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Nature of NLP



Natural Language Processing

Art, science and technique of making 

computers understand the generate 

language



NLP is layered Processing, 

Multidimensional too
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Main Challenge: AMBIGUITY



An interesting whatsapp

conversation (English and Bengali)

Lady A: Yesterday you told me about shop that 

sells artificial jewellery

<bn>ki naam jeno?</bn> (what did you say was 

the name?)

Lady B:  nykaa

Lady A (offended): What do you mean Madam? 

Is this the way to talk?

Lady B: <bn> kena ki holo?</bn> (why what 

happened?)

… Lady A did not reply; she was angry!!!



Root cause of the problem: Ambiguity!

• NE-non NE ambiguity (proper noun-

common noun)

• Aggravated by code mixing

• “Nykaa”: name of the shop

• Sounds similar to “ন্যাকা” (nyaakaa), 

meaning somebody “who feigns 

ignorance/innocence” in a derogatory 

sense

• An offensive word



NYKAA Fashion



Ambiguity at every layer, for every 

language, for every mode
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Multimodal is important

• Signals from other modes

• E.g., Sarcasm



Data + Classifier > Human 

decision maker !!

Case for ML-NLP



LEARN from Data with Probability 

Based Scoring

• With LOTs of data, learn with 
– High precision (small possibility of error of 

commission)

– High recall (small possibility of error of 

omission)

• But depends on human engineered 

features, i.e., capturing essential 

properties 



Modern Modus Operandi: End to 

End DL-NLP

An example deep n/w for 

author identification



Problem Knowledge and Deep 

Learning
● Large number of parameter in DL-NLP: 

Why?

● Fixing large number parameter values need 

large  amounts of data (text for NLP).

● If we know underlying distribution then we 

can make predictions.

IMP: The number of needed parameters can 

be reduced by using knowledge.



NLP is Important

Cutting edge applications



Large Applications to reduce the 

problem of scale

• (A) Machine Translation (demo)

• (B) Information Extraction

• (C) Sentiment and Emotion Analysis

• Complexity and applicability increases by 

requirement and introduction of 

Multilinguality, Multimodality



Dense Image Captioning



OCR-MT-TTS

• Input image:

• English transcription: Take the risk or loose the chance

• Hindi Translation:  जोखिम लें या मौका गंवा दें।
• Hindi speech

http://drive.google.com/file/d/1p-WbGietoye0jQCrChj8EPXCgU6vtws5/view
http://drive.google.com/file/d/1p-WbGietoye0jQCrChj8EPXCgU6vtws5/view


Course: Basic Info

• Slot 1: Monday 8.30, Tuesday 9.30 

and Thursday 10.30

• TA Team: Nihar Ranjan Sahoo, 

Apoorva Nunna, Kunal Verma, Vishal 

Pramanik, Harsh Peswani, Ankush

Agrawal

• http://www.cfilt.iitb.ac.in/~cs772-2022

• Channels of communication: MS 

Teams, Moodle, Course Website

http://www.cfilt.iitb.ac.in/cs772


Evaluation Scheme (tentative)

• 50%: Reading, Thinking, 

Comprehending
– Quizzes (25) (at least 4)

– Endsem (25)

• 50%: Doing things, Hands on
– Assignments (25%)

– Project (25%)



Course Content: Task vs. Technique Matrix
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Books

• 1. Dan Jurafsky and James Martin, 

Speech and Language Processing, 3 rd

Edition, 2019.

• 2. Ian Goodfellow, Yoshua Bengio and 

Aaron Courville, Deep Learning, MIT 

Press, 2016.



Books (2/2)

• 4. Christopher Manning and Heinrich 

Schutze, Foundations of Statistical 

NaturalLanguage Processing, MIT 

Press, 1999.

• 5. Pushpak Bhattacharyya, Machine 

Translation, CRC Press, 2017.



Journals and Conferences

• Journals: Computational Linguistics, 

Natural Language Engineering, Journal 

of Machine Learning Research (JMLR), 

Neural Computation, IEEE Transactions 

on Neural Networks

• Conferences: ACL, EMNLP, NAACL, 

EACL, AACL, NeuriPS, ICML



Useful NLP, ML, DL libraries

• NLTK

• Scikit-Learn

• Pytorch

• Tensorflow (Keras)

• Huggingface

• Spacy

• Stanford Core NLP



Nature of DL-NLP

week-of-17aug20cs626-pos:pushpak26



The Trinity of NLP

Probability Coding (DL)

Linguistics



3 Generations of NLP

• Rule based NLP is also called Model 

Driven NLP

• Statistical ML based NLP (Hidden 

Markov Model, Support Vector 

Machine)

• Neural (Deep Learning) based NLP

Illustration with POS tagging



Case of “present”

He gifted me the/a/this/that present.

They present innovative ideas.

He was present in the class.



Disambiguation of POS tag

• If no ambiguity, learn a table of 

words and its corresponding tags.

• If ambiguity, then look for the 

contextual information i.e. look-back 

or look-ahead.



Table look-up will not do

week-of-17aug20cs626-pos:pushpak31

best ADJ ADV NP V 

better ADJ ADV V DET 

close RB JJ VB NN (running close to the 
competitor, close escape, close the door, 
towards the close of the play)

cut V N VN VD 

even ADV DET ADJ V 

grant NP N V –

hit V VD VN N 

lay ADJ V NP VD 

left VD ADJ N VN 

like CNJ V ADJ P –

near P ADV ADJ DET 

open ADJ V N ADV 

past N ADJ DET P 

present ADJ ADV V N 

read V VN VD NP 

right ADJ N DET ADV 

second NUM ADV DET N 

set VN V VD N –

that CNJ V WH DET



Rule Based POS Tagging

• For Present_NN (look-back)

– If present is preceded by determiner (the/a) or 

demonstrative (this/that), then the POS tag will be 

noun.

• Does this rule guarantee 100% precision and 

100% recall?
– False positive:

• The present_ADJ case is not convincing.

– False negative:

• Present foretells the future.

Adjective preceded by “the”

Noun but not preceded by “the”



Rule based POS tagging 

cumbersome: statistical POS tagging

ML-POS needs training data

(1) He gifted me the/a/this/that 

present_NN.

(2) They present_VB innovative ideas.

(3) He was present_JJ in the class.

POS options form a search graph



W: ^ Brown foxes jumped over the fence .
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Find the PATH with MAX Score.

What is the meaning of score?



Noisy Channel Model

W T

(wn, wn-1, … , w1) (tm, tm-1, … , t1)

Noisy Channel

Sequence W is transformed into 

sequence T

T*=argmax(P(T|W))

T

W*=argmax(P(W|T))

W36



HMM: Generative Model

^_^ People_N Jump_V High_R ._.

^ N

V

V

N

A

N

.

Lexical 

Probabilities

Bigram

Probabilities

This model is called Generative model. 

Here words are observed from tags as states.

This is similar to HMM.

week-of-24aug20cs626-hmm:pushpak37



CRF Based POS Tagging



Marathi

NN                 VG                NN         VBD

B                    B B I

Man tried flying

PRP              VINF            NN         VBD

B                    B B I

He started to walk
Harshada Gune, Mugdha Bapat, Mitesh Khapra and Pushpak Bhattacharyya, Verbs are where all the Action Lies: 

Experiences of Shallow Parsing of a Morphologically Rich Language, Computational Linguistics Conference 

(COLING 2010), Beijing, China, August 2010.



Decoding for the best Sequence

i ranges over the 

input

positions



DL based POS Tagging

I love India

PRON VB NNP

Decoder

Encoder



How to input text to neural net? Issue 

of REPRESENTATION
• Inputs have to be sets of numbers

– We will soon see why

• These numbers form 

REPRESENTATIONS

• What is a good representation? At what 

granularity: words, n-grams, phrases, 

sentences



Issues

• What is a good representation? At what 

granularity: words, n-grams, phrases, 

sentences

• Sentence is important- (a) I bank with 

SBI; (b) I took a stroll on the river bank; 

(c) this bank sanctions loans quickly

• Each ‘bank’ should have a differengt

representation

• We have to LEARN these representations



Principle behind representation

• Proverb: “A man is known by the 

company he keeps”

• Similalry: “A word is known/represented

by the company it keeps” 

• “Company”  Distributional Similarity



Representation: to learn or not learn?

• 1-hot representation does not capture 

many nuances, e.g., semantic similarity
– But is a good starting point

• Collocations also do not fully capture all 

the facets
– But is a good starting point



So learn the representation…

• Learning Objective

• MAXIMIZE CONTEXT 

PROBABILITY



Neural LM



Neural Probability Computer

People laugh 

loudly

P(people 

laugh 

loudly)

How does this happen



We have to first get the 

representation in place

• Word representation

• Phrase representation

• Sentence representation

• Long text representation 



Feedforward Neural Language 

Model (FFNNLM): Bengio et al 2003



FFNNLM

• V is the vocabulary size, m is the dimension 

of the feature vectors; word wi is projected 

as the distributed feature vector C(wi) ε Rm

• The input x of the FFNN is a concatenation 

of feature vectors of n - 1 words

• Softmax output layer to guarantee all the 

conditional probabilities of words positive 

and summing to one 

• The learning algorithm is the Stochastic 

Gradient Descent (SGD) method using the 

backpropagation (BP) algorithm 



Recurrent NN LM (RNNLM)- Mikolov

et al 2010



RNNLM

• RNN has an internal state that 

changes with the input on each time 

step, taking into account all previous 

contexts

• State st can be derived from the input 

word vector wt and the state st-1


