
CS772: Deep Learning for

Natural Language Processing

NLP Applications of Attention and
Transformer

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay

Week 14 of 4th April, 2022

Historical Perspective

History: RNN class of Deep Nets

• Backpropagation
– Williams, Ronald J.; Hinton, Geoffrey E.;

Rumelhart, David E. 1986. Learning

representations by back-propagating

errors. Nature

• RNN, LSTM (Hochreiter &

Schmidhuber, 1997), GRU (Cho et

al., 2014)

• Iterative and Sequential

https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://arxiv.org/abs/1412.3555

History: Success of RNN- Speech

• 2007- LSTM started to

revolutionize speech recognition

• Outperformed traditional models in

speech applications

• 2014- Baidu used CTC (connectionist

temporal classification)-trained RNNs to

break the Switchboard Hub5'00 speech

recognition dataset benchmark without

using any traditional speech processing

methods

History: Success of RNN- Connected

Handwriting

• 2009: a Connectionist Temporal

Classification (CTC)-trained LSTM

network

• First RNN to win pattern recognition

contests

• Won several competitions in

connected handwriting recognition

History: CNN and ImageNet

• CNN
– LeCun, B. Boser, J. S. Denker, D. Henderson,

R. E. Howard, W. Hubbard, L. D. Jackel. 1989.

Backpropagation Applied to Handwritten Zip

Code Recognition, Neural Computation.

• ImageNet Dataset- Million images from

the web; 1,000 different classes

• Spectacular results!

• Almost halving the error rates of the

best competing approaches1.

History: RNN in NLP leading to

Transformer Architecture

• Recurrent neural networks (RNNs) in NLP

(Mikolov et al., 2010; Sutskever, et al.

2014)

• Transformer (Vaswani et al., 2017)

– Self Attention + Pointwise fully connected layer

– Positional encoding

– Can capture long range dependencies

Limitations of FFNN, RNN and

CNN

• FFNN: feedforward NNs- cannot capture

sequential context

• RNN, LSTM, GRU- Sequential and iterative

nature; take time for information to propagate

(linear in the length of the sequence); cannot

exploit concurrent hardware (such as GPUs)

• CNN- fixed-sized contexts

Latest developments: Transformers,

GPT-3

• Generative Pre-trained Transformer 3

(GPT-3)

• Autoregressive language model

• Uses deep learning to produce human-

like text

• Third-generation language prediction

model in the GPT-n series (and the

successor to GPT-2)

• By OpenAI, a San Francisco-based

artificial intelligence research laboratory

GPT-3 cntd.

• GPT-3's full version has a capacity of

175 billion machine learning

parameters.

• Before the release of GPT-3, the

largest language model

was Microsoft's Turing NLG,

introduced in February 2020, with a

capacity of 17 billion parameters or

less than a tenth of GPT-3s.

GPT-3’s success

● Applied extensively in NLG situations-

Natural Language Generation

● Summarization

● Question Answering

● Machine Translation

Demo

• Plot and Scene Generation: Team-

Vishal, Prerak, Ashita, Naveen,

Narjis

• Machine Translation: Team-

Sourabh, Shivam, Aman, Dhiren,

Rohit, Vineet, Shyam, Akshay

Attention is a general and important concept in

Deep learning

Given a set of VALUES select a summary of the

values that is relevant to a QUERY

Each VALUE represented by a KEY the QUERY is

matched to the KEY (content similarity)

Select a summary with different focus on different values

 Weighted average

Associative memory read + selection

QUERY: decoder state

VALUE, KEY: encoder annotation vector

For MT

Benefits of Attention

• Significantly improves in NMT quality

• Performs better on long sentences

• Word-order is no longer a major issue for NMT

• Used in all NMT systems

• Attention provides some interpretability

• Attention!=Alignment

• There is more to attention
https://arxiv.org/pdf/1508.04025.pdf

A lot of interesting work with

attention

• Pointer Networks

• Pointer Generator Networks

• Modeling Coverage

• Learning word-alignments

https://arxiv.org/abs/1506.03134
https://arxiv.org/abs/1704.04368
https://arxiv.org/abs/1601.04811
https://www.aclweb.org/anthology/C16-1291/

Paper walk through: Vaswani et

al.

Introduction to Transformers

“Attention Is All You Need”

Akshay Batheja

Shivam Mhaskar

Guide : Prof. Pushpak Bhattacharyya

Outline

• Transformers:

– Problem Statement

– Motivation

– Contributions

– Model Architecture

– Datasets Used

– Results

– Summary and Conclusion

• Demo:

– Training a Transformer model using OpenNMT-py

– IITB Speech–To-Speech Machine Translation System

Problem Statement

• To perform the sequence-to-

sequence task of Machine

Translation using only attention

mechanism instead of recurrent and

convolutional layers.

Motivation

• Limitation of RNN (Recurrent Neural Network) based Encoder-

Decoder Architecture:

– RNN generates a sequence of hidden states ht, as a function of

previous hidden state ht-1 and the input at position t. So, to

process the input at tth step, the encoder or decoder has to wait

for t-1 steps.

– This sequential nature of RNN prevents it from parallelization.

Contributions

• Proposed a novel approach, Transformer, the first sequence

transduction model based entirely on attention, replacing

recurrent layers with multi-headed self attention.

• On both WMT 2014 English-to-German and WMT 2014 English-to-

French translation tasks, it achieved a new state of the art.

Model Architecture (1/4)

• Encoder:

– It is composed of 6 identical layers, each

layer has two sublayers.

– First is the multi-head self attention

mechanism and second is the position wise

fully connected FFNN.

– A residual connection is employed around

each of the two sub-layers, followed by layer

normalization.

– So the output of each sublayer is :

• LayerNorm(x + Sublayer(x))

– All sublayers produce outputs of dimension

dmodel = 512.

Model Architecture (2/4)

• Decoder:

– It is also composed of 6 identical layers.

– Each layer consists of 3 sub-layers , two of which

are same as that present in each encoder layer.

– There is a third sublayer which performs multi-head

attention over the output of the encoder stack.

– Similar to encoder, Residual connections are

employed around each of the sub-layers, followed

by layer normalization.

– Self attention sublayer is also modified to prevent

positions from attending to subsequent positions.

This is performed by masking the subsequent

positions during training.

– This ensures that the predictions for position i can

depend only previously generated outputs.

Positional Encodings (3/4)

● Since the model has no recurrence or convolution layers, it doesn’t

have any information about the positions of the inputs.

● We generate positional encodings which represent the positional

information of each word in the input sequence.

● These positional encoding vectors are of dimension dmodel (same as

embeddings).

● These positional encodings are added to each input embedding,

which helps the model determine the position of each embedding.

Positional Encodings (4/4)

Image Source: The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Self Attention (1/3)

● First we create 3 vectors

using the input embeddings

(x).

○ Query (q)

○ Key (k)

○ Value (v)

● We obtain these vectors by

matrix multiplication with the

weight matrix WQ, WK, WV

which are the parameters of

the self attention module.

Image Source: The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Self Attention (2/3)

● Now we need to score each input

position(word) against the current

position(word) which we are

processing.

● This score represents how much

focus to place on each word

while processing the current

word.

● These scores are computed by

taking the dot product of the

query(q) vector of current word

with the key(k) vector of each

input word.
Image Source: The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Self Attention (3/3)
● We scale the scores by diving the

scores by d_k and then we perform

the softmax operation on the scores.

● We weight the value(v) vectors by

multiplying the vectors with the

corresponding scores of that position.

● Then we compute the weighted sum

of the value(v) vectors which forms

the output of self attention layer.

Image Source: The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Multi-Head Attention (1/3)

● In Multi-Head

Attention we

have different

sets of WQ,

WK, WV

weight

matrices for

each attention

head.

Image Source: The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Multi-Head Attention (2/3)

● We perform the same

self-attention calculations

using these different

weight matrices to

produce h output vectors

Image Source: The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Multi Headed Attention (3/3)

Image Source: The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Attention Overview

● Self Attention

● Multi Headed AttentionImage Source: The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Visualizing Multi-headed Attention

Image Source: The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Cross Attention

● The cross attention mechanism

works in the same way as self

attention mechanism.

● The only difference is that,
○ The Key and Value vector comes from the

outputs of the encoder

○ The Query vector comes from the output of

the decoder’s self attention layer.

● So the attention scores represent

how much focus to place on the input

Final Linear and Softmax Layer

● We

generate the

output word

from the

decoder

output

vector using

a linear

layer and

Image Source: The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Transformers Decoding

Image Source: The Illustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Dataset

Corpus # of sentence pairs

WMT’14 English-to-German 4.5M

WMT’14 English-to-French 36M

Results

Summary

• Introduced Transformers, the first

sequence transduction model based

entirely on attention, replacing

recurrent layers in enc-dec

architecture with multi-head self

attention.

Conclusion

• For the Task of MT, Transformer can

be trained significantly faster than

architectures based on recurrent or

convolutional layers.

• Transformer model achieved state-

of-the-art performance on both

WMT’14 English-German and

English-French MT task

Important Intuitive points about

Transformer (1/3)
● Properties of current and context words determine the next action.

Eg: generating the next word.

● Properties: lexical, syntactic, semantic, pragmatic

● Attention varies from task to task, like sentiment classification,

translation, inference etc. For different tasks the nature of attention

among the words in a sentence varies.

E.g: i love mumbai because of its dynamic nature and

opportunities.

○ Here, sentiment analyzer would focus on the word “love”

○ But a QA model would focus on phrase “dynamic nature and

opportunities” when asked to answer the question “why do I

love mumbai?”

● Attention is of three kinds: self, multihead, cross.

● Self attention: attention of one part of the sentence(input/output) to

another part of the same sentence.

● Cross attention: attention of one part of the output to parts of the

input.

● Multi head attention: Multiple heads are introduced to capture

various context and word properties (lexical, syntactic, semantic,

pragmatic).

Intuitive points continued (2/3)

● Positional encoding:

○ Motivation (example of pos tagging): If we know that a word is being

preceded by an adjective then most likely the word is a noun.

○ If position information is used, then context is automatically captured.

○ Eg: Instead of using “preceded by” or “followed by” relation, we can

say the fifth word is a noun because the fourth word is an adjective.

○ Positional information liberates the processing from sequentiality,

enabling parallelism.

○ For a task like POS, influence from nearby words is strongest,

tapering of to the left and to the right (a bell-shaped curve), peaking at

the current word.

○ sin and cos functions have this property which is why positional

encoding uses these functions.

Intuitive points continued (3/3)

References

• Ashish Vaswani, Noam Shazeer, Niki Parmar,Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. “Attention Is All

You Need”. NIPS 2017

Model Architecture (contd)

• Positional encoding:
– Since the model contains no recurrence and

convolution, it is injected with some

information about the relative or absolute

position of the tokens in the sequence.

Anaphora Resolution

• An example where multi-head attention is involved in Anaphora

resolution.

Literature Survey

• ByteNet (Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van

den Oord, Alex Graves, and Koray Kavukcuoglu. Neural machine

translation in linear time.)

• ConvS2S (Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,

and Yann N. Dauphin. Convolutional sequence to sequence learning)

• Both these models use CNN to compute hidden representation for all input

and output positions parallely.

• JianPeng Cheng-2016, Ankur Parikh-2016, Romain Paulus-2017, Zhouhan

Lin-2017:

– Used Self-Attention in variety of tasks like reading comprehension,

abstractive summarization, textual entailment and learning task-

dependent sentence representations respectively.

NLG with GPT*

Automatic Film Plot & Script Generation

Prerak Gandhi

Vishal Pramanik

Guide: Prof. Pushpak Bhattacharyya

IIT Bombay

49

Architecture

Transformer

• The transformer model is made up of an encoder and decoder.

• The encoding component is a stack of 6 encoders .

• The decoding component is a stack of decoders of the same

number.

https://jalammar.github.io/illustrated-gpt2/

Encoder and Decoder of

Transformer
• The encoder’s inputs first flow through a self-attention layer – a

layer that helps the encoder look at other words in the input

sentence as it encodes a specific word.

• The outputs of the self-attention layer are fed to a feed-forward

neural network.

• The decoder has both those layers, but between them is an

attention layer that helps the decoder focus on relevant parts of the

input sentence

The encoder decoder block of the Transformer

https://jalammar.github.io/illustrated-gpt2/

GPT 2 - 1/2

• The OpenAI GPT-2 exhibited impressive ability of writing coherent

and passionate texts

• The GPT-2’s architecture is a decoder-only transformer. The GPT-

2 was, however, a very large, transformer-based language model

trained on a massive dataset.

• Unlike the original transformer decoder, GPT-2 does not have

encoder-decoder attention.

GPT 2 as a Language Model

• A language model is basically a machine learning model that is

able to look at part of a sentence and predict the next word.

https://jalammar.github.io/illustrated-gpt2/

GPT2 - 1/2
• GPT as an AutoRegressive Model- The way GPT actually

work is that after each token is produced, that token is added to

the sequence of inputs. And that new sequence becomes the

input to the model in its next step. This is an idea called “auto-

regression”.

GPT2 - 2/2

• Masked self-attention - In the self-attention layer of GPT-

2, it masks future tokens by interfering in the self-attention

calculation, blocking information from tokens that are to

the right of the position being calculated.

https://jalammar.github.io/illustrated-gpt2/

https://jalammar.github.io/illustrated-gpt2/

GPT-3

• The techniques behind GPT-3 are almost same as

GPT-2.

• The main difference is that the GPT-3 model uses

alternating dense and banded sparse attention

pattern.

• Also, GPT-3 has more number of layers and heads

to train the language model.

Sparse Attention

Sparsity in the attention calculation can lead to significantly faster

computation.

Child, Rewon & Gray, Scott & Radford, Alec & Sutskever, Ilya. (2019). Generating Long Sequences with Sparse Transformers, arXiv preprint arXiv:1904.10509v1

https://arxiv.org/abs/1904.10509v1

Few-shot Learning - 1/2

Few-shot learning is the

problem of making

predictions based on a

limited number of samples.

Few-shot Learning - 2/2

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A. & others (2020). Language models are few-shot

learners. arXiv preprint arXiv:2005.14165, .

GPT-3 Models

There are 4 pre-trained models

available in GPT-3.

1. Ada (2.7B)

2. Babbage (6.7B)

3. Curie (13B)

4. Davinci (175B)

GPT-3 Dataset Preparation - 1/2

• The combined tokens in an input-

output pair should not exceed 2048.

(1 token ~ ¾ words)

• It is recommended to add a

separator tag at the end of each

datapoint for both input and output.

Eg, Input: “Start…end\n\n###”,

Output: “Start…end\n\n<eos>”

GPT-3 Dataset Preparation - 2/2

● The data will be converted to jsonl format and stored in the same directory

as your initial file.

GPT-3 Fine-tuning

https://beta.openai.com/docs/guides/fin

e-tuning

https://beta.openai.com/docs/guides/fine-tuning

Actual work on Automatic Film Plot &

Script Generation

Problem Statement

Create a Writer’s Assistant tool that can

help the writer to generate multiple new

ideas for a plot and the next scene of a

screenplay.

BACKGROUND: TERMINOLOGY &

DEFINITIONS

• A script is made up of 3 Acts: the set-up, conflict,

and resolution.

• A standard movie script consists of 120 pages and

the average screen time is 2hrs.

• Each page will be approximately 1 min of the screen

time.

Hierarchical Structure of a Movie Script

ELEMENTS OF A SCENE - 1/2

• Scene heading / sluglines - Written in capital letters

and this part tells about the place and time when the

scene is taking place.Eg: INT.-THE PALACE-DAY

TIME

• Action lines-This comes just after the Scene Heading.

The action lines tells what is happening in the scene

• Character names-The characters those are present in

the scene.

ELEMENTS OF A SCENE - 2/2

• Dialogues of the character

• Extensions-occur along with the character name that

provides extra information about the character or the

dialogue of the character.

Eg:V.O(Voice Over),O.S(Off Screen) etc.

• Transitions-These are keywords used to change from

one scene to another.

Eg:CUT TO:, INTERCHANGE TO:, FADE IN: etc.

First Scene Generation

• We collected movie scripts from IMSDb and storylines

from IMDb.

• We separated the first scene by finding scene headings

and keeping an upper limit of 500 words.

• Input: Storyline (~20-40 words)

• Output: Scene (~400 words)

Annotation of the scripts

We used the following the tags to help

the model understand the structure of

the script:

• SlugLines:<bsl> … <esl>

• Action Lines: <bal> … <eal>

• Character Name: <bcn> … <ecn>

• Dialogue: <bd> … <ed>

Plot Generation

• Input: A short prompt (< 150 words).

• Output: A movie plot (> 500 words).

• The dataset for input was collected

from IMDb.

• The dataset for output was collected

from Wikipedia.

Wikipedia Movie Plots
Plot example: Die Hard (1988) - 590 words

IMDb Prompts

Plot Annotation

• ACT ONE- This marks the paragraph in the plot

where the characters are introduced

• ACT TWO A- This part depicts the phase where

the protagonist has a love story and the

premise promised in the trailer is usually shown.

The audience love this part.

• ACT TWO B- In this part the protagonist face

challenges and hurdles in life and reaches rock

bottom.

• ACT THREE- The protagonist overcomes the

hurdles and the story reaches a conclusion.

Demo

https://www.cfilt.iitb.ac.in/generator/

References

1. https://huggingface.co/blog/how-to-generate

2. https://jalammar.github.io/illustrated-gpt2/

3. https://harishgarg.com/writing/how-to-fine-tune-gpt-3-api/

4. https://pakodas.substack.com/p/finetuning-gpt3-with-openai?s=r

5. https://beta.openai.com/docs/guides/fine-tuning

https://huggingface.co/blog/how-to-generate
https://jalammar.github.io/illustrated-gpt2/
https://harishgarg.com/writing/how-to-fine-tune-gpt-3-api/
https://pakodas.substack.com/p/finetuning-gpt3-with-openai?s=r

NMT with

Transformers using

OpenNMT-py

Installing Dependencies

Download Files

!pip3 install gdown -U

Neural Machine Translation Library

!pip3 install OpenNMT-py

!git clone https://github.com/moses-smt/mosesdecoder.git

!pip3 install indic_nlp_library

!git clone https://github.com/anoopkunchukuttan/indic_nlp_library.git

!pip3 install -r indic_nlp_library/requirements.txt

!git clone https://github.com/anoopkunchukuttan/indic_nlp_resources.git

!pip3 install https://github.com/rsennrich/subword-nmt/archive/master.zip

!pip3 install sacrebleu

!pip3 install ctranslate2

!pip3 install mosestokenizer

Set Environment Variables

%%bash

export

PYTHONPATH=$PYTHONPATH:/cont

ent/indic_nlp_library

export

INDIC_RESOURCES_PATH=/content/i

ndic_nlp_resources

echo $INDIC_RESOURCES_PATH

echo $PYTHONPATH

Download Dataset

!wget

https://storage.googleapis.com/samana

ntar-public/V0.2/data/en2indic/en-

mr.zip

!unzip en-mr.zip

sourceValidLen = 1000

targetValidLen = 1000

sourceTestLen = 1000

Train-Test-Validation Splits(1/4)

!mkdir data

sourceData = open("en-mr/train.en",

'r').readlines()

targetData = open("en-mr/train.mr",

'r').readlines()

sourceValid =

sourceData[0:sourceValidLen]

targetValid =

targetData[0:targetValidLen]

Train-Test-Validation Splits(2/4)

sourceTrain =

sourceData[sourceValidLen +

sourceTestLen:sourceValidLen +

sourceTestLen + sourceTrainLen]

targetTrain = targetData[targetValidLen

+ targetTestLen:targetValidLen +

targetTestLen + targetTrainLen]

sourceTestFile = open("data/test.en",

"w+")

Train-Test-Validation Splits(3/4)

sourceValidFile = open("data/valid.en",

"w+")

for line in sourceValid:

sourceValidFile.write(line.strip("\n") +

"\n")

sourceValidFile.close()

targetValidFile = open("data/valid.mr",

"w+")

Train-Test-Validation Splits(4/4)

sourceTrainFile = open("data/train.en",

"w+")

for line in sourceTrain:

sourceTrainFile.write(line.strip("\n") +

"\n")

sourceTrainFile.close()

targetTrainFile = open("data/train.mr",

"w+")

Lowercase English Text

!/content/mosesdecoder/scripts/tokeniz

er/lowercase.perl < data/train.en >

data/train-low.en

!/content/mosesdecoder/scripts/tokeniz

er/lowercase.perl < data/test.en >

data/test-low.en

!/content/mosesdecoder/scripts/tokeniz

er/lowercase.perl < data/valid.en >

Tokenize English Text

!/content/mosesdecoder/scripts/tokeniz

er/tokenizer.perl < data/train-low.en >

data/train-tok.en

!/content/mosesdecoder/scripts/tokeniz

er/tokenizer.perl < data/test-low.en >

data/test-tok.en

!/content/mosesdecoder/scripts/tokeniz

er/tokenizer.perl < data/valid-low.en >

Normalize Marathi Text

!python3

indic_nlp_library/indicnlp/normalize/indi

c_normalize.py data/train.mr data/train-

norm.mr mr

!python3

indic_nlp_library/indicnlp/normalize/indi

c_normalize.py data/valid.mr

data/valid-norm.mr mr

Tokenize Marathi Text

!python3

indic_nlp_library/indicnlp/tokenize/indic

_tokenize.py data/train-norm.mr

data/train-tok.mr mr

!python3

indic_nlp_library/indicnlp/tokenize/indic

_tokenize.py data/valid-norm.mr

data/valid-tok.mr mr

Byte Pair Encoding

Subwordization(1/2)

!mkdir codes

!mkdir data/bpe

!subword-nmt learn-bpe -s 8000 --num-

workers 40 < data/train-tok.en >

codes/codes.en

!subword-nmt apply-bpe --num-workers

40 -c codes/codes.en < data/train-

tok.en > data/bpe/train-bpe.en

Byte Pair Encoding

Subwordization(2/2)

!subword-nmt learn-bpe --num-workers

40 -s 8000 < data/train-tok.mr >

codes/codes.mr

!subword-nmt apply-bpe --num-workers

40 -c codes/codes.mr < data/train-

tok.mr > data/bpe/train-bpe.mr

!subword-nmt apply-bpe --num-workers

40 -c codes/codes.mr < data/test-

tok.mr > data/bpe/test-bpe.mr

Create Vocabulary (1/2)

!mkdir data/pre

vocab = """

save_data: data/pre

src_vocab: data/pre/vocab.en

tgt_vocab: data/pre/vocab.mr

overwrite: False

data:

corpus_1:

path_src: data/bpe/train-bpe.en

Create Vocabulary (2/2)

createVocabYaml =

open("vocab.yaml", 'w+')

createVocabYaml.write(vocab)

createVocabYaml.close()

!onmt_build_vocab -config vocab.yaml

-n_sample -1

Train NMT (1/9)

!mkdir checkpoints

!mkdir tensorboard

train = """

save_data: data/pre

src_vocab: data/pre/vocab.mr

tgt_vocab: data/pre/vocab.en

overwrite: False

src_seq_length: 200

tgt_seq_length: 200

Train NMT (2/9)

data:

corpus_1:

path_src: data/bpe/train-bpe.en

path_tgt: data/bpe/train-bpe.mr

transforms: [filtertoolong]

valid:

path_src: data/bpe/valid-bpe.en

path_tgt: data/bpe/valid-bpe.mr

transforms: [filtertoolong]

Train NMT (3/9)

Training

world_size: 1

gpu_ranks: [0]

master_port: 5001

General opts

log_file: checkpoints/log.txt

save_model: checkpoints/model

Train NMT (4/9)

tensorboard_log_dir: "tensorboard"

tensorboard: true

keep_checkpoint: 20

save_checkpoint_steps: 10000

average_decay: 0.0005

seed: 1234

report_every: 1

train_steps: 300000

valid_steps: 10000

Train NMT (5/9)

Batching

queue_size: 10000

bucket_size: 32768

pool_factor: 8192

batch_type: "tokens"

batch_size: 4096

valid_batch_size: 16

batch_size_multiple: 1

max_generator_batches: 0

Train NMT (6/9)

Optimization

model_dtype: "fp16"

optim: "adam"

learning_rate: 2

warmup_steps: 8000

decay_method: "noam"

adam_beta1: 0.9

adam_beta2: 0.998

max_grad_norm: 0

label_smoothing: 0.1

param_init: 0.0

param_init_glorot: "true"

normalization: "tokens"

Train NMT (7/9)

Model

encoder_type: transformer

decoder_type: transformer

enc_layers: 3

dec_layers: 3

heads: 4

rnn_size: 256

dec_rnn_size: 256

Train NMT (8/9)

word_vec_size: 256

transformer_ff: 1024

dropout_steps: [0]

dropout: [0.1]

attention_dropout: [0.1]

share_decoder_embeddings: "true"

position_encoding: "true"

"""

trainYaml = open("train.yaml", 'w+')

Train NMT (9/9)

! CUDA_VISIBLE_DEVICES=0

onmt_train -config train.yaml

Inference: Download Test Set

url =

'https://drive.google.com/drive/folders/1

hy80UglVd7dUA_osGbl50BF4NWbp2

msd?usp=sharing'

gdown.download_folder(url,

quiet=True)

url =

'https://drive.google.com/drive/folders/1

v6B21vqxkvq86bAwQlzFFCDXpVklp7Z

Inference: Prepare Data

!mkdir test

!/content/mosesdecoder/scripts/tokeniz

er/lowercase.perl < covid-19-

testset/test.en > covid-19-testset/test-

low.en

!/content/mosesdecoder/scripts/tokeniz

er/tokenizer.perl < covid-19-testset/test-

low.en > covid-19-testset/test-tok.en

Inference: Translate

! CUDA_VISIBLE_DEVICES=0 onmt_translate \

-gpu 0 \

-batch_size 4096 -batch_type tokens \

-beam_size 5 \

-model checkpoints/model.pt \

-src covid-19-testset/test-bpe.en \

-output test/test.mr \

-replace_unk

! sed -r -i 's/(@@)|(@@ ?$)//g' test/test.mr

! sed -r -i 's/ &apos;//g' test/test.mr

!python3 indic_nlp_library/indicnlp/tokenize/indic_detokenize.py

test/test.mr test/test-detok.mr mr

Compute BLEU Score

import sacrebleu

hypothesis = open("test/test-detok.mr", 'r').readlines()

reference = open("covid-19-testset/test.mr", 'r').readlines()

hypothesisSentences, referenceSentences = [], []

for i in range(len(hypothesis)):

hypothesisSentence = hypothesis[i].strip("\n")

referenceSentence = reference[i].strip("\n")

hypothesisSentences.append(hypothesisSentence)

referenceSentences.append(referenceSentence)

bleu = sacrebleu.corpus_bleu(hypothesisSentences,

[referenceSentences])

print(bleu.score)

Deploy Model

import ctranslate2

model = "checkpoints/model.pt"

converter =

ctranslate2.converters.OpenNMTPyCo

nverter(model)

!mkdir model_deploy

output = "model_deploy"

converter.convert(output,

force=True,

Inference (1/4)

from mosestokenizer import

MosesSentenceSplitter,

MosesTokenizer

from indicnlp.tokenize import

sentence_tokenize, indic_tokenize

from indicnlp.normalize.indic_normalize

import IndicNormalizerFactory

import codecs

Inference (2/4)

Tokenize

englishTokenizer =

MosesTokenizer('en')

BPE

englishBpeCodes =

codecs.open("codes/codes.en",

encoding='utf-8')

englishBpeEncoder =

BPE(englishBpeCodes)

Translator

Inference (3/4)

Lowercase

sourceSentence =

sourceSentence.lower()

Tokenize

sourceSentence = '

'.join(englishTokenizer(sourceSentence

))

Inference (4/4)

Translate

targetSentence =

translator.translate_batch([sourceSente

nce], beam_size=5,

max_batch_size=16)

Remove BPE

targetSentence = ('

'.join(targetSentence[0].hypotheses[0])

+ " ").replace("@@ ", "")

Thank You

