CS772: Deep Learning for
Natural Language Processing

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay
Week 14 of 4t April, 2022

Historical Perspective

History: RNN class of Deep Nets

- Backpropagation
— Williams, Ronald J.; Hinton, Geoffrey E.;
Rumelhart, David E. 1986. Learning

representations by back-propagating
errors. Nature

- RNN, LSTM (Hochreiter &
Schmidhuber, 1997), GRU (Cho et
al., 2014)

. lterative and Sequential

https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://arxiv.org/abs/1412.3555

History: Success of RNN- Speech

. 2007- LSTM started to

revolutionize speech recognition

. Outperformed traditional models In
speech applications

. 2014- Baidu used CTC (connectionist
temporal classification)-trained RNNs to
break the Switchboard Hub5'00 speech
recognition dataset benchmark without
using any traditional speech processing
methods

History: Success of RNN- Connected
Handwriting

. 2009: a Connectionist Temporal
Classification (CTC)-trained LSTM
network

- First RNN to win pattern recognition
contests

.- Won several competitions In
connected handwriting recognition

History: CNN and ImageNet
- CNN

— LeCun, B. Boser, J. S. Denker, D. Henderson,
R. E. Howard, W. Hubbard, L. D. Jackel. 1989.
Backpropagation Applied to Handwritten Zip
Code Recognition, Neural Computation.

- ImageNet Dataset- Million images from
the web; 1,000 different classes

. Spectacular results!

. Almost halving the error rates of the
best competing approachesl.

History: RNN In NLP leading to
Transformer Architecture

- Recurrent neural networks (RNNs) in NLP

(Mikolov et al., 2010; Sutskever, et al.
2014)

- Transformer (Vaswani et al., 2017)
— Self Attention + Pointwise fully connected layer

— Positional encoding
— Can capture long range dependencies

Limitations of FFNN, RNN and
CNN

- FFNN: feedforward NNs- cannot capture

seguential context

- RNN, LSTM, GRU- Sequential and iterative

nature; take time for information to propagate
(linear In the length of the sequence); cannot
exploit concurrent hardware (such as GPUSs)

- CNN- fixed-sized contexts

Latest developments: Transformers,
GPT-3
- Generative Pre-trained Transformer 3
(GPT-3)
- Autoregressive language model

- Uses deep learning to produce human-
like text

- Third-generation language prediction
model in the GPT-n series (and the
successor to GPT-2)

- By OpenAl, a San Francisco-based
artificial intelligence research laboratory

GPT-3 cntd.

. GPT-3's full version has a capacity of
175 billion machine learning
parameters.

- Before the release of GPT-3, the
largest language model

was Microsoft's Turing NLG,
iIntroduced in February 2020, with a
capacity of 17 billion parameters or
less than a tenth of GPT-3s.

GPT-3’s success

. Applied extensively in NLG situations-
Natural Language Generation

. Summarization
. Question Answering

. Machine Translation

Demo

. Plot and Scene Generation: Team-

Vishal, Prerak, Ashita, Naveen,
Narjis

. Machine Translation: Team-

Sourabh, Shivam, Aman, Dhiren,
Rohit, Vineet, Shyam, Akshay

Attention Is a general and important concept Iin
Deep learning

Given a set of VALUES =» select a summary of the
values that is relevant to a QUERY

Each VALUE represented by a KEY = the QUERY is
matched to the KEY (content similarity)

Select a summary with different focus on different values
= Weighted average

Associative memory read + selection

For MT

QUERY: decoder state
VALUE, KEY: encoder annotation vector

Benefits of Attention e W
e E':'"h -”L't'

Sie
verstehien
michi

WWEILETI
Europa
thearetisch
Zwar
exrsbert

« Significantly improves in NMT quality e
* Performs better on long sentences o
* Word-order is no longer a major issue for NMT
« Used in all NMT systems

 Attention provides some interpretability
 Attention!=Alignment

 There Is more to attention

https://arxiv.org/pdf/1508.04025.pdf

A lot of interesting work with
attention

. Pointer Networks

. Pointer Generator Networks

- Modeling Coverage

. Learning word-alignments

https://arxiv.org/abs/1506.03134
https://arxiv.org/abs/1704.04368
https://arxiv.org/abs/1601.04811
https://www.aclweb.org/anthology/C16-1291/

Paper walk through: Vaswani et
al.

Introduction to Transformers

“Attention Is All You Need”

Akshay Batheja
Shivam Mhaskar

Guide : Prof. Pushpak Bhattacharyya

Outline

e Transformers:
— Problem Statement
— Motivation
— Contributions
— Model Architecture
— Datasets Used
— Results
— Summary and Conclusion
 Demo:
— Training a Transformer model using OpenNMT-py
— |ITB Speech—To-Speech Machine Translation System

Problem Statement

. To perform the seqguence-to-
sequence task of Machine
Translation using only attention
mechanism Instead of recurrent and
convolutional layers.

Motivation

Limitation of RNN (Recurrent Neural Network) based Encoder-
Decoder Architecture:

— RNN generates a sequence of hidden states h,, as a function of
previous hidden state h, ; and the input at position t. So, to
process the input at t'" step, the encoder or decoder has to wait

for t-1 steps.
— This sequential nature of RNN prevents it from parallelization.

Contributions

* Proposed a novel approach, Transformer, the first sequence
transduction model based entirely on attention, replacing
recurrent layers with multi-headed self attention.

* On both WMT 2014 English-to-German and WMT 2014 English-to-
French translation tasks, it achieved a new state of the art.

Model Architecture (1/4)

Encoder:

It is composed of 6 identical layers, each
layer has two sublayers.
First is the multi-head self attention
mechanism and second is the position wise
fully connected FFNN.
A residual connection is employed around
each of the two sub-layers, followed by layer
normalization.
So the output of each sublayer is :

« LayerNorm(x + Sublayer(x))
All sublayers produce outputs of dimension
d =512.

model —

Output
Probabilities

Add & Norm

J
[[Add & Norm }

Feed
Forward
Add & Norm

Nx

Add & Norm Masked
Multi-Head Multi-Head
Attention Attention

t t

| J/ | /

Positional @_@ @ Positional
Encoding Encoding
Input Output
Embedding Embedding

! !

Inputs Outputs
(shifted right)

Model Architecture (2/4)

« Decoder: | Qs
— ltis also composed of 6 identical layers.
— Each layer consists of 3 sub-layers , two of which
are same as that present in each encoder layer.

— There is a third sublayer which performs multi-head —— _
attention over the output of the encoder stack. 1 e] ||,
— Similar to encoder, Residual connections are >
employed around each of the sub-layers, followed e
by layer normalization. Wiy~ e (_
— Self attention sublayer is also modified to prevent e ==
positions from attending to subsequent positions. I g
This is performed by masking the subsequent et iohy

positions during training.
— This ensures that the predictions for position i can
depend only previously generated outputs.

Positional Encodings (3/4)

Since the model has no recurrence or convolution layers, it doesn’t
have any information about the positions of the inputs.

We generate positional encodings which represent the positional
Information of each word in the input sequence.

These positional encoding vectors are of dimension d, 4. (Same as
embeddings).

These positional encodings are added to each input embedding,
which helps the model determine the position of each embedding.

PE(pos,2z’) = Sin(p08/100002i/dmodel)
PE(pos,2i+1) = COS(pag/lOO()()Qi/dmodel)

Positional Encodings (4/4)

POSITlc}NAL 1 1 0.84 DXL) 1 0.91 Xy
ENCODING

+ + +

EMBEDDINGS X1 X2 X3

INPUT Je SUis étudiant

Image Source: The lllustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Self Attention (1/3)

e First we create 3 vectors

Input Thinking Machines
using the input embeddings eding T —
(X)-
O Quel’y (q) Queries q: [CHNN wa
o Key (k)
o Value (v) . — —

e We obtain these vectors by
matrix multiplication with the
weight matrix WQ, WK, WV Values v v wv
which are the parameters of
the self attention module.

Image Source: The lllustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Self Attention (2/3)

e Now we need to score each input
position(word) against the current
position(word) which we are
processing.

e This score represents how much
focus to place on each word
while processing the current
word.

e These scores are computed by
taking the dot product of the
query(q) vector of current word
with the key(k) vector of each
iInput word.

Image Source: The lllustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Input

Embedding
Queries
Keys
Values

Score

Thinking
x [T
q [T

[T 1]
vi [
qi e ki=

Machines

x, [

Self Attention (3/3)

e We scale the scores by diving the
scores by d_k and then we perform
the softmax operation on the scores.

e We weight the value(v) vectors by
multiplying the vectors with the
corresponding scores of that position.

e Then we compute the weighted sum
of the value(v) vectors which forms
the output of self attention layer.

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (/dy)

Softmax

Softmax
X
Value

Sum

Image Source: The lllustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Thinking

x+ [T

Machines

V2

Multi-Head Attention (1/3)

 In Multi-Head e

Attention we & e
have different

sets of WQ, N N
WK, WV - -
weight

Image Sourcem @htam Qar§>§er I‘wQ/LIammar.github.io/iIIustrated—transformer/
each attention

head .

Multi-Head Attention (2/3)

e We perform the same
self-attention calculations

Thinking
Machines
using these different
weight matrices to
produce h output vectors

Image Source: The lllustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Calculating attention separately in
eight different attention heads

ATTENTION
HEAD #7

Multi Headed Attention (3/3)

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the © matrix that captures information
from all the attention heads. We can send this forward to the FFNN

Image Source: The lllustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Attention Overview
o Self Atnmtimm

Attention(Q, K, V') = softmax(
Vi

MatMul

1%

Q T

softmax B}ﬂx@ :
e =) B

- B

Scaled Dot-Product

MultiHead(Q, K, V') = Concat(heady, ..., heady,)W e 3

where head; = Attention(QW<, KWK, VW)

=g Uit Headed-Attention L

Visualizing Multi-headed Attention

Layer:| 5 3| Attention:| Input - Input 5/

The_ The_
animal_ animal_
didn_ didn_
t_ t_
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ it_
was_ was_
too_ too_

tire
d_ d_

Image Source: The lllustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Cross Attention

e | he cross attention mechanism
works in the same way as self
attention mechanism.

o The only difference Is that,
o The Key and Value vector comes from the
outputs of the encoder
o The Query vector comes from the output of
the decoder’s self attention layer.

o SO0 the attention scores represent

I‘AI- B SAS B OB I‘ ‘AAI ey N LA AIAAA yV 7V S LI‘A H B B B IL

Final Linear and Softmax Layer

Which word in our vocabulary

e We e
generate the ™"
output word
from the
decoder
output Decoder stack output

mage wce\ﬂ@@t@pns@gm@ammar.gimub.io/iuustrated-transformeﬂ

a linear

IG\ 1NV ’JV‘\A

logits

am
(TTTT I TTITTIT I Tl [
12345 a2 . vocab _size
’
(Softmax)
*
LLILLL Ity bl
12345 a2 . vocab _size
’
(Linear)
*
LLLT]

Transformers Decoqu

Decoding time step: 1@3 456 OUTPUT
(R
T T L Kencdec Vencdec (Linear + Softmax)
ENCODERS DECODERS]
~ /),
EMBEDDING t t t 4
WITH TIME (rrri el et [(TTT]
SIGNAL
EMBEDDINGS LT LLTT] CITT11 [TI1]
INPUT Je suis étudiant PREVIOUS

OUTPUTS

Image Source: The lllustrated Transformer, https://jalammar.github.io/illustrated-transformer/

Dataset

Corpus # of sentence pairs
WMT'14 English-to-German 4.5M
WMT’14 English-to-French 36M

Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

N BLEU Training Cost (FLOPs)
i EN-DE EN-FR EN-DE EN-FR

ByteNet [15] 23.75

Deep-Att + PosUnk [32] 39.2 1.0 - 1020
GNMT + RL [31] 24.6 39.92 2.3-101° 1.4-102%
ConvS2S [8] 25.16 40.46 9.6-10% 1.5-102%
MOoE [26] 26.03 40.56 2.0-10"” 1.2-10%
Deep-Att + PosUnk Ensemble [32] 40.4 8.0-10%
GNMT + RL Ensemble [31] 2630 41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [8] 2636 41.29 10 1210
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.0 2.3-10%°

Summary

- Introduced Transformers, the first
seguence transduction model based
entirely on attention, replacing
recurrent layers in enc-dec
architecture with multi-head self
attention.

Conclusion

. For the Task of MT, Transformer can
be trained significantly faster than
architectures based on recurrent or
convolutional layers.

. Transformer model achieved state-
of-the-art performance on both
WMT'14 English-German and
English-French MT task

Important Intuitive points about
Transformer (1/3)

e Properties of current and context words determine the next action.
Eg: generating the next word.
e Properties: lexical, syntactic, semantic, pragmatic
e Attention varies from task to task, like sentiment classification,
translation, inference etc. For different tasks the nature of attention
among the words in a sentence varies.
E.g: i love mumbai because of its dynamic nature and
opportunities.
o Here, sentiment analyzer would focus on the word “love”
o But a QA model would focus on phrase “dynamic nature and
opportunities” when asked to answer the question “why do |
love mumbai?”

Intuitive points continued (2/3)

Attention is of three kinds: self, multihead, cross.

Self attention: attention of one part of the sentence(input/output) to
another part of the same sentence.

Cross attention: attention of one part of the output to parts of the
iInput.

Multi head attention: Multiple heads are introduced to capture

various context and word properties (lexical, syntactic, semantic,
pragmatic).

Intuitive points continued (3/3)

e Positional encoding:

©)

Motivation (example of pos tagging): If we know that a word is being
preceded by an adjective then most likely the word is a noun.

If position information is used, then context is automatically captured.
Eg: Instead of using “preceded by” or “followed by” relation, we can
say the fifth word is a noun because the fourth word is an adjective.
Positional information liberates the processing from sequentiality,
enabling parallelism.

For a task like POS, influence from nearby words is strongest,
tapering of to the left and to the right (a bell-shaped curve), peaking at
the current word.

sin and cos functions have this property which is why positional
encoding uses these functions.

References

 Ashish Vaswani, Noam Shazeer, Niki Parmar,Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, lllia Polosukhin. “Attention Is All
You Need”. NIPS 2017

Model Architecture (contd)

- Positional encoding:
— Since the model contains no recurrence and
convolution, it is injected with some

iInformation about the relative or absolute
positinn nf the tnkenc In the ceniience,

PE(pos,2i) = sin(pos/ 100002i/dmode1)
PE(pos,2i41) = COS(pos/l()()O()Q’i/dmodel)

Anaphora Resolution

lved in Anaphora

IoNn IS INVO

An example where multi-head attent

resolution.

<ped> <ped> <ped>
DO e — 1<S03> Awom_v.
. —

uojuido ~ - uouido uojuido

Aw - Aw Aw

ul m W ul ul

Buissiw Buissiw Buissiw

ale ale ale

am am am

jeym- jeym jeym

sl \\ i sl

st~ sy siuy

isnf isnl snf

aq aq aq

pinoys pInoys pinoys
uoneoydde uc uc d

U s si

ing- “eeqnq inq

Joapad apad 1apad

aq aq aq

JETETT JEVET] 19A3U

lim 1m m

meT me me

syl ayyl syl

<peds>
<S03>

uoluido
Aw
ul

Buissiw
ale

am
1eym

S|

si
jsnl

8q
pinoys
uoneoydde
s

inq

Japad
8q
JETET

Literature Survey

ByteNet (Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van
den Oord, Alex Graves, and Koray Kavukcuoglu. Neural machine
translation in linear time.)
ConvS2S (Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,
and Yann N. Dauphin. Convolutional sequence to sequence learning)
Both these models use CNN to compute hidden representation for all input
and output positions parallely.
JianPeng Cheng-2016, Ankur Parikh-2016, Romain Paulus-2017, Zhouhan
Lin-2017:

— Used Self-Attention in variety of tasks like reading comprehension,

abstractive summarization, textual entailment and learning task-
dependent sentence representations respectively.

NLG with GPT*

Automatic Film Plot & Script Generation

Prerak Gandhi
Vishal Pramanik
Guide: Prof. Pushpak Bhattacharyya
IIT Bombay

49

Architecture

Transformer

The transformer model is made up of an encoder and decoder.
The encoding component is a stack of 6 encoders .

The decoding component is a stack of decoders of the same
number.

:%;% THE TRANSFORMER
S

[I am a Student] OUTPUT

f i w
ENCODER STACK DECODER STACK

(ENCODER (DECODER)

4 § :

(ENCODER (DECODER)

B T :

(ENCODER : (DECODER)

- L) 3 4 .

(ENCODER : (DECODER)

: - : 4 :

: (ENCODER (DECODER)

* 4 :

[ENCODER (DECODER)

L T .. J

https://jalammar.github.io/illustrated-gpt2/

Encoder and Decoder of
Transformer

* The encoder’s inputs first flow through a self-attention layer — a
layer that helps the encoder look at other words in the input
sentence as it encodes a specific word.

* The outputs of the self-attention layer are fed to a feed-forward
neural network.

* The decoder has both those layers, but between them is an
attention layer that helps the decoder focus on relevant parts of the
Input sentence

DECODER 1

-
Feed Forward
ENCODER 4 \
1 A
N\ ~
Feed Forward Encoder-Decoder Attention)
4 < ~
—_—
N r 4
Self-Attention Self-Attention J
. _J _

T - 1

The encoder decoder block of the Transformer

https://jalammar.github.io/illustrated-gpt2/

GPT 2-1/2

 The OpenAl GPT-2 exhibited impressive ability of writing coherent
and passionate texts

« The GPT-2’s architecture is a decoder-only transformer. The GPT-
2 was, however, a very large, transformer-based language model
trained on a massive dataset.

* Unlike the original transformer decoder, GPT-2 does not have
encoder-decoder attention.

GPT 2 as a Language Model

« A language model is basically a machine learning model that is
able to look at part of a sentence and predict the next word.

77 Thou shalt

https://jalammar.github.io/illustrated-gpt2/

GPT2-1/2

* GPT as an AutoRegressive Model- The way GPT actually
work is that after each token is produced, that token is added to
the sequence of inputs. And that new sequence becomes the
input to the model in its next step. This is an idea called “auto-
regression”.

Output

;
®crr2
t

Input

recite the first law $

GPT2 - 2/2

Masked self-attention - In the self-attention layer of GPT-
2, It masks future tokens by interfering in the self-attention
calculation, blocking information from tokens that are to

the right of the position being calculated.

Masked Self-Attention

()
score 20% 809 0% 09
Ky r RJLLIJI —oo —o0
®. &
" - J

X+ [

https://jalammar.github.io/illustrated-gpt2/

Scores

Keys (before softmax)

Q eries robot must obey orders 0.11 0.00 0.81 0.79
u h

robot must obey orders 0.19 0.50 0.30 0.48

robot must obey orders X =

robot must obey orders 0.53 0.98 0.95 0.14

robot must obey orders 0.81 0.86 0.38 0.90
Scores Masked Scores

(before softmax) (before softmax)
0.11 0.00 90.81 0.79 . 0.11 —-inf —-inf —-inf

Apply Attention = = =P
0.19 0.50 0.30 0.48 Mask 0.19 0.50 -inf —inf
0.53 0.98 9.95 0.14 7 0.53 0.98 0.95 —-inf
9.81 0.86 9.38 0.90 0.81 0.86 0.38 0.90

https://jalammar.github.io/illustrated-gpt2/

GPT-3

« The techniques behind GPT-3 are almost same as
GPT-2.

« The main difference is that the GPT-3 model uses
alternating dense and banded sparse attention
pattern.

« Also, GPT-3 has more number of layers and heads
to train the language model.

Sparse Attention

Sparsity in the attention calculation can lead to significantly faster
computation.

m—r

(a) Transformer (b) Sparse Transformer (strided) (c) Sparse Transformer (fixed)

Child, Rewon & Gray, Scott & Radford, Alec & Sutskever, llya. (2019). Generating Long Sequences with Sparse Transformers, arXiv preprint arXiv:1904.10509v1

https://arxiv.org/abs/1904.10509v1

Few-shot Learning - 1/2

Q: What orbits the Earth?

Few-shot learning is the A:The Moon.

Q: Who is Fred Rickerson?

problem of making
predictions based on a o:Whatisanatome §
limited number of samples. | |

Q: Who is Alvan Muntz?
A?

Q: What is Kozar-097?
A?

Q: How many moons does Mars have?
A: Two, Phobos and Deimos.

Q: What's a language model?

Sample response

A language model is a mathematical representation
of how a language works.

Few-shot Learning - 2/2

Aggregate Performance Across Benchmarks

100
—a— Few Shot

—e— One Shot
80 —e— Zero Shot

Accuracy
()]
o

i
o

20

O .
0.1B 0.4B 0.8B 1.3B 2.6B 6.7B 13B 175B
Parameters in LM (Billions)

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A. & others (2020). Language models are few-shot
learners. arXiv preprint arXiv:2005.14165, .

GPT-3 Models

There are 4 pre-trained models
available in GPT-3.

1. Ada (2.7B)
2. Babbage (6.7B)
3. Curie (13B)
4. Davinci (175B)

GPT-3 Dataset Preparation - 1/2

- The combined tokens in an input-
output pair should not exceed 2048.
(1 token ~ 34 words)

- It Is recommended to add a
separator tag at the end of each
datapoint for both input and output.

Eg, Input: “Start...end\n\n###",
Output: “Start...end\n\n<eos>"

GPT-3 Dataset Preparation - 2/2

openal tools fine tunes.prepare data -f <LOCAL FILE>

You can also pass files in CSV, TSV, XLSX, JSON or JSONL format to this tool and it
will help you convert it into a fine-tuning ready dataset.

e The data will be converted to jsonl format and stored in the same directory
as your initial file.

{"prompt": "<prompt text=", "completion": "<ideal generated text>"}
{"prompt": "<prompt text=", "completion": "<ideal generated text>"}
{"prompt": "<prompt text=", "completion": "<ideal generated text>"}

GPT-3 Fine-tuning

https://beta.openai.com/docs/quides/fin
e-tuning

https://beta.openai.com/docs/guides/fine-tuning

Actual work on Automatic Film Plot &
Script Generation

Problem Statement

Create a Writer's Assistant tool that can
help the writer to generate multiple new
ideas for a plot and the next scene of a

screenplay.

BACKGROUND: TERMINOLOGY &
DEFINITIONS

- A script is made up of 3 Acts: the set-up, conflict,

and resolution.

A standard movie script consists of 120 pages and
the average screen time is 2hrs.

- Each page will be approximately 1 min of the screen

time.

Hierarchical Structure of a Movie Script

SCRIPT

=)

ACTS

SCENES

ELEMENTS OF A SCENE - 1/2

« Scene heading / sluglines - Written in capital letters
and this part tells about the place and time when the
scene Is taking place.Eg: INT.-THE PALACE-DAY

TIME

« Action lines-This comes just after the Scene Heading.
The action lines tells what is happening in the scene

« Character names-The characters those are present in
the scene.

ELEMENTS OF A SCENE - 2/2

Dialogues of the character

Extensions-occur along with the character name that
provides extra information about the character or the
dialogue of the character.

Eg:V.O(Voice Over),0.S(Off Screen) etc.

Transitions-These are keywords used to change from
one scene to another.

Eg:CUT TO:, INTERCHANGE TO:, FADE IN: etc.

INT. SECURITY STATION. SMITH'S GROVE STATE HOSPITAL. DAY. :> SLUGLINES

CLOSE ON: A HAND holding a MICROPHONE. The hand cranes the
mike around the to pick up sounds of maniacal laughter
echoing from the corridor.

ACTION
LINES INSERTS of the corresponding inspiration of these sounds.

0 » EXTENSIONS
REVEAL: DANA HAINES (3@'s), activating a TAPE RECORDER. She's
with AARON JOSEPH-KOREY (40); both scholarly, British. Aaron
signs some documents at a CHECK-IN DESK. They look to each
other. Aaron speaks into her microphone.

DANA £——>» CHARACTER NAME
Check, check.

AARON
Testing, testing. One, two, three.=b DIALOGUE

First Scene Generation

We collected movie scripts from IMSDb and storylines
from IMDD.

We separated the first scene by finding scene headings
and keeping an upper limit of 500 words.
Input: Storyline (~20-40 words)

Output: Scene (~400 words)

Annotation of the scripts

We used the following the tags to help
the model understand the structure of
the script:

- SlugLines:<bsl> ... <es|>

- Action Lines: <bal> ... <eal>

. Character Name: <bcn> ... <ecn>

- Dialogue: <bd> ... <ed>

Plot Generation

- Input: A short prompt (< 150 words).
. Output: A movie plot (> 500 words).
. The dataset for input was collected

from IMDD.

- The dataset for output was collected

from Wikipedia.

Wikipedia Movie Plots

Plot example: Die Hard (1988) - 590 words

On Christmas Eve, New York City Police Department (NYPD) Detective John McClane arrives in Los Angeles, hoping to reconcile with his estranged
wife, Holly, at a party held by her employer, the Nakatomi Corporation. He is driven to Nakatomi Plaza by a limo driver, Argyle, who offers to
wait for McClane in the garage. While McClane changes clothes, the tower is seized by German radical Hans Gruber and his heavily armed team,
including Karl and Theo. Everyone in the tower is taken hostage except for McClane, who slips away.

Gruber 1is posing as a terrorist to steal the $640 million in untraceable bearer bonds in the building's vault. He murders executive Joseph Takagi
after failing to extract the access code from him, and tasks Theo with breaking into the vault. The terrorists are alerted to McClane's presence
and one of them, Tony, is sent after him. McClane kills Tony and takes his weapon and radio, which he uses to contact the skeptical Los Angeles
Police Department (LAPD), and Sergeant Al Powell is sent to investigate. Meanwhile, McClane kills more terrorists and recovers their bag of C-4
and detonators. Having found nothing amiss, Powell is about to leave until McClane drops a terrorist's corpse onto his car. After Powell calls for
backup, a SWAT team attempts to storm the building but is assaulted by the terrorists. McClane throws some C-4 down an elevator shaft, causing an
explosion that kills some of the terrorists and ends the assault.

Holly's co-worker Harry Ellis attempts to negotiate on Gruber's behalf, but when McClane refuses to surrender, Gruber kills Ellis. While checking
the explosives on the roof, Gruber encounters McClane and pretends to be an escaped hostage; McClane gives Gruber a gun. Gruber attempts to shoot
McClane but finds the weapon is unloaded, and is saved only by the intervention of other terrorists. McClane escapes but is injured by shattered
glass and loses the detonators. Outside, Federal Bureau of Investigation (FBI) agents take control. They order the power to be shut off which, as
Gruber had anticipated, disables the final vault lock so his team can collect the bonds.

The FBI agrees to Gruber's demand for a helicopter, intending to send gunship helicopters to eliminate the group. McClane realizes Gruber plans to
blow the roof to kill the hostages and fake his team's deaths. Karl, enraged by the death of his brother Tony, attacks McClane and is apparently

killed. Gruber sees a news report by Richard Thornburg on McClane's children and deduces that he is Holly's husband. The hostages are taken to the
roof while Gruber keeps Holly with him. McClane drives the hostages from the roof just before Gruber detonates it and destroys the approaching FBI
helicopters. Meanwhile, Theo retrieves a van from the parking garage but is neutralized by Argyle, who has been following events on his car radio.

A weary and battered McClane finds Holly with Gruber and his remaining henchman. McClane surrenders to Gruber and is about to be shot, but grabs
his concealed service pistol taped to his back and uses his last two bullets to wound Gruber and kill his accomplice. Gruber crashes through a
window but grabs onto Holly's wristwatch and makes a last-ditch attempt to kill the pair before McClane unclasps the watch and Gruber falls to his
death. Outside, Karl ambushes McClane and Holly but is killed by Powell. Holly punches Thornburg when he attempts to interview McClane before
Argyle crashes through the parking garage door in the limo and drives McClane and Holly away together.

IMDb Prompts

AVATAR Play trailer 3:36

EXPLRIENCE IT INIMAX 3D

(Action> (Adventure) (Fantasy)

A paraplegic Marine dispatched to the moon Pandora on a unique mission becomes torn
between following his orders and protecting the world he feels is his home.

Director James Cameron

Plot Annotation

- ACT ONE- This marks the paragraph in the plot
where the characters are introduced

- ACT TWO A- This part depicts the phase where
the protagonist has a love story and the
premise promised in the trailer is usually shown.
The audience love this part.

- ACT TWO B- In this part the protagonist face
challenges and hurdles in life and reaches rock
bottom.

- ACT THREE- The protagonist overcomes the
hurdles and the story reaches a conclusion.

Demo

https://www.cfilt.iitb.ac.in/generator/

ok~ wDd -~

References

https://huggingface.co/blog/how-to-generate
https://jalammar.github.io/illustrated-gpt2/
https://harishgarg.com/writing/how-to-fine-tune-gpt-3-api/
https://pakodas.substack.com/p/finetuning-gpt3-with-openai?s=r
https://beta.openai.com/docs/guides/fine-tuning

https://huggingface.co/blog/how-to-generate
https://jalammar.github.io/illustrated-gpt2/
https://harishgarg.com/writing/how-to-fine-tune-gpt-3-api/
https://pakodas.substack.com/p/finetuning-gpt3-with-openai?s=r

NMT with
Transformers using
OpenNMT-py

Installing Dependencies

Download Files

Ipip3 install gdown -U

Neural Machine Translation Library

Ipip3 install OpenNMT-py

lgit clone https://github.com/moses-smt/mosesdecoder.qgit

Ipip3 install indic_nlp_library

lgit clone https://github.com/anoopkunchukuttan/indic_nlp_library.git
Ipip3 install -r indic_nlp_library/requirements.txt

lgit clone https://github.com/anoopkunchukuttan/indic_nlp_resources.git
Ipip3 install https://github.com/rsennrich/subword-nmt/archive/master.zip
Ipip3 install sacrebleu

Ipip3 install ctranslate?2

Ipip3 install mosestokenizer

Set Environment Variables

% %bash

export
PYTHONPATH=$PYTHONPATH:/cont
ent/indic_nlp_library

export
INDIC_ RESOURCES PATH=/content/i
ndic_nlp_resources

echo $INDIC RESOURCES PATH

Download Dataset

lwget
https://storage.googleapis.com/samana
ntar-public/V0.2/data/en2indic/en-

mr.zip
lunzip en-mr.zip

sourceValidLen = 1000
targetValidLen = 1000
courceTestl en = 1000

Train-Test-Validation Splits(1/4)

Imkdir data

sourceData = open("en-mr/train.en”,
").readlines()

targetData = open("en-mr/train.mr",
").readlines()

sourceValid =
sourceData|0O:sourceValidLen]

taraetVValid =

Train-Test-Validation Splits(2/4)

sourceTrain =
sourceDatalsourceValidLen +
sourceTestLen:sourceValidLen +
sourceTestLen + sourceTrainLen]

targetTrain = targetData|targetValidLen
+ targetTestLen:targetValidLen +
targetTestLen + targetTrainLen]

sourceTestFile = open("data/test.en”,

Train-Test-Validation Splits(3/4)

sourceValidFile = open("data/valid.en”,

W)

for line Iin sourceValid:
sourceValidFile.write(line.strip("\n") +

"\n")

sourceValidFile.close()

targetValidFile = open("data/valid.mr",
"WwW+")

Train-Test-Validation Splits(4/4)

sourceTrainFile = open("data/train.en”,

W)

for line Iin sourceTrain:
sourceTrainFile.write(line.strip(*\n") +

"\n")

sourceTrainFile.close()

targetTrainFile = open("data/train.mr",
IIW+II)

Lowercase English Text

l/content/mosesdecoder/scripts/tokeniz
er/lowercase.perl < data/train.en >
data/train-low.en

l/content/mosesdecoder/scripts/tokeniz
er/lowercase.perl < data/test.en >
data/test-low.en

l/content/mosesdecoder/scripts/tokeniz

Tokenize English Text

l/content/mosesdecoder/scripts/tokeniz
er/tokenizer.perl < data/train-low.en >

data/train-tok.en

l/content/mosesdecoder/scripts/tokeniz
er/tokenizer.perl < data/test-low.en >

data/test-tok.en

l/content/mosesdecoder/scripts/tokeniz

Normalize Marathi Text

Ipython3
indic_nlp_library/indicnlp/normalize/indi
c_normalize.py data/train.mr data/train-
norm.mr mr

Ipython3
iIndic_nlp_library/indicnlp/normalize/indi
c_normalize.py data/valid.mr
data/valid-norm.mr mr

Tokenize Marathi Text

Ipython3
iIndic_nlp_library/indicnlp/tokenize/indic
_tokenize.py data/train-norm.mr
data/train-tok.mr mr

Ipython3
iIndic_nlp_library/indicnlp/tokenize/indic

_tokenize.py data/valid-norm.mr
data/valid-tok.mr mr

Byte Pair Encoding
Subwordization(1/2)

Imkdir codes
Imkdir data/bpe

Isubword-nmt learn-bpe -s 8000 --num-
workers 40 < data/train-tok.en >
codes/codes.en

Isubword-nmt apply-bpe --num-workers
40 -c codes/codes en < data/train-

Byte Pair Encoding
Subwordization(2/2)

Isubword-nmt learn-bpe --num-workers
40 -s 8000 < data/train-tok.mr >
codes/codes.mr

Isubword-nmt apply-bpe --num-workers
40 -c codes/codes.mr < data/train-
tok.mr > data/bpe/train-bpe.mr

Isubword-nmt apply-bpe --num-workers
40 -c codes/codes.mr < data/test-

Create Vocabulary (1/2)

Imkdir data/pre
vocab =""
save data: data/pre
src_vocab: data/pre/vocab.en
tgt_vocab: data/pre/vocab.mr
overwrite: False
data:

corpus_1:

Create Vocabulary (2/2)

createVocabYaml =
open("vocab.yaml", 'w+")
createVocabYaml.write(vocab)
createVocabYaml.close()

lonmt_build_vocab -config vocab.yam|
-n_sample -1

Train NMT (1/9)

Imkdir checkpoints

Imkdir tensorboard

save data: data/pre
src_vocab: data/pre/vocab.mr
tgt_vocab: data/pre/vocab.en
overwrite: False
src_seqg_length: 200

++++++ | o o vkl . NN

Train NMT (2/9)

data:

corpus_1:
path_src: data/bpe/train-bpe.en
path_tgt: data/bpe/train-bpe.mr
transforms: [filtertoolong]

valid:
path_src: data/bpe/valid-bpe.en
path_tgt: data/bpe/valid-bpe.mr

+lﬁAIAA Ry BA LA = B rIII'LAlﬁ"-AA AIAN

Train NMT (3/9)

Training

world_size: 1

gpu_ranks: [O]

master_port: 5001

General opts

log_file: checkpoints/log.txt
save model: checkpoints/model

Train NMT (4/9)

tensorboard log_dir: "tensorboard"”
tensorboard: true

keep_ checkpoint: 20

save_ checkpoint_steps: 10000
average decay: 0.0005

seed: 1234

report_every: 1

train_steps: 300000

I [N N N aYaYaVYa

Train NMT (5/9)

Batching
gueue_size: 10000
bucket size: 32768
pool factor: 8192
batch_type: "tokens”
batch size: 4096
valid _batch size: 16
batch_size multiple: 1

B S B NAIAAI’A*AI’ IAA"AIAAAI n

Train NMT (6/9)

Optimization
model_dtype: "fp16"
optim: "adam"
learning_rate: 2
warmup_steps: 8000
decay method: "noam"
adam_betal: 0.9
adam_beta2: 0.998
max_grad_norm: O
label _smoothing: 0.1
param_init: 0.0
param_init_glorot: "true"
normalization: "tokens"

Train NMT (7/9)

Model

encoder_type: transformer
decoder_type: transformer
enc_layers: 3

dec layers: 3

heads: 4

rnn_size: 256

dec _rnn_size: 256

Train NMT (8/9)

word_vec_size: 256
transformer_ff: 1024
dropout_steps: [O]

dropout: [0.1]

attention_dropout: [0.1]

share decoder _embeddings: "true”
position_encoding: "true"

Train NMT (9/9)

| CUDA_VISIBLE DEVICES=0
onmt_train -config train.yaml

Inference: Download Test Set

url =
'https://drive.google.com/drive/folders/1
hy80UglVd7dUA _0sGbI50BF4ANWDbp2
msd?usp=sharing'
gdown.download_folder(url,
quiet=True)

url =
'https://drive.google.com/drive/folders/1

Inference: Prepare Data

Imkdir test

l/content/mosesdecoder/scripts/tokeniz
er/lowercase.perl < covid-19-
testset/test.en > covid-19-testset/test-
low.en

l/content/mosesdecoder/scripts/tokeniz
er/tokenizer.perl < covid-19-testset/test-

Inference: Translate

| CUDA_VISIBLE DEVICES=0 onmt_translate \
-gpu 0\
-batch_size 4096 -batch_type tokens \
-beam_size 5\
-model checkpoints/model.pt \
-src covid-19-testset/test-bpe.en \
-output test/test.mr \
-replace _unk
lsed -r-1's/(@@)|(@@ ?9$)//g' test/test.mr
I sed -r -1's/ &apos;//g' test/test.mr

Ipython3 indic_nlp_library/indicnlp/tokenize/indic_detokenize.py
test/test.mr test/test-detok.mr mr

Compute BLEU Score

Import sacrebleu

hypothesis = open("test/test-detok.mr", 'r').readlines()

reference = open("covid-19-testset/test.mr", 'r').readlines()

hypothesisSentences, referenceSentences =[], []

for i in range(len(hypothesis)):
hypothesisSentence = hypothesis]i].strip("\n")
referenceSentence = referenceli].strip("\n")
hypothesisSentences.append(hypothesisSentence)
referenceSentences.append(referenceSentence)

bleu = sacrebleu.corpus_bleu(hypothesisSentences,
[referenceSentences])

print(bleu.score)

Deploy Model

Import ctranslate2
model = "checkpoints/model.pt"”

converter =
ctranslate2.converters.OpenNMTPyCo
nverter(model)

Imkdir model_deploy
output = "model _deploy"

converter.convert(output,
force=Triia

Inference (1/4)

from mosestokenizer import
MosesSentenceSplitter,
MosesTokenizer

from indicnlp.tokenize import
sentence_tokenize, indic_tokenize

from indicnlp.normalize.indic_normalize
iImport IndicNormalizerFactory

Inference (2/4)

Tokenize

englishTokenizer =
MosesTokenizer('en')

BPE

englishBpeCodes =
codecs.open(“codes/codes.en”,
encoding='utf-8')
englishBpeEncoder =
BPE(enqglishBpeCodes)

Inference (3/4)

Lowercase

sourceSentence =
sourceSentence.lower()

Tokenize

sourceSentence =
.Join(englishTokenizer(sourceSentence

)

Inference (4/4)

Translate

targetSentence =

translator.translate batch([sourceSente
ncel], beam_size=5,

max_batch size=16)

Remove BPE

targetSentence = ('
"10In(targetSentencel0].hypotheses|0])

Thank You

