CS772: Deep Learning for Natural Language Processing (DL-NLP)

Neural POS Tagging, Neural LM Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay Week 2 of 10th Jan, 2022

Task vs. Technique Matrix

Task (row) vs. Technique (col) Matrix	Rules Based/Kn owledge- Based	Classical ML			Deep Learning			
		Perceptron	Logistic Regression	SVM			RNN- LSTM	CNN
Morphology				!				!
POS		Graphical Models (HMM, MEMM, CRF)	Dense FF with BP and softmax	Graphic al Models (HMM, MEMM, CRF)	Dense FF with BP and softmax			
Chunking			,					
Parsing								
NER, MWE								
Coref								
WSD								
Machine Translation								
Semantic Role Labeling								
Sentiment								

Probability

Coding (DL)

3 Generations of NLP

- Rule based NLP is also called Model
 Driven NLP
- Statistical ML based NLP (*Hidden Markov Model, Support Vector Machine*)
- Neural (Deep Learning) based NLP Illustration with POS tagging

666626666667**AUS**1200Ak

DL-POS

POS tagging problem statement

- Input: sequence of words W
- Output: sequence of tags T

- E.g.
- Input: I love India
- Output: PRP VB NNP

Training Data Example: A dialogue text POS tagged from Treebank [SpeakerA2/SYM] [SpeakerB1/SYM] ./. ./. [Um/UH] So/UH how/WRB ,/, many/JJ ,/, um/UH ,/, [I/PRP] [credit/NN cards/NNS] think/VBP do/VBP [I/PRP] [you/PRP] 'm/VBP down/IN to/IN have/VB ?/. [one/CD]

https://catalog.ldc.upenn.edu/desc/addenda/LDC99T42 .pos.txt

POS tagging code dataset etc.: paperwithcode.com

itag: 🗙 🛛 🚱 AN	MEX Al 🗙 🛛 🚍 Deep lea 🗙 🗍	M Inbox (3: X 🛛 😰 (281) Wh X 🗍 🖸 Go	ogle 🤇 🗙 📔 🚺 [1906.00 🗙 🛛 🍥 Ne	ew Tab 🗙 📖 Part-Of-S 🗙	+ ~ - 0
C 🔒 pape	erswithcode.com/task/part-of	-speech-tagging			ie 🛧 🗯 🎙
Part-0	Of-Speech	Tagging			🖻 Edit
165 papers wi	ith code • 12 benchmarks	• 16 datasets			
Part-of-speec category of v pronoun, prep	ch tagging (POS tagging) words with similar gramm position, conjunction, etc.	is the task of tagging a word in a text atical properties. Common English par	with its part of speech. A part of speech are noun, verb, a	rt of speech is a djective, adverb,	Content
Example:					□ Introduction □ Benchmarks
Vinken,61 y	vears old				Datasets
NNP , CD N	INS JJ				品 Subtasks
					Papers
Benchma These leaders	arks boards are used to track p	progress in Part-Of-Speech Tagging		Add a Result	- Most implemented - Social
	ľ	5 1 55 5			- Latest - No code
Trend	Dataset	Best Model	Paper Co	de Compare	
No 50 50 50 50 50 50 50 50 50 50 50 50 50	Penn Treebank	🏆 Meta BiLSTM		See all	

DL based POS Tagging PRP VB NNP

Penn POS TAG Set

1.	CC	Coordinating conjunction
2.	CD	Cardinal number
3.	DT	Determiner
4.	EX	Existential there
5.	FW	Foreign word
6.	IN	Preposition or subordinating conju
7.	JJ	Adjective
8.	JJR	Adjective, comparative
9.	JJS	Adjective, superlative
10.	LS	List item marker
11.	MD	Modal
12.	NN	Noun, singular or mass
13.	NNS	Noun, plural
14.	NNP	Proper noun, singular
15.	NNPS	Proper noun, plural
16.	PDT	Predeterminer
17.	POS	Possessive ending
18.	PRP	Personal pronoun
19.	PRP\$	Possessive pronoun
20.	RB	Adverb
21.	RBR	Adverb, comparative

Penn POS TAG Set (cntd)

22.	RBS	Adverb, superlative
23.	RP	Particle
24.	SYM	Symbol
25.	ТО	to
26.	UH	Interjection
27.	VB	Verb, base form
28.	VBD	Verb, past tense
29.	VBG	Verb, gerund or present participle
30.	VBN	Verb, past participle
31.	VBP	Verb, non-3rd person singular present
32.	VBZ	Verb, 3rd person singular present
33.	WDT	Wh-determiner
34.	WP	Wh-pronoun
35.	WP\$	Possessive wh-pronoun
36.	WRB	Wh-adverb

Minimize Cross Entropy Loss= MLE

- We will prove later that Minimizing Cross Entropy Loss is equivalent to Maximizing the Likelihood of Training Data.
- Softmax at the outler layer typically needs cross entropy loss.
- "Distance" between two probality distributions is the cross entropy loss.
- Softmax gives the observed probability distribution

Another Example: Image Recognition

Credit: https://medium.com/unpackai/cross-entropy-loss-in-ml-d9f22fc11fe0

MLE: Maximize probability of training data W: Word sequence; T: Tag Sequence

- *P(W)*: probability of word sequence: Language Model
- P(T|W): probability of tag sequence given the word sequence

 $\arg \max_{T} [P(W,T)]$ P(W,T) = P(W).P(T | W)

DNN is trained for MLE PRP VB NNP

Statistical POS tagging

Noisy Channel Model

Sequence *W* is transformed into sequence *T*

Argmax computation (1/2)

Best tag sequence = T*

 $= \operatorname{argmax} P(T|W)$

= argmax P(T)P(W|T) (by Baye's Theorem)

```
\begin{aligned} \mathsf{P}(\mathsf{T}) &= \mathsf{P}(t_0 = {}^{\mathsf{h}} t_1 t_2 \dots t_{n+1} = .) \\ &= \mathsf{P}(t_0) \mathsf{P}(t_1 | t_0) \mathsf{P}(t_2 | t_1 t_0) \mathsf{P}(t_3 | t_2 t_1 t_0) \dots \\ &= \mathsf{P}(t_n | t_{n-1} t_{n-2} \dots t_0) \mathsf{P}(t_{n+1} | t_n t_{n-1} \dots t_0) \\ &= \mathsf{P}(t_0) \mathsf{P}(t_1 | t_0) \mathsf{P}(t_2 | t_1) \dots \mathsf{P}(t_n | t_{n-1}) \mathsf{P}(t_{n+1} | t_n) \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &
```

Argmax computation (2/2)

$$P(W|T) = P(w_0|t_0-t_{n+1})P(w_1|w_0t_0-t_{n+1})P(w_2|w_1w_0t_0-t_{n+1}) \dots P(w_n|w_0-w_{n-1}t_0-t_{n+1})P(w_{n+1}|w_0-w_nt_0-t_{n+1})$$

Assumption: A word is determined completely by its tag. This is inspired by speech recognition

```
= P(w_o|t_o)P(w_1|t_1) \dots P(w_{n+1}|t_{n+1})

= \prod_{i=0}^{n+1} P(w_i|t_i)

= i=1 P(w_i|t_i) (Lexical Probability Assumption)
```


Find the PATH with MAX Score.

What is the meaning of score?

CRF Based POS Tagging

Harshada Gune, Mugdha Bapat, Mitesh Khapra and Pushpak Bhattacharyya, Verbs are where all the Action Lies: Experiences of Shallow Parsing of a Morphologically Rich Language, Computational Linguistics Conference (COLING 2010), Beijing, China, August 2010.

Decoding for the best Sequence

$$\hat{\boldsymbol{y}} = \operatorname*{arg\,max}_{\boldsymbol{y}} p_{\boldsymbol{\lambda}}(\boldsymbol{y}|\boldsymbol{x}) = \operatorname*{arg\,max}_{\boldsymbol{y}} \boldsymbol{\lambda} \cdot \boldsymbol{F}(\boldsymbol{y},\boldsymbol{x})$$

$$p_{\lambda}(\boldsymbol{Y}|\boldsymbol{X}) = \frac{\exp \boldsymbol{\lambda} \cdot \boldsymbol{F}(\boldsymbol{Y}, \boldsymbol{X})}{Z_{\lambda}(\boldsymbol{X})}$$
(1)

where

$$Z_{\boldsymbol{\lambda}}(\boldsymbol{x}) = \sum_{\boldsymbol{y}} \exp \boldsymbol{\lambda} \cdot \boldsymbol{F}(\boldsymbol{y}, \boldsymbol{x})$$

$$m{F}(m{y},m{x}) = \sum_i m{f}(m{y},m{x},i) \qquad egin{array}{c} i ext{ ranges over the} \\ ext{ input} \\ ext{ positions} \end{array}$$

Representation

How to input text to neural net? Issue of REPRESENTATION

- Inputs have to be sets of numbers
 - We will soon see why

These numbers form
 REPRESENTATIONS

 What is a good representation? At what granularity: words, n-grams, phrases, sentences

Issues

- What is a good representation? At what granularity: words, n-grams, phrases, sentences
- Sentence is important- (a) I <u>bank</u> with SBI; (b) I took a stroll on the river <u>bank</u>; (c) this <u>bank</u> sanctions loans quickly
- Each 'bank' should have a differengt representation
- We have to LEARN these representations

Principle behind representation

 Proverb: "A man is known by the company he keeps"

 Similalry: "A word is known/represented by the company it keeps"

"Company" → Distributional Similarity

Representation: to learn or not learn?

- 1-hot representation does not capture many nuances, e.g., semantic similarity
 But is a good starting point
- Collocations also do not fully capture all the facets
 - But is a good starting point

So learn the representation...

Learning Objective

MAXIMIZE CONTEXT
 PROBABILITY

Foundations-1: Embedding

- Way of taking a discrete entity to a continuous space
- E.g., 1, 2, 3, 2.7, 2/9, 22^{1/2}, ... are numerical symbols
- But they are points on the real line
- Natural embedding
- Words' embedding not so intuitive!

Foundations-2: Purpose of Embedding

- Enter geometric space
- Take advantage of "distance measures"-Euclidean distance, Riemannian distance and so on
- "Distance" gives a way of computing similarity

Foundations-3: Similarity and difference

- Recognizing similarity and differencefoundation of intelligence
- Lot of Pattern Recognition is devoted to this task (Duda, Hart, Stork, 2nd Edition, 2000)
- Lot of NLP is based on Text Similarity
- Words, phrases, sentences, paras and so on (verticals)
- Lexical, Syntactic, Semantic, Pragmatic (Horizontal)

Similarity study in MT

ISO-Metricity

Across Cross-lingual Mapping

This involves strong assumption that embedding spaces across languages are isomorphic, which is not true specifically for distance languages (Søgaard et al. 2018). However, without this assumption unsupervised NMT is not possible.

Søgaard, Anders, Sebastian Ruder, and Ivan Vulić. 2018. On the limitations of unsupervised bilingual dictionary induction. ACL

Foundations-4: Syntagmatic and Paradigmatic Relations

- Syntagmatic and paradigmatic relations
 - Lexico-semantic relations: synonymy, antonymy, hypernymy, mernymy, troponymy etc. CAT is-a ANIMAL
 - Coccurence: CATS MEW
- Wordnet: primarily paradigmatic relations
- ConceptNet: primarily Syntagmatic Relations

Lexical and Semantic relations in wordnet

- 1. Synonymy (e.g., *house, home*)
- 2. Hypernymy / Hyponymy (kind-of, e.g., *cat* ← → *animal*)
- **3.** Antonymy (e.g., *white and black*)
- 4. Meronymy / Holonymy (part of, e.g., *cat and tail*)
- 5. Gradation (e.g., *sleep* \rightarrow *doze* \rightarrow *wake up*)
- 6. Entailment (e.g., snoring \rightarrow sleeping)
- 7. Troponymy (manner of, e.g., *whispering and talking*)
- 1, 3 and 5 are lexical (*word to word*), rest are semantic (*synset to synset*).

'Paradigmatic Relations' and 'Substitutability'

- Words in paradigmatic relations can substitute each other in the sentential context
- E.g., 'The cat is drinking milk' → 'The animal is drinking milk'
- Substitutability is a foundational concept in linguistics and NLP

Foundations-5: Learning and Learning Objective

 Probability of getting the context words given the target should be maximized (skip gram)

 Probability of getting the target given context words should be maximized (CBOW)

Learning objective (skip gram)

$$J'(\theta) = \frac{1}{T} \prod_{t=1}^{T} \prod_{\substack{-m \le j \le m \\ j \ne 0}} p(w_{t+j} \mid w_t; \theta)$$
$$J(\theta) = -\frac{1}{T} \prod_{t=1}^{T} \prod_{\substack{-m \le j \le m \\ j \ne 0}} p(w_{t+j} \mid w_t; \theta)$$
$$Minimize \quad L = -\sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \log[p(w_{t+j} \mid w_t; \theta)]$$

Modelling P(context word|input word) (1/2) • We want, say, P('bark'|'dog')

- Take the weight vector FROM 'dog' neuron
 TO projection layer (call this u_{dog})
- Take the weight vector TO 'bark' neuron
 FROM projection layer (call this v_{bark})
- When initialized u_{dog} and v_{bark} give the initial estimates of word vectors of 'dog' and 'bark'
- The weights and therefore the word vectors get fixed by back propagation

Modelling P(context word|input word) (2/2)

- To model the probability, first compute dot product of u_{dog} and v_{bark}
- Exponentiate the dot product
- Take softmax over all dot products over the whole vocabulary

$$P('bark'|'dog') = \frac{\exp(u_{dog}^T v_{bark})}{\sum_{v_k \in Vocabulary}} \exp(u_{dog}^T v_k)$$

Exercise

- Why cannot you model P('bark'|'dog') as the ratio of counts of <bark, dog> and <dog> in the corpus?
- Why this way of modelling probability through dot product of weight vectors of input and output words, exponentiation and soft-maxing works?

Modelling $p(w_{t+j}|w_t)$

Input to Projection (shown for one neuron only)

- From each input neuron, a weight vector of dim d
- Input vector is of dim V, where
 V is the vocab size
- Input to projection we have a weight matrix W which is V X d
- Each row gives the weight vector of dim *d* REPRESENTING that word
- E.g., rows for 'dog', 'cat, 'lamp', 'table' etc.

Projection to output

- From the whole projection layer
 a weight vector of dim *d* to each
 neuron in each compartment,
 where the compartment
 represents a context word
- Each fat arrow is a *d X V* matrix

Linguistic foundation of word representation

"Linguistics is the eye": Harris Distributional Hypothesis

- Words with similar distributional properties have similar meanings. (Harris 1970)
- 1950s: Firth- "A word is known by the company its keeps"
- Model differences in meaning rather than the proper meaning itself

"Computation is the body": Skip gram- predict context from word

For CBOW:

Just reverse the Input-Ouput

Dog – Cat - Lamp

{bark, police, thief, vigilance, faithful, friend, animal, milk, carnivore)

{mew, comfort, mice, furry, guttural, purr, carnivore, milk}

the property of the second of the state of the second second

{candle, light, flash, stand, shade, Halogen}

 \sim

Test of representation

- Similarity
 - 'Dog' more similar to 'Cat' than 'Lamp', because
 - Input- vector('dog'), output- vectors of associated words
 - More similar to output from vector('cat') than from vector('lamp')

"Linguistics is the eye, Computation is the body"

The encode-decoder deep learning network is nothing but

the *implementation* of

Harris's Distributional Hypothesis

Distributed Representations of words

- Also known as word vectors, word embeddings, etc.
- Primarily, they are vectors in ndimensional space
- Try to model meaning of word

Harris Distributional Hypothesis

- Words with similar distributional properties have similar meanings. (Harris 1970)
- Harris does mentions that distributional approaches can model differences in meaning rather than the proper meaning itself