CS626: Speech, NLP and the
Web

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay
Week of 1st November, 2021



Derivation of E and M steps for 2
coin problem (1/2)- M step

Take partial derivative of E,y 4(.) (prev. slide)
wrt p, p;, P, and equate to O.

> E(z)
_ =1

P N

N (Uses the fact that E(CX)

Z E(z)X =C.E(X), where C is a constant)
pl _ I_|1\| /

> E@)

' \ (Uses the fact that E(C+X)
M _Z E(z,)x / =C+E(X), where C is a constant)

‘M =# Heads, N =#tosses



Derivation of E and M steps for 2
coin problem (2/2)- E step

E(z[x)= 1.P(z=1]x;)+0.P(z=0[x;)
=P(z=1]x))
P(Zi =1, Xi)
P(X )
B pp* (1-p,) "
P(x,z. =D+ P(x. ,z, =0)
_ pp* (1—p,)
pp* (1-py) " +(@A-p)p; (A-p,) "

P(Zi =1] Xi) —




Generalization into N “throws”
using M “things” each having L
outcomes

From

Pushpak Bhattacharyya, Machine Translation, CRC Press,
2015



Multiple outcomes from multiple
entities

* “Throw” of "something” where that
something has more than 2 outcomes,
e.g., throw of multiple dice

* The observation sequence has a
sequence of 1 to 6s

 But we do not know which observation
came from which dice

e Gives rise to a multinomial that Is
extremely useful iIn NLP ML.



Observation Seguence

N ‘throws’, 1 of L outcomes from each
throw, 1 of the M ‘things’ (called ‘sources’)
chosen

* 2.1 Xy =1, since each x; Is either 1 or O
and one and only one of them Is1.
* D (data):

<X /X1l X >y <Koy lXool oo X >
<Xn1/Xno/ - - X >



Hidden Variable

» Hidden variable for M sources
* 2y wZi=1, since each z; is either 1 or O
and one and only one of them is 1.
¢ /.
<ZZ50... 2>, <Zy11Z55]... 250>, ...
<zZniZno! - 2™



Parameters
« Parameter set 0:

—17;: probability of choosing source |

—p,: probability of observing k™ outcome
from the jth source



Likelihood Expression and

multinouli Constraints
expression .

=TT T e |
LL = Zililz?ﬂzl Zj [Iog 7] +Z|k_:1 X; 10g pjk]

E,x (LL) = ZLZL E(Zij | Xik)llog T "‘th1 X; 109 pjk]
Maximize subject to



Introduce Lagrangian

Q=
Zi Zjl E(z, |xk)llog7z +Z X, log pjk]
_a(ZJl 7 ) jlﬂ(Zkl ka )



Finding TTs

N E(Z.,)

:>05.7Z'j :Zilil E(Zij)’jZTﬂ (a'ﬂ.j):Zﬁﬂ:l Zi_l
:a:ZL > E(zy), ZL 7 =1
o 2 E@) 3 EG)

Zj:l Zizl E(Zij) Zi:l Zj:l E(Zij)
now, > E(z)=>.", [1.P(z;=1)+0.P(z; =0)]
:Z?ﬂ ﬂj:l
=7, = MZizl ::(Zij) _ Zizl E(Zij)

Zi=1 Zizl E(Zij) N

E(z.)



Finding P;s

apjk = pjk

= PPy = Z'lil E(2) % = Zlk_zl (B-Py) = Zlk_:l Zil\il E(z;)-X
:>'Bj :thzl 2:11 E(Zij)xik’ Zlk_:l P =1

Zilil E(zj)% Z|N:1 E(z;) %
DI WEHH
Now, thl X, =1

N

Zizl E(Zij )Xik
Zil\il E(Zij)

—ﬂ,-=0

:>pjk:

:pjk:




Expectation of hidden variable: E step
E(z;xi)= 1.P(z;=1]x)+0.P(z;=0[x;)

=P(z;=1|x;)
P(Zij =1 Xik)

P (X))

P(Zij :1‘ Xik) —




M-step

M-Step:

Zr IE( )

Z Jj= IZ i—lE(‘U

N E(z,)x

. =1 i S ik

Pﬁ:_ ZI-:lE( g)




E-step

E-Step:

_ EHI:—I(F ')
E(d )= Z 1{1-?? H _1(}5’;&



&) anl, {20 dt: pushpak

Statistical Machine Translation

Deep understanding level Ontological interlingua
Interlingnal level Semantico-linguistic interlingua
= SPA-sructures (semantic
Logico-semantic level & predicate-argn 6
Mixing levels N Multilevel description
Multilevel transfer
Syntactico-functional level Syntactic transfer (deep) F-structures (functional)
Y ic level Syntactic trapsfer (surface) C-structures (constituent)
Morpha- Iev Semi-direct translatiol Dl’s‘-ﬂ” iy Tagged text
iy try
"‘f(‘q
Graphenic level Direct translation i Text




&1 anl, {20 1dt: pushpak

Czeck-English data

* [nesu] ‘| carry”

* [ponese] “He will carry”

* [nese] “He carries”

* [nesou] “They carry”
* [yedu] ‘| drive”

* [plavou] “They swim”



@& anl, 720 1dt: pushpak

To translate ...

| will carry.

* They drive.

* He swims.

* They will drive.



&% anl, {20 1dt: pushpak

Hindi-English data

» [DhotA huMj ‘| carry”
» [DhoegA] “He will carry”
» [DhotA hAIj “He carries”
» [Dhote hAI] “They carry”
* [chalAtA huM] ‘| drive”
* [tErte hEM] “They swim”



B anl, {20 1dt: pushpak

Bangla-English data

* [bal] ‘| carry”

» [baibe] “He will carry”
» [bay] "He carries”

* [bay] “They carry”

* [chAIAI] “I drive”

* [SAMtrAy] “They swim’



BlJanl, {20 1dt: pushpak

To translate ... (repeated)

| will carry.

* They drive.

* He swims.

* They will drive.



B2Janl, {20 1dt: pushpak

Alignment



How to build part alignment from
whole alignment

. Two Images are Iin alignment: images on
the two retina
. Need to find alignment of parts of it




BAd anl, 120 1dt: pushpak

Fundamental and ubigquitous

» Spell checking
* Translation

* Transliteration
* Speech to text
* Text to speeh



Bt anl, {20 1dt: pushpak

EM for word alignment from sentence
alignment: example

English
(1) three rabbits
a b

b C

(2) rabbits of Grenoble

d

French
(1) trois lapins
W X

(2) lapins de Grenoble
X y Z

Exercise: Think of how the knowledge that three/trois is a number noun,
Grenoble is a place, rabbit/lapins is a noun of animacy can help reduce data
need and also make computation more efficient.




VIMP: The parameters and hidden
variables in the rabbit-lapins example
* We are interested In probabilities of English

words to French word mappings in E-F
lexicon; these are the PARAMETERS

 The HIDDEN variables are the indicator
variables capturing alignments in the parallel
sentences; expected values of these
Indicators variables give the EXPECTED
COUNT of word-word alignments per
sentence pair



Initial Probabillities:
each cell denotes t(a <=2 w), t(a €2 X) etc.

a b C d
W 1/4 1/4 1/4 1/4
X 1/4 1/4 1/4 1/4
y 1/4 1/4 1/4 1/4
Z 1/4 1/4 1/4 1/4




B anl, 120 dt: pushpak

Example of expected count

Clw €-23a; (a b) €=2>(w x)] {this Is the expected count,
corresponding to the expected value of the indicator variable
which is 1 if w and a are indeed aligned, else 0}

t(w € —a)
= mmmmmmmmmmmmooees X #(ain ‘a b)) X #(w in ‘w X))
t(w € a)+t(w € >h)
1/4
= e X 1X1=1/2

1/4+1/4



B anl, {20 1dt: pushpak

(c 99
counts
ab a b bcd b C d
> >
W X XY Z
W 1/2 1/2 W 0 0 0
X 1/2 1/2 X 1/3 1/3 1/3
y 0 0 y 1/3 1/3 1/3
Z 0 0 Z 1/3 1/3 1/3




B(@ anl, {20 1dt: pushpak

Revised probability: example

(a€E=2w)

rewsed

(1/2+1/2 +0+0 )(a by e 3w x) T(0+0+0+0 )y c gy e (xy 2)



Revised probabillities table

a b C d
1/2 1/2 0 0
1/4 5/12 1/6 1/6

0 1/3 1/3 1/3

0 1/3 1/3 1/3




B2Ianl, {20 1dt: pushpak

“revised counts’

ab a b bcd b C d

> >

W X XY Z

W 1/2 3/8 W 0 0 0
X 1/2 5/8 X 5/9 1/3 1/3
y 0 0 y 2/9 1/3 1/3
Z 0 0 Z 2/9 1/3 1/3




Re-Revised probabilities table

a b C d
W 1/2 1/2 0 0
X 3/16 85/144 1/9 1/9
y 0 1/3 1/3 1/3
Z 0 1/3 1/3 1/3

Continue until convergence; notice that (b,x) binding gets progressively stronger,
b=rabbits, x=lapins



B4 anl, 720 1dt: pushpak

Derivation of EM based Alignment
EXxpressions

V. =vocalbulary of language L, (Say English)
V. =vocabulary of language L, (Say Hindi)

£l what is in a name?
JH H FIr F?
, haam meM kya hai?
F hame in what is?
E2 That which we call rose, by any other name will smell as sweet.
IS 8 T[eTd FEct &, IR SHY [t ST & 3 Forg THTA HIST 8171
£2 Jise hum gulab kahte hai, aur bhi kisi naam se uski khushbu samaan mitha hogii

That which we rose say ,any  other name by its smell as sweet
That which we call rose, by any other name will smell as sweet.




Bi1) anl, 720 1dt: pushpak

Vocabulary mapping

Vocabulary

what , is, in, a, name , that,
which, we , call ,rose, by,
any, other, will, smell, as,
sweet

naam, meM, kya, hai, jise,
ham, gulab, kahte, aur, bhi,
Kisi, bhi, uski, khushbu,
saman, mitha, hogi



B¢ anl, 20 dt: pushpak

Key Notations

English vocabulary : Vg

French vocabulary : Vx

No. of observations / sentence pairs : S

Data D which consists of S observations looks like,

811, 812, reey 8111@ fll,flz, ...,flml

621, 622, ey 6212® le, fzz, ...,fzmz

No. words on English side in st"* sentence : [°
No. words on French side in st* sentence : m*s
indexg(e®,) =Index of English word es,in English vocabulary/dictionary
indexp(fs,) =Index of French word f* in French vocabulary/dictionary

(Thanks to Sachin Pawar for helping with the maths formulae processing)



B anl, {20 1dt: pushpak

Hidden variables and parameters

Hidden Variables (2) :

Total no. of hidden variables = Y5_, I m® where each hidden variable is
as follows:

z5, = 1, if in s™* sentence, p™ English word is mapped to ¢** French
word.

Zpq = 0, otherwise

Parameters (0O) :

Total no. of parameters = | Vx| X |Vg|, where each parameter is as
follows:

P; ; = Probability that it" word in English vocabulary is mapped to jt* word
in French vocabulary



B8 anl, {20 1dt: pushpak

Likelihoods

Data Likelihood L(D; O) :

L(D;0) = HHH indexg(ef ).indexg (fF) ) :

s5=1 p=1g=

Data Log-Likelihood LL(D; O) :

s ¥ m
LL(D: 'EU — S: S: S: E;q Eﬂg (Fiﬂdgxﬂ—{gf,},iﬂdex;r{fqﬂ:l)

g=1p=1g=1

Expected value of Data Log-Likelihood E(LL(D; O)) :

¥ m

E(LL(D;0)) = Z Z Z E(zpq) log (P indexg(ep ) indexp r;ﬂ%:l)

=1 p=1g=1



B®Jaml, 20 hdt:pushpak

Constraint and Lagrangian

[Vl
z Pi,j =1,V
Jj=1

vl vl
ZZZE%””H e (o) andoxz ) ~ D, (Z*”wl)

s=ip=ia=1 i=1 j:]_



B anl, /20 Tdt:pushpak

Differentiating wrt P;

ZZZ indexg(ef ).1 mde;u.:ﬁ{fq}j (EEEW]) A; =10

s=1p=1g=1 11

s IF m
1 1 1 1
Pi,j = 1_1 ZZ Z Eiﬂdexﬂ—{gﬁ},i Eiﬂdexp{ff},jEEEﬂq]

s=1p=1g=1

|FF h"'F'

2P Y bttt 50

slplql



&1Janl, {20 1dt: pushpak

Final E and M steps

M-step

_ §=1 Z*f:l= 12?= 1 Eiﬂdexﬂ-{ef; },1’ Siﬂdﬂﬂl}-ﬁ {fg}jE{EEtE]
g Vel = 1 s 8
ijﬁl Z§=1 Z*f:l= 1 Zq=1 Emdgx,,-{g% ).i Eiﬂdﬂjﬂp {fg},jE (Ew )

P Vi, j

E-step
P index E{QISJ },iﬂdex B {-fqﬂ }

E{:ES ]— R
’ Zq;:l‘umdgxﬂ—{ef,},iﬂdﬂxﬁ qE.r}

1

,Vs,p,q



Tools that implement word
alignment

e Giza++ which comes with Moses

» Berkeley Aligner



Attention and Alignment



Attention and Alignment

Hindi (col) --> PIITA JALDII SOYA
R (STea)) A
English (row) | (dieR) (|rm)
\/
PETER 0 0
SLEPT 0 1
EARLY 1 0




FFENN for alignment:
Peter slept early -2 piitar jaldil
soyaa




Introduce Attention Layer between Encoder
and Decoder

Peter slept early

Encoder

Piitar jaldil soyaa
Decoder

Attention

—




How to learn the weights- attention
welghts?

» Weight (piitar, peter)

m
» Weight (piitar, early) /
3 @

» Weight (piitar,




Attention: Linguistic and
Cognitive View



Long distance dependency: WSD

The bank




Long distance dependency: WSD

The bank that Ram




Long distance dependency: WSD

The bank that Ram used to visit




Long distance dependency: WSD

The bank that Ram used to visit 30
years before




Long distance dependency: WSD

The bank that Ram used to visit 30
years before was closed




Long distance dependency: WSD

The bank that Ram used to visit 30
years before was closed due to




Long distance dependency: WSD

The bank that Ram used to visit 30
years before was closed due to the
lockdown




Long distance dependency: WSD

The bank that Ram used to visit 30
years before was closed due to the
lockdown with the Govt




Long distance dependency: WSD

The bank that Ram used to visit 30
years before was closed due to the
lockdown with the Govt. getting worried
that




Long distance dependency: WSD

The bank that Ram used to visit 30
years before was closed due to the
lockdown with the Govt. getting worried
that crowding of people




Long distance dependency: WSD

The bank that Ram used to visit 30
years before was closed due to the
lockdown with the Govt. getting worried
that crowding of people during the




Long distance dependency: WSD

The bank that Ram used to visit 30
years before was closed due to the
lockdown with the Govt. getting worried
that crowding of people during the
Immersion ceremony




Long distance dependency: WSD

The bank that Ram used to visit 30
years before was closed due to the
lockdown with the Govt. getting worried
that crowding of people during the
Immersion ceremony on the river will
aggravate the situation.




Attention Graph

The bank that Ram used to visit

| 1 | ||

immersion ceremony On.

closed due 10



Different forms of Attention

o Morphological Attention: For predicting the token ‘jayega’,
attention should be given to the token ‘Ram’ from the
morphological perspective in order to render the correct
form of the verb (in gender, person, number etc)

o Shallow Parsing Attention: The previous two tokens e.g
might carry enough syntactic context for predicting the
correct part of speech at a given position.

o Semantic Attention: From the sentence for example,

‘university’ and ‘higher studies’ are semantically related.



Backward Chaining for learning Attention

As an example, for different forms of jaana: jayega,
jayeqgl, jayenge, jaoge etc

o We have to produce a ranking for all the different
forms of ‘jaana’.

e The ranking is based on probabillities, in particular
the softmax computation.

o Softmax depends on computing enetinput,

e The net input is computed from the dot product of

word vectors...



Feedforward network and
Backpropagation



Increased
Complexity
of
Processing

NLP is layered Processing,
Multidimensional too

Discourse and Coreference

Semantics

Parsing

Chunking

POS tagging

CRF

Morphology

Problem
o Semantics NLP
Trinity
Parsing ——
Part of Speech
—T— Tagging
Morph ——
Analysis Marathi French
|| | |
HMM I | |
Hindi English
Language
MEMM
Algorithm



Deep Neural Nets and NLP: layer
to layer correspondence

Input Hidden Hidden Hidden Output
layer L, layver L, laver Ly layer L, layer Ly




Nature of DL-NLP

Language

Probability
Neural Net



Skip gram- predict context from
word

4 wi(t-2)

A For CBOW:

wit)| ——-

N Just reverse the
L)
NN Input-Ouput
NN
\ 4 wit+1)
\
\
N\
4 wit+2)

69
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Skip Gram: more detalls

Input Vector

Output Layer
Softmax Classifier

Hidden Layer
Linear Neurons

Probability that the word at a
randomly chosen, nearby
position is “abandon”

E
0
0
0
0
0]
A ‘1" in the position 0
corresponding to the —»
word “ants” 0
10
10,000
positions

P4
... “ability”
| ... “able”
o
300 neurons o

10,000
neurons



Feedforward Network and
Backpropagation



Example - XOR

0=05
w;=1 w,=1

X1 X5l +1 —1 X%

1 1 -1

X1 X5




Alternative network for XOR

H,H, (AND)
©@=15
w;, =1 w, =1
X, X, X1+Xs
1.5 [ -1 1 e
B 1 o5
X4 X5

XOR: not possible using a single
perceptron

Hidden layer gives more
computational capability

Deep neural network: With multiple
hidden layers

Kolmogorov’s theorem of
equivalence proves equivalence of
multiple layer neural network to a
single layer neural network, and
each neuron have to correspond to
an appropriate functions.

/3



XOR neuron with sin()

™2

Xy X, | Outp
ut
o) 0 o)
0 1 1
1 0 1
1 1 o)

sin{(x,;+x,)m/2}




Exercise: Back-propagation

. Implement back-propagation for XOR
network

. Observe
. Check If it converges (error falls below a
limit)

- What Is being done at the hidden layer

75



What a neural network can represent
INn NLP: Indicative diagram

o Each layer of the neural network possibly represents
different NLP stages!!

Morp POS p\gRr
\holog  taggin e

(@O \///
e/ @/ \ @

/I




Batch learning versus Incremental
learning

Batch learning is updating the parameters after ONE

PASS over the whole dataset
Incremental learning updates parameters after seeing

each PATTERN
An epoch is ONE PASS over the entire dataset

- Take XOR: data setis V,=(<0,0>, 0), V,=(<0,1>, 1),
V,=(<1,0>, 1), V,=(<1,1>, 0)

- If the weight values are changed after each of Vi, then
this is incremental learning

- If the weight values are changed after one pass over
all V;s, then it is bathc learning
77



Can we use PTA for training FFN?

-1,0,0 |0 1,0,0 0
0,0 |0

‘1, O, 1 1 -11 01 1 1

‘1, 1, O 1 -11 11 O 1
1,0 |1

‘l, 1, 1 O 11 _11 _1 O
1,1 |0

No, else the individual neurons are solving XOR, which is impossible.
Also, for the hidden layer neurons we do nothave the i/o behaviour.



Gradient Descent Technique

Let E be the error at the output layer

P n

E=2> -0

j=1 i=1

t. = target output; o, = observed output

| IS the index going over n neurons in the
outermost layer

] Is the index going over the p patterns (1 to p)
Ex: XOR:— p=4 and n=1



Weights in a FF NN

* W, IS the weight of the m
connection from the nt" neuron Whn
to the mth neuron
(n

« Evs w surface is a complex
surface in the space defined by
the weights w;

= dives the direction in which SE
a movement of the operating AWy o€ = W
point in the w_,, co-ordinate

space will result in maximum

decrease In error




Step function v/s Sigmoid function

0= f(Zwx,)
= f (net)
So partial derivative of O w.r.t.netis

O
onet

High watermark
Low watermark

> >

Non-differentiable Differentiable



Sigmoid function

y = 1
1+ e_yx_ﬁ

=y(d-y)

2

dx



Sigmoid function

_/_ EE(X)} 1+E "
(x) _ d
0.5 dx o ( 1+f_=—-"f)
— E‘
/ 17
I | g | 1 | — ( ]_ — )

—X X
6 -4 -2 0 2 4 6 1+E 1"‘*’3

= f(x).(1 - f(x))

() = T



Loss function

Total sum squared error Cross-entropy
iy
| , E= —(UN)*¥vy.log(y,)
E=EZZ(IE—OE)J. =
j=1 i=l
e T, is the target output e Vi is the target output
e O is the observed output e V; isthe observed output

e iandjare indices over n neurons e Nis number of training samples

and p patterns respectively

Cross-entropy is used more in NLP than total sum squared error



Backpropagation algorithm

cee — Output layer
Q Q QJ Q (m o/p neurons)
Q Q| Q T
/ Hidden layers
O O O
O O () ——  Inputlayer

(n i/p neurons)

* Fully connected feed forward network

* Pure FF network (no jumping of
connections over layers)



Gradient Descent Equations

OE .
Aw;, = -1 —— (n7 = learning rate, 0 <77 <1)

S,
onet.
ok _ & O, (net, =input at the | neuron)
ow; onet; o,
_E ~5
onet,




Backpropagation — for outermost

layer
ok éE 00 .
O] = — = ‘ net; = input at the " layer
J 5netj 50 5net ( P J ver)
Z(t -0,)’
pl

Hence, & = —(—(t; —0,)0;(1-0,))
AWji =77(tj —Oj)Oj(l—Oj)Oi



Observations from Aw;;

AW;; = 77(tj —oj)oj (1—01.)0i
Aw; =0 I,
1.Oj —>t, and/or

2.Oj —1 and/or
3.0j — 0 and/or

4.0, >0 | Credit/Blame assignment

> Saturation behaviour




Backpropagation for hidden layers

k e — Output layer
8@/0 Q (m o/p neurons)
J

Q Qi g > Hidden layers
() () = () —— Inputlayer

(n i/p neurons)

& Is propagated backwards to find value of &



Backpropagation — for hidden

layers
AWji =190,
5 = oE éE 0,
onet; 50 5net
oE

This recursion can oE  onet
give rise to vanishing™ Z (5net 0. “)x0;(1-0;)
and exploding kenext layer j
Gradient problem  Hence, 5 =- Z (-5, x ij) X0, (1- 0, )

\ kenext layer
= D (Wd)o;(-0;)

kenext layer



Back-propagation- for hidden layers:
Impact on net input on a neuron

o Oj affects the net

‘ Input coming to all
W] the neurons in

“'g‘ next layer

-
T

i AN
‘K‘:‘X‘ .
i \




General Backpropagation Rule

* General weight updating rule:
AWji =10Jo,

 Where

6; =(t; —0;)0;(1—0;) for outermost layer

- Z(ij5k)0j(1—0j) for hidden layers

kenext layer

92



How does it work?

Input propagation forward and error
propagation backward (e.g. XOR)

XXy ——1 —1 XX,




An application in Medical Domain



Expert System for Skin Diseases
Diagnosis
 Bumpiness and scaliness of skin

* Mostly for symptom gathering and for
developing diagnosis skills

* Not replacing doctor’'s diagnosis



Architecture of the FF NN

* 96-20-10
* 96 Input neurons, 20 hidden layer neurons, 10
output neurons

 |nputs: skin disease symptoms and their
parameters

— Location, distribution, shape, arrangement, pattern,
number of lesions, presence of an active norder,
amount of scale, elevation of papuls, color, altered
pigmentation, |tch|ng pustules, Iymphadenopathy,
palmer thickening, results of microscopic
examination, presence of herald pathc, result of
dermatology test called KOH



Output

10 neurons Indicative of the diseases:

— psoriasis, pityriasis rubra pilaris, lichen
planus, pityriasis rosea, tinea versicolor,
dermatophytosis, cutaneous T-cell lymphoma,
secondery syphilis, chronic contact dermatitis,

soberrheic dermatitis



Duration Symptoms & parameters Internal

. -
of lesions : weeks 0 representation _
Disease
~~ diagnosis

Duration
of lesions : weeks

v

/
0

Minimal itching e (Ps:)riasis node )

6

Positive
KOH test

10

v

Lesions located .
on feet

(De.rmatophytosis node)

36 ® .

Minimal ®
increase [
in pigmentation 71 o

v

/
Positive test for % 9

pseudohyphae ®

And spores 95 _— 19 (Seborrheic dermatitis node)

Bias @ % Bias e %

9% 20

Figure : Explanation of dermatophytosis diagnosis using the DESKNET expert system.



Training data

* [nput specs of 10 model diseases
from 250 patients

* 0.5 Is some specific symptom value Is
not known

* Trained using standard error
backpropagation algorithm



Testing

Previously unused symptom and disease data of 99
patients

Result:

Correct diagnosis achieved for 70% of papulosquamous
group skin diseases

Success rate above 80% for the remaining diseases
except for psoriasis

psoriasis diagnosed correctly only in 30% of the cases

Psoriasis resembles other diseases within the
papulosquamous group of diseases, and is somewhat
difficult even for specialists to recognise.



Explanation capability

* Rule based systems reveal the explicit
path of reasoning through the textual
statements

« Connectionist expert systems reach
conclusions through complex, non linear
and simultaneous interaction of many units

* Analysing the effect of a single input or a
single group of inputs would be difficult
and would yield incorrect results



Explanation contd.

* The hidden layer re-represents the
data

* QOutputs of hidden neurons are neither
symtoms nor decisions



Discussion

 Symptoms and parameters
contributing to the diagnosis found
from the n/w

« Standard deviation, mean and other
tests of significance used to arrive at
the importance of contributing
parameters

* The n/w acts as apprentice to the
expert



Can Linear Neurons Work?
y=m3X+C3

y=m2X+C2 y:m1X+C1

hl — ml(W1X1 + W- Xz) +C:

h1 — m2 (W1X1+ W: Xz) + CZ

OUt — (W5h1—|‘ W6h2) +Cs
:k1X1+k2X2+k3



Note: The whole structure shown in earlier slide is reducible
to a single neuron with given behavior

OUt — k1X1+ k2X2+ k3

Claim: A neuron with linear 1-O behavior can’t compute X-
OR.

Proof. Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds]

m(w..0+w..0—6)+c<0.1

For (0,0), Zero class: =Cc-mo<0.1

m(w,.1+w.0-6)+c>0.9
For (0,1), One class: = mw:.—mé+c>0.9



For (1,0), One class: m.wz—m.¢9+c>0.9

For (1,1), Zero class: mw,—m,.0+c<0.1

These equations are inconsistent. Hence X-OR can’t be computed.

Observations:
1. Alinear neuron can’'t compute X-OR.

2. A multilayer FFN with linear neurons is collapsible to a
single linear neuron, hence no a additional power due
to hidden layer.

3. Non-linearity is essential for power.



. ocal Minima

Due to the Greedy
nature of BP, it can
get stuck in local

minimum m and will W/m.f
never be able to "

reach the global g
minimum g as the
error can only
decrease by weight
change.

m- local minima, g- global minima

Figure- Getting Stuck in local minimum



Momentum factor

1. Introduce momentum factor.

(AWji)nth — iteration = 77§OI + ,B(AWji)(n — 1)th — iteration

» Accelerates the movement out of the trough.
» Dampens oscillation inside the trough.

» Choosing B :If Bis large, we may jump over
the minimum.
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Vanishing/Exploding Gradient

O, O, 6)(1
O Wa, 1N1 .
W, », W Wy 21
" Nz H21 OH1o H11
Ha, 21 11
22 12 21,12 2211
Wazaz \ N \Wﬂ 1 H21 H21
H22
Hy, Hyy H22
O W, 1,21 W,
} B
W ’ Wy 4 5 Oo1 222
12,2 N \ 02 602 601

O X, Oy1=Wy1 10411+ W5y 10455
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Vanishing/Exploding Gradient

0,1=W 11 10p11 W1 10415 [2

terms] O, 1

W, Wi
=Wi1 1(Wa1 110401+ 1 1/\
W2,110H22) W51 1 (W1 150421 O 6H11

+ Wi 150420) [4 terms] Woyy 41
W22,12 21,12 /ék
= W33 W51 11041+ 5 |
Y H21
Wiy 1 W5 210420t W5q 1 Woy 1,0 6H22 H21

o)
6H22
H21t Wop 1Wo5 150100 W, , 121 WW L2l
Wz, 6Oml,22

= (4 terms with 9,,) + (4 5 51(’)212 Oo2 ) oo Ooo Oo1
terms with ,,; one 02 5o, | Qo1 /
term shown for the leftmost

W11,1W21,11Wl,21

leaf’s weight)
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Vanishing/Exploding Gradient

With ‘B’ as branching factor and
‘L’ as number of levels,
There will be Bl terms in the final 6)(1

Expansion of §,,. Also each term
Will be Broduct of L weights
2 O,



Symmetry breaking

 If mapping demands different weights, but we start with

the same weights everywhere, then BP will never
converge.
0=0.5
w,=1 w,=1
XXy ——1 —1 XX,
1.
1 -1
1. XOR n/w: if we s
X X started with identical
1 2 weight everywhere, BP

will not converge



Symmetry breaking: understanding
with proper diagram

© S
ymmetry
W3o W3, About
o — The red

X1X2 ——1] —1 X1X2 Line should
Be broken
22 W
W15 W11
X2




