 * 1 + w2 *1 <= θ w1 + w2 <= θ

No set of parameter values satisfy these inequalities.

<0,0>

<1,1>

<1,0>

<0,1>

AND-line

OR-line

XOR-line is not

Possible!! Cannot

Separate {<0,0>,<1,1>}

From {<0,1>, <1,0>}

Threshold functions
n # Boolean functions (2^2^n) #Threshold Functions (2n2)

1 4 4

2 16 14

3 256 128

4 64K 1008

• Functions computable by perceptrons - threshold

functions

• #TF becomes negligibly small for larger values of

#BF.

• For n=2, all functions except XOR and XNOR are

computable.

Muroga.S, Threshold Logic and its Applications, John Wiley, 1972

AND of 2 inputs

X1 x2 y
0 0 0

0 1 0

1 0 0

1 1 1

The parameter values (weights & thresholds) need to be found.

y

w1 w2

x1
x2

θ

Constraints on w1, w2 and θ

w1 * 0 + w2 * 0 <= θ θ >= 0; since y=0

w1 * 0 + w2 * 1 <= θ w2 <= θ; since y=0

w1 * 1 + w2 * 0 <= θ w1 <= θ; since y=0

w1 * 1 + w2 *1 > θ w1 + w2 > θ; since y=1

w1 = w2 = = 0.5

These inequalities are satisfied by ONE particular region

Perceptron training

Perceptron Training Algorithm

(PTA)

Preprocessing:

1. The computation law is modified to

y = 1 if ∑wixi > θ

y = o if ∑wixi < θ

. . .

θ, ≤

w1 w2 wn

x1 x2 x3 xn

. . .

θ, <

w1 w2 w3
wn

x1 x2 x3 xn

w3

PTA – preprocessing cont…

2. Absorb θ as a weight. Comparing W.X with θ is
eqv to comparing (W.X- θ) with 0

3. Negate all the zero-class examples

. . .

0

w1 w2 w3 wn

x2 x3 xn
x1

w0=θ

x0= -1

. . .

θ

w1 w2 w3 wn

x2 x3 xn
x1

Example to demonstrate preprocessing

• OR perceptron

1-class <1,1> , <1,0> , <0,1>

0-class <0,0>

Augmented x vectors:-

1-class <-1,1,1> , <-1,1,0> , <-1,0,1>

0-class <-1,0,0>

Negate 0-class:- <1,0,0>

Example to demonstrate preprocessing

cont..

Now the vectors are

x0 x1 x2

X1 -1 0 1

X2 -1 1 0

X3 -1 1 1

X4 1 0 0

Perceptron Training Algorithm

1. Start with a random value of w

ex: <0,0,0…>

2. Test for wxi > 0

If the test succeeds for i=1,2,…n

then return w

3. Modify w, wnext = wprev + xfail

PTA on NAND

NAND: Y

X2 X1 Y

0 0 1

0 1 1 W2 W1

1 0 1

1 1 0 X2 X1

Converted To

W2 W1 W0= Θ

X2 X1 X0=-1

Θ

Θ

Preprocessing

NAND Augmented: NAND-0 class Negated

X2 X1 X0 Y X2 X1 X0

0 0 -1 1 V0: 0 0 -1

0 1 -1 1 V1: 0 1 -1

1 0 -1 1 V2: 1 0 -1

1 1 -1 0 V3: -1 -1 1

Vectors for which

W=<W2 W1 W0> has to be

found such that

W. Vi > 0

PTA Algo steps

Algorithm:

1. Initialize and Keep adding the failed vectors

until W. Vi > 0 is true.

Step 0: W = <0, 0, 0>

W1 = <0, 0, 0> + <0, 0, -1> {V0 Fails}

= <0, 0, -1>

W2 = <0, 0, -1> + <-1, -1, 1> {V3 Fails}

= <-1, -1, 0>

W3 = <-1, -1, 0> + <0, 0, -1> {V0 Fails}

= <-1, -1, -1>

W4 = <-1, -1, -1> + <0, 1, -1> {V1 Fails}

= <-1, 0, -2>

Trying convergence

W5 = <-1, 0, -2> + <-1, -1, 1> {V3 Fails}

= <-2, -1, -1>

W6 = <-2, -1, -1> + <0, 1, -1> {V1 Fails}

= <-2, 0, -2>

W7 = <-2, 0, -2> + <1, 0, -1> {V0 Fails}

= <-1, 0, -3>

W8 = <-1, 0, -3> + <-1, -1, 1> {V3 Fails}

= <-2, -1, -2>

W9 = <-2, -1, -2> + <1, 0, -1> {V2 Fails}

= <-1, -1, -3>

Trying convergence

W10 = <-1, -1, -3> + <-1, -1, 1> {V3 Fails}

= <-2, -2, -2>

W11 = <-2, -2, -2> + <0, 1, -1> {V1 Fails}

= <-2, -1, -3>

W12 = <-2, -1, -3> + <-1, -1, 1> {V3 Fails}

= <-3, -2, -2>

W13 = <-3, -2, -2> + <0, 1, -1> {V1 Fails}

= <-3, -1, -3>

W14 = <-3, -1, -3> + <0, 1, -1> {V2 Fails}

= <-2, -1, -4>

W15 = <-2, -1, -4> + <-1, -1, 1> {V3 Fails}
= <-3, -2, -3>

W16 = <-3, -2, -3> + <1, 0, -1> {V2 Fails}
= <-2, -2, -4>

W17 = <-2, -2, -4> + <-1, -1, 1> {V3 Fails}
= <-3, -3, -3>

W18 = <-3, -3, -3> + <0, 1, -1> {V1 Fails}
= <-3, -2, -4>

W2 = -3, W1 = -2, W0 = Θ = -4

Succeeds for all vectors

Where probability can come in (1/2)

• (1) in initialization: if we are lucky to

start close to the correct weight, then

the number of iterations will be small

• Question- is it possible to have this

kind of serendipitous initialization

• Answer: yes sometimes, if we have

domain knowledge and exploit this

knowledge along with task properties

Where probability can come in (2/2)

• (2) choosing the correct test vector: if we

go sequentially choosing the vectors to

test for W.X>0, then the failed vector may

come towards the end; this can slow

down the process if the input size is large

• Question: can we test only a sample of

the input examples?

• Answer: yes, this is done for example in

stochastic gradient descent algo (to be

discussed later)

Assignment on skip gram

Steps (1/2)

• 1. Create a cluster of “animal words”:

cow, dog, bullock, cat … (10 words)

• 2. Create a cluster of “bird words”:

cuckoo, parrot, crow, sparrow,… (10

words)

• 3. Run a concordance for obtaining the

neighboring words of these words (learn

what a concordancer is)

Steps (2/2)

• (These animal words, bird words and concordance supplied

syntagmatic words form the universe of your words)

• 4. Train a skip gram model with these

words

• 5. Collect the word representations

• 6. Ensure that “animal” words are close

to another words and so are “bird” words;

Inter cluster distance should be large

compared to intra cluster distance; use

cosine similarity

IMP: skip gram code has to be your OWN

PTA convergence

Statement of Convergence of

PTA

• Statement:

Whatever be the initial choice of weights and

whatever be the vector chosen for testing, PTA

converges if the vectors are from a linearly

separable function.

Proof of Convergence of PTA

• Suppose Wn is the weight vector at the

nth step of the algorithm.

• At the beginning, the weight vector is w0

• Go from Wi to Wi+1 when a vector Xj fails

the test wiXj > 0 and update wi as

Wi+1 = Wi + Xj

• Since Xjs form a linearly separable

function,
For all, W*, W*Xj > 0 for all j

Proof of Convergence of PTA
(cntd.)

(for notational simplicity we will not use transpose of vectors)

Consider the expression

|G(wn)| ≤ |w*|, as -1 ≤ cosθ ≤ 1

cos||

||

cos||.||

||

.
)(

*

*

*

W

W

WW

W

WW
WG

n

n

n

n
n

Behavior of Numerator of G(Wn)

So, numerator of G grows with n.

0,,

....

.......

...

.).(

..

).(.

min1

1101

*1*1*0*

0

*1*2

2

1

1

*1

1

*

i

n

n

failfailfail

n

fail

n

failn

n

failn

n

failnn

inK

K

WXWXWXWW

WXWXW

WXWW

WXWWW

 Since W* is the separating

vector, its dot product with

any Xj is >0

Behavior of Denominator of G(Wn)

|Xj| ≤ αmax (max magnitude); So, Denom grows

as sqrt(n)

2

max2

2121202

0

212

1

211

1

2

1

1

1

1

1

)...()()(

)(

)(..2

)()(

.||

nK

XXXW

XW

XXWW

XWXW

WWW

n

failfailfail

n

failn

n

fail

n

failnn

n

failn

Tn

failn

n

T

nn

Dot product of weight
Vector with failed vector must be non

positive

Some Observations

• Numerator of G grows as n

• Denominator of G grows as sqrt(n)

=> Numerator grows faster than

denominator

• If PTA does not terminate, G(wn)

values will become unbounded.

Some Observations contd.

• But, as |G(wn)| ≤ |w*| which is finite,

n becoming infinite is impossible!

• Hence, PTA has to converge.

• Proof is due to Marvin Minsky.

A Problem that can be solved using the

proof of PTA

Problem: If a weight repeats while

training the perceptron, then the

function is not linearly separable.

Proof

Let us prove first wn .w* is an increasing

function.

From the proof of convergence of PTA,

we can write

wn .w*= (wn-1 + Xn-1
fail) .w*

= wn-1 .w* + w*. Xn-1
fail

Since w* is optimal weight vector

therefore:

w*. Xn-1
fail > 0

Proof cntd.

Because in every iteration we are adding +ve
number W*. Xn-1

fail

Therefore:
Wn .W* > Wn-1 .W* (1)

Hence Wn .W* is an increasing function.

If the weight repeats then the weight Wi at a given
iteration no. i, will be equal to the weight Wi+k at the
iteration no. (i+k) where k is a +ve number. So

Wi= Wi+k

Proof cntd.

Therefore:

Wi .W* =Wi+k .W* (2)

(2) contradicts the (1)

Hence no W* exists

So function is not linearly separable.

Some plan for the course: going

forward

Plan

• Task Front
– Language Model

– Build up to skip gram/cbow

• Auto-encoder, predicting the next word,

predicting context words

• Technique front
– Perceptron

– Feedforward NN with backpropagation

– Recurrent n/w

– Masked Models

