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Introduction

• Noun Compound: a sequence of two or more nouns that act as a 
single noun.

Example: apple pie, student protest

• We consider only compositional noun-noun compounds.
A compound is compositional if its meaning can be expressed in terms of the 
meaning of its components.

• The task of identifying underlying semantic relation between the 
components of a noun compound is known as interpretation.
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Motivational Example

• “Honey Singh became the latest victim of celebrity death hoax.”

• Machine Translation:
• [Hindi] हनी स िंघ प्रस द्ध व्यक्ति की मौि के बारे में अफवाह के िाजा सककार बने  

“Hanī siṅgha prasid'dha vyakti kī mauta kē bārē mēṁ aphavāha kē tājā śikāra banē.”

• Question Answering:
• What type of rumor was spread about Honey Singh?

• Text Entailment:
• H: Honey Singh is dead. (False)
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Problem Definition

Paraphrasing

• Given: a noun-noun compound
• Output: paraphrase(s) of the noun 

compound

• Free paraphrases:
• Paraphrasing using any set of words
• E.g., apple pie: ‘a pie made of apple’

• Prepositional paraphrase:
• Paraphrase using a preposition only
• E.g., apple pie: ‘a pie of apple’

Labeling

• Given: a noun-noun compound
• Output: an abstract label chosen 

from a predefined set of relations
• E.g.,

apple pie: {INGREDIENT, COOK, UTENSIL}
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Challenges

• The semantic relation is implicit
The relation of a modifier noun with the head noun in a compound is not 
mentioned explicitly.

• Pragmatic factors influence the interpretation
Why students are ‘beneficiary’ in student price, but not in student protest?

• In BNC corpus, 60.3% of total noun compounds appears only once 
(Baldwin and Tanaka, 2004)

Challenge for statistical approaches 
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(LREC 2018)

FrameNet based Semantic Relations
Interpretation via Labeling
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FrameNet

• FrameNet (Baker et al., 1998) is a lexical database that shows usage of 
words in actual text with annotated examples
• Based on Fillmore (1976)’s Frame Semantics

• The theory claims: “meanings of most words can be inferred on the basis of 
a semantic frame: a conceptual structure that denotes the type of event, 
relation, or entity and the involved participants”

• For instance: 
• the concept of walking typically involves a person walking (SELF_MOVER), the PATH on 

which walking occurs, the DIRECTION in which the walking occurs, and so on. 
• This is represented as SELF_MOTION frame
• SELF_MOVER, PATH, DIRECTION, etc. are called frame elements (FEs)
• This frame can be invoked by followings words (via lexical units): advance, crawl, 

dash, drive, march, run, walk, etc.
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FrameNet-based Labels

• Uses frames and frame elements of FrameNet to indicate semantic relations between the 
component nouns

• Given a noun compound 𝑛𝑐 = 𝑤1, 𝑤2 ,
• 𝑤2: invoke a frame
• 𝑤1: fits in one of the FEs of the frame
• So, annotate noun compounds with a frame and a frame element

• Added benefits:
• One can use information from FrameNet and FrameNet annotated data
• Hierarchy of frames and frame elements can be used to decide granularity of relations

• We automatically extracted noun compounds and their labels from FrameNet
• Retained only those which appear in any of the existing noun compound datasets.
• Manually verified labels
• The resulting dataset has 1546 noun-noun compounds

• We have illustrated how we can use these semantic relations to enhance dependency parsing
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FrameNet Mappings

• FrameNet data provides two types of mappings:
• words to frames (via lexical units), and 

• frames to frame elements

• For instance, 
• ‘protest’ word can invoke three frames:

protest → {PROTEST, POLITICAL_ACTIONS, and JUDGMENT_COMMUNICATION}

• PROTEST frame has following frame elements:
PROTEST → {ACTION, ISSUE, PROTESTER, SIDE, DEGREE, DESCRIPTOR, DURATION, EXPLANATION,

FREQUENCY, MANNER, MEANS, PLACE, PURPOSE, TIME, …}

• We use these mappings to create a candidate set
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Frame and Frame Element Relations

• FrameNet includes a graph of relations between frames. 
• Some of important frame relations are:

• Along with each frame relation, FrameNet also defines relations between 
frame elements of the parent frame and frame elements of the child 
frame.

PROTEST:PROTESTER
Is−A

INTENTIONALLY_ACT:AGENT

PROTEST:PROTESTER
Uses

TAKING_SIDES:COGNIZER

• We use these relations to learn embeddings for frames and frame elements

Oct 21, 2021 11

Inheritance: close to a typical Is-A relation in an ontology PROTEST
Is−A

INTENTIONALLY_ACT

Using: the child frame presupposes the parent frame PROTEST
Uses TAKING_SIDES

Subframe: the child frame is a subevent of a complex parent event TRIAL
Subframe VERDICT
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(ACL-2021)

FrameNet-assisted Noun Compound 
Interpretation
Interpretation via Labeling
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Problem Definition

• Given: a noun compound (say, “𝑤1 𝑤2”)
• Output:

• Frame 𝑓: appropriate for 𝑤2
• Frame Element (from frame 𝑓): appropriate for 𝑤1

• Examples:
student protest → PROTEST : PROTESTER

board approval→ DENY_OR_GRANT_PERMISSION : AUTHORITY

• Contribution:
• Created a tool for annotation
• Extended our LREC-2018 dataset
• A method for automatic prediction of frame and FE for noun compounds
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Idea

• We have 1123 frames and 11,473 frame elements in FrameNet, but 1546 
annotated examples.

• For better generalization, we predict over a continuous space:
• We embed labels (frame and frame elements) into a continuous space such that the 

space captures relation among the labels.

• Then, prediction in the generalized target space could help in prediction on unseen 
labels.

• Our system is a two-step pipeline: (a) predict a frame, and (b) predict a 
frame element from the frame.

• Pruning a label set:
• We create a candidate set using FrameNet mappings to remove unnecessary labels.
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Approach

• Given a noun compound ‘𝑤1 𝑤2’

• Frame Prediction:
• Get candidate frame set using FrameNet API

candidate−frames = word2frame−mapping 𝑤2

• Predict an appropriate frame 𝑓 from the candidate set

• FE Prediction:
• Get candidate FE set using FrameNet API

candidate−FEs = frame2fe−mapping 𝑓
• Predict an appropriate FE from the candidate set

15Oct 21, 2021 CS626-Girish



𝑓𝑐

𝑓2

𝑓1

𝑤1

𝑤2

word embedding 
layer

rate

divorce

ASSESSING

PROPORTION

SPEED_DESCRIPTION

: :

0

1

0

co
n

ca
te

fully-connected 
layers

frame embedding 
layer

Fr
am

eN
et

candidate frames targetDot-product

𝑒𝑓1

𝑒𝑓2

𝑒𝑓𝑐

𝒗𝒏𝒄

System Architecture

16Oct 21, 2021

𝑓∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑓𝑖 𝒗𝑛𝑐 ⋅ 𝒆𝑓𝑖

We use a similar model 
for FE prediction
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Frame and Frame Element Embeddings

• For learning frame embeddings, we adapt Kumar et al. (2019)’s 
approach:
• Train ConvE: a multi-layer 2D-convolution network model proposed by 

Dettmers et al. (2018)

• Use the definition of entities along with the relations to learn entities and 
relation embeddings

• We train frame and frame element embeddings separately

• We use frame and frame element embeddings to initialize the 
corresponding embedding layers
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Experimental Setup: Training

• For each noun compound 𝑛𝑐𝑖, the network outputs scores for each candidate

• During training,
• Apply softmax over the score values, and compute categorical cross entropy loss
• We fine-tune word embeddings
• Freeze the frame/FE embedding layer for initial few epochs and them update them

• We also randomly initialize frame/FE embeddings to see usefulness of pre-trained 
embeddings

• Random baseline:
• A noun compound 𝑛𝑐 with candidate set 𝑐𝑎𝑛𝑑 𝑛𝑐 could be predicted correctly with probability 

1

𝑐𝑎𝑛𝑑 𝑛𝑐

• So, accuracy for random baseline is computed using:

Accrandom =
1

𝑁
෍

𝑛𝑐𝑖 ∈ test−set

1

𝑐𝑎𝑛𝑑 𝑛𝑐𝑖
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Experimental Setup: Evaluation Metrics

• We report Precision, Recall and F-score for our experiments
• These values are weighted values in proportion to the number of test-

examples for each label

• We also report results for…
• unseen-set: a subset of all test-samples, whose output label does not have 

even a single example in the training set

• In a fold with 310 test samples, unseen-set statistics: 
(1) 30 unique frames, covering 32 test samples, (2) 75 unique FEs, covering 82 test samples
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Results (Frame Prediction)
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Results (FE Prediction)
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Summary

• We proposed semantic relations which are based on frame semantics
• We have develop a tool for annotation

• We show how we can use the FrameNet data for an automatic 
interpretation system

• Results for frame prediction are acceptable, but not for element 
prediction

• Main cause behind frame prediction: coverage issue in FrameNet
• We plan to use additional resources, like FrameNet+, to handle coverage issue
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Interpretation via Paraphrasing
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Paraphrasing of Noun Compounds

• Paraphrasing involves rewriting the noun compound as a paraphrase which conveys its 
meaning explicitly, e.g., 

orange juice: “juice made from orange”, “juice with orange flavour” or “juice with orange color”

• Free paraphrasing for noun compounds has been relatively less pursued

• Nakov (2008) uses a verb (and an optional preposition) to paraphrase a noun compound

• Given 𝑤1 𝑤2, the annotators need to fill in the black:  “𝑤1 𝑤2” is a “𝑤2 that ___ 𝑤1”

• Extended in SemEval-2010 Task-9 (Butnariu et al., 2009): given a noun compound a list of 
paraphrasing verbs, produce aptness scores that correlate well with human judgement.

• SemEval-2013 Task-4 (Hendrickx et al., 2013) asked the participating teams to generate 
free paraphrases with score for given noun compounds.

• The organizer observed that the top-ranked paraphrase for a given compound is often a 
preposition-only phrase.
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Prepositional Paraphrasing of NCs

• Prepositional paraphrasing: paraphrasing using only prepositions,
• e.g., orange juice: “juice of orange” 

• Advantage: the set of prepositions is finite, limited, and pre-defined.

• Disadvantage: the information is too coarse-grained, prepositions are 
too ambiguous (Girju et al., 2005)

• We use 8-prepositions used by Lauer (1995)
{about, at, for, from, in, of, on, with}
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Motivation

• Prepositions capture significant information regarding underlying 
semantic relations

• Evidence:
• Girju et al. (2005) observed that prepositions as an additional feature 

improved the performance of automatic labeling significantly

• We annotated Kim and Baldwin (2005)’s dataset with prepositions and 
observed high correlation between prepositions and semantic relations

• In some NLP tasks (such as English-Hindi MT), uncovering of case markers is 
sufficient (Paul et al., 2010; Kulkarni et al., 2012) 

rice husk ⇒ husk of rice ⇒ chaaval kee bhoosee

sevā-nivṛtta ⇒ sev̄a se nivṛtta ⇒ retired from service
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Related Work

• Supervised approaches rely on annotated data that needs to be 
sufficiently large and representative enough of the underlying 
problem. 
• The existing datasets are small in size

• Hence, unsupervised models were preferred (Lauer, 1995; Lapata and 
Keller, 2004) 

• Lauer (1995) proposed a triples ⟨𝑤2, 𝑝𝑟𝑒𝑝,𝑤1⟩ frequency based 
model
• Lauer (1995) also computed frequencies from Grolier’s encyclopedia

• Lapata and Keller (2004) used Altavista search engine and BNC corpus

Oct 21, 2021 27CS626-Girish



(COLING 2018)

Prepositional Paraphrasing using LSTM
Interpretation via Paraphrasing 
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Idea

• Noun compounds and prepositional paraphrases are sequences

• We can use sequence learners to learn their representations

• We learn representations of an NC and its paraphrases, such that the 
representation of a noun compound is most similar to the 
representation of its prepositional paraphrase.
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• The network consists of two encoders:

• ENC1 gives REPNC for the noun compound 𝑁𝐶

• ENC2 gives REPPP for the prepositional paraphrase 𝑃𝑃

• Higher the cosine similarity of REPNC and REPPP, the greater is 
the match between 𝑁𝐶 and 𝑃𝑃

• For a test sample NNC, the correct preposition 𝑃𝑃∗ is given 
by

𝑃𝑃∗ = 𝑎𝑟𝑔max
𝑃𝑃

𝑐𝑜𝑠𝑖𝑛𝑒(REPNNC, REPPP)

• We initialize the embedding layer with Google’s pre-trained 
embeddings

• For the 8-prepositions, we use 1-hot representations

• We add padding of 0’s to make them of same dimensions as that 
of word embeddings

Approach
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Experimental Setup: Datasets

• Two relevant datasets: Lauer (1995) and Girju et al. (2005) with 282 and 805 examples, respectively

• Inhouse: We manually annotated noun compounds† (from Kim and Baldwin (2005)’s dataset)
• Each noun compound was annotated by two annotators
• The percentage inter-annotator agreement is 51.48% (Cohen’s kappa 𝜅 = 0.445); 1042 examples

• To create a large dataset automatically, we adapted Lapata and Keller (2004)’s approach:
Use a search engine to find a prepositional paraphrase with highest frequency, and consider it as a correct 
preposition
• Lapata and Keller (2004) used Altavista search engine and BNC corpus. We use Netspeak.

• Noun compounds were collected from datasets of Kim and Baldwin (2005), Ó Séaghdha (2007) and 
Tratz and Hovy (2010)

† We released the dataset with our COLING-2018 paper
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Experimental Setup: Training

• We have noun compounds with their prepositional paraphrases.

• For each noun compound, we treat the remaining (other than the given) 
prepositions as negative samples.

• Example: analysis expert → in
• Positive sample: (analysis expert, ‘expert in analysis’) 
• Negative samples: (analysis expert, ‘expert from analysis’), (analysis expert, ‘expert about

analysis’), etc.

• Two different set of experiments:
1. Train the system on the automatically annotated dataset and evaluate performance on the 

various datasets
2. (For each dataset) additionally fine-tune the trained-model using a portion of the manually 

annotated dataset
• We use 75% of the dataset for tuning, and rest 25% of examples for testing.
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Results

Dataset Approach
Without Tuning With Tuning

P R F P R F

Lauer (1995)
Baseline 40.85 38.03 31.15 43.97 40.85 40.09

NC-LSTM 50.84 45.07 40.66 48.72 46.48 46.21

Girju et al. (2005)
Baseline 74.72 80.69 77.52 74.20 86.14 79.72

NC-LSTM 76.86 74.26 75.50 84.74 88.61 85.13

Inhouse Dataset
Baseline 63.00 66.96 63.97 64.91 67.39 64.40

NC-LSTM 62.32 65.65 63.09 73.50 72.17 71.27
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Comparison of performance of our LSTM based architecture (NC-LSTM) with Dima and Hinrichs (2015)’s 
feed-forward neural network based architecture (Baseline) on different datasets 

(P: Precision; R: Recall; F: F-score; weighted in proportion to the no. of test-examples for each preposition)
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Analysis
• NC-LSTM performs comparably, if not better, than the baseline.

• NC-LSTM easily outperforms the baseline by a significant margin when tuned with a portion of a 
gold dataset.

• Improvement in tuning can be easily explained from the fact that the original training data was 
extracted from the web, and is noisy in nature.

• For instance, automatic step assigns ‘tree with apple’ as paraphrase of apple tree, but the correct 
paraphrase is ‘tree of apple’.

• The following are example sentences, which contributed to the count of ‘tree with apple’:
“if you combine a pine tree with an apple tree you do indeed get a pineapple tree.”
“What do you get if you cross a Christmas tree with an apple?”
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Dataset #of Common Examples #of Common Examples with Matching Labels

Lauer (1995) 31 12

Girju et al. (2005) 9 8

Inhouse Dataset 434 317

Table 3: Statistics of common examples between automatically created dataset and each of the three 
gold-standard dataset.
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Analysis
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Figure 1: PCA visualizations of noun compounds and their prepositional paraphrases for some examples
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(EMNLP 2020) 

Unsupervised Prepositional and Free 
Paraphrasing
Interpretation via Paraphrasing 
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Bidirectional Encoder Representations from 
Transformers (BERT)
• BERT (Devlin et al., 2019) is a language model using the Transformer 

architecture (Vaswani et al., 2017) designed to pre-train deep bidirectional 
representations.

• BERT has been trained on two prediction tasks:

1. Random tokens in each sequence are replaced with the special [MASK] token 
and BERT is trained to recover the masked tokens. 

This allows representations to be conditioned on the left and right context. 

2. Second, BERT is trained to predict whether the second text segment follows the 
first text segment. 

This improves BERT’s understanding of the relationship between two text sentences.
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Masked Language Model

38
Image by Jay Alammar (copied from http://jalammar.github.io/illustrated-bert/#masked-language-model)
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Idea

• BERT (Devlin et al., 2019) is a language model using the Transformer architecture (Vaswani et al., 2017) 
designed to pre-train deep bidirectional representations.

• As the BERT has been trained to uncover a masked token, we can use it to uncover a preposition in 
prepositional paraphrase of a noun compound.

• Approach:
• Paraphrase the given noun compound with a blank space (indicated by a [MASK] token) for a preposition.
• Use the pre-trained BERT to fill in the blank.
• Given a noun compound 𝑤1 𝑤2, we use three patterns:

• BERT provides a score for each vocabulary word. We select preposition with the highest score.

• We use Transformers library (Wolf et al., 2019), and run the experiments on Google Colaboratory.

Pattern BERT Input

#1 𝐰𝟐 <prep> 𝐰𝟏 [CLS] w2 [MASK] w1 [SEP]

#2 𝐰𝟏 𝐰𝟐 means  𝐰𝟐 <prep>  𝐰𝟏 [CLS] w1 w2 means  w2 [MASK] w1 [SEP]

#3 a  𝒘𝟏 𝒘𝟐 is  a  𝒘𝟏 <prep> the  𝒘𝟐 [CLS] a  w1 w2 is  a  w2 [MASK] the  w1 [SEP]
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Overall Results
Datasets → Lauer (1995) Girju et al. (2005) Inhouse

Approach↓ P R F P R F P R F

Trained only on automatically annotated dataset

Baseline 40.85 38.05 31.15 74.72 80.69 77.52 63.00 66.96 63.97

NC-LSTM 50.84 45.07 40.66 78.86 74.26 75.50 62.32 65.65 63.09

Trained on automatically annotated dataset + Fine-tuned on respective manually annotated dataset

Baseline 43.97 40.85 40.09 74.20 86.14 79.72 64.91 67.39 64.40

NC-LSTM 48.72 46.48 46.21 84.74 88.61 85.13 73.50 72.17 71.27

No training: RoBERTa-base

𝐰𝟐 <prep> 𝐰𝟏 50.82 38.02 26.74 79.28 77.22 78.15 45.89 53.47 46.94

𝐰𝟏 𝐰𝟐 means  𝐰𝟐 <prep>  𝐰𝟏 55.57 52.11 47.95 83.11 57.92 66.99 65.39 63.04 63.47

a  𝒘𝟏 𝒘𝟐 is  a  𝒘𝟏 <prep> the  𝒘𝟐 43.30 47.88 41.51 83.83 67.32 74.26 64.48 63.04 63.48

No training: RoBERTa-large

𝐰𝟐 <prep> 𝐰𝟏 50.78 33.80 25.79 79.33 69.30 73.96 53.72 56.08 51.94

𝐰𝟏 𝐰𝟐 means  𝐰𝟐 <prep>  𝐰𝟏 51.78 47.88 43.28 87.02 72.27 78.58 72.98 72.60 72.21

a  𝒘𝟏 𝒘𝟐 is  a  𝒘𝟏 <prep> the  𝒘𝟐 56.06 56.33 51.74 88.30 72.77 79.12 68.36 67.39 67.32
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Comparing performance of our RoBERTa-based unsupervised system with LSTM-based (NC-LSTM) and feed-forward 
neural network based (Baseline) supervised systems on different datasets (P: Precision; R: Recall, F: F-score)
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Error Analysis

• We analysed the performance on Ponkiya et al. (2018b)’s dataset using BERT-base and RoBERTa-large 
models. 

• The dataset was prepared by annotating noun compounds from Kim and Baldwin (2005)’s  dataset with prepositions.
• For every example, we have a semantic relation from Kim and Baldwin (2005) and a preposition from Ponkiya et al. (2018b).

• We observe that the major reason behind pattern-3 underperforming compared to pattern-2 is:  the correct 
preposition of predicted by pattern-2, but pattern-3 predicted for. 

• Examples (using RoBERTa-base model):
• PURPOSE relation: approval process, takeover plan, merger agreement, and release term
• PRODUCT relation: petroleum refinery, and gas industry
• SOURCE relation: pulp price, and government plan

• Out of 230 test samples, 22 are of such kind (pattern-2 correctly predicted of; pattern-3 predicted: for) for 
RoBERTa-base.

• This  degrades the precision of for (from 75.86 for pattern-2 to 57.14 for pattern-3) and recall of of (from 
92.97 to 71.09).

• We observed similar case with RoBERTa-large model. This observation is in line with preposition-vs-relation 
mapping observed by Ponkiya et al. (2018b, see Table 2).
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Free Paraphrasing

• SemEval-2013 Task-4: Free Paraphrases of Noun Compounds
• Target: noun-noun compound, e.g. air filter
• Goal: produce an explicitly ranked list of free paraphrases, e.g., 

• 1 filter for air
• 2 filter of air
• 3 filter that cleans the air
• 4 filter which makes air healthier
• 5 a filter that removes impurities from the air
• … 

• Data collection: using Amazon Mechanical Turk.
• Evaluation: comparison to a similar list produced by human annotators

• The authors observed that the top-ranked paraphrase for a given 
compound is often a preposition-only phrase.
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Total Min / Max / Avg

Trial/Train (174 NCs)

Paraphrases 6,069 1 / 287 / 34.9

unique paraphrases 4,255 1 / 105 / 24.5

Test (181 NCs)

paraphrases 9,706 24 / 99 / 53.6

unique paraphrases 8,216 21 / 80 / 45.4
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Motivation

• Abstract relations and prepositional paraphrasing have limitations on 
expressivity and coverage
• Fixed set of abstract relations
• Only 8 prepositions for prepositional paraphrasing

• For example:
• Consider caffeine headache and ice-cream headache: 

• One would be assign the same semantic relation (CAUSEOF) or can be paraphrased with for
• However, a lack of caffeine causes the former, an excess of ice-cream – the latter.

• Similarly for headache pills and fertility pills

• Ambiguity: a plastic saw could be a ‘saw made of plastic’ or a ‘saw for 
cutting plastic’
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T5 framework

• A pre-training objective used by T5 aligns 
more closely with a fill-in-the-blank task 
where the model predicts missing words 
within a corrupted piece of text.

• The model is asked to replace a blank 
with any number of words.
• Model can do this as it uses encoder-

decoder architecture.

• We generate multiple candidates for the 
blank to create multiple paraphrases.

• There is one more similar framework, 
BART (Bidirectional and Auto-Regressive 
Transformers), from Facebook. [paper]
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Every task we consider uses text as input to the model, which is 

trained to generate some target text. This allows us to use the same 
model, loss function, and hyperparameters across our diverse set of 

tasks including translation (green), linguistic acceptability (red), 

sentence similarity (yellow), and document summarization (blue). It 
also provides a standard testbed for the methods included in our 

empirical survey.
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Using T5 for Free Paraphrasing

• Templet: 𝑤1 𝑤2 ⇒ “A 𝑤1 𝑤2 is a 𝑤2 < extra_id_0> 
the 𝑤1 . </s>”

• Given a noun compound: say ‘club house’

1. T5 input: “A club house is a house <extra_id_0> 
the club . </s>” 

2. T5 generated the following sequences (for k=10):
“<extra_id_0> for <extra_id_1>. A”
“<extra_id_0> of <extra_id_1>. A”
“<extra_id_0> for <extra_id_1> . <extra_id_1>”
“<extra_id_0> for <extra_id_1> house .”
“<extra_id_0> owned by <extra_id_1> .”
“<extra_id_0> of <extra_id_1> . <extra_id_1>”
“<extra_id_0> owned by <extra_id_1> house”
“<extra_id_0> that belongs to <extra_id_1>”
“<extra_id_0> of <extra_id_1> house.”
“<extra_id_0> in <extra_id_1> . A”

3. Extract words between <extra_id_0> and 
<extra_id_1>, and use them to generate a 
candidate para-phrase

“house for a club”
“house of a club”
“house for a club”
“house for a club”
“house owned by a club”
“house of a club”
“house owned by a club”
“house that belongs to a club”
“house of a club”
“house in a club”

4. Grouping similar paraphrases, and ranking them   
based on the frequencies, we get 
(rank:paraphrase)

1 “house for a club”
1 “house of a club”
2 “house owned by a club”
3 “house that belongs to a club”
3 “house in a club”
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Evaluation

• Non-isomorphic scoring scores each system paraphrase with respect to the best match 
from the reference dataset, and averages these scores over all system paraphrases.

• Non-isomorphic matching rewards only precision.
• It rewards a system for accurately reproducing the top-ranked human paraphrases in the “gold 

standard”.
• A system will achieve a higher score in a non-isomorphic match if it reproduces the top-ranked 

human paraphrases as opposed to lower-ranked human paraphrases. 
• The ordering of system’s paraphrases is thus not important in non-isomorphic matching.

• Isomorphic scoring maps system paraphrases to (unmapped) paraphrases from the 
reference dataset, and requires systems to produce the full set of paraphrases

• It rewards both precision and recall. 
• It rewards a system for accurately reproducing the paraphrases suggested by human judges, and 

for reproducing as many of these as it can, and in much the same order.
• System’s paraphrases are matched 1-to-1 with reference paraphrases on a first-come first-

matched basis, so ordering can be crucial.
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Number of Paraphrases per Compound
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Analysis
• For a smaller value of 𝑘 (number of sequences 

generated by T5), generated paraphrases mostly 
matched top-ranked reference paraphrases, resulting in 
a higher non-isomorphic score.

• With an increase in 𝑘, the system generated diverse 
paraphrases, helps isomorphic score.

• For 𝑘 = 80 to 100, our system beats the recently 
reported results (by Shwartz and Dagan (2018)).

• T5 generates quite a good quality set of paraphrases. 
• However, the reference list does not have matching 

paraphrases

• Our system allows extra words only between the 
component nouns. 

• However, the dataset has many reference paraphrases 
where new words appear..

• at the beginning: ‘pay policy’ → “corporate policy on pay”
• at the end of a paraphrase: ‘operating system’ → “system 

controls operating of computer”

• Example:
“policy on pay”†

“policy defines pay”
“policy covering pay”
“policy governing pay”
“policy covers pay”
“policy deals with pay”
“policy describes pay”
“policy involving pay”
“policy designed to protect pay” †

“policy designed to cover pay” †

“policy designed for pay” †

“policy applicable to pay” †

“policy to protect pay” †

“policy used to cover pay” †

“policy used to pay pay” †

“policy used to protect pay” †

“policy focuses on pay”

• Examples, marked with dagger-sign (†), 
have a partial matching (score ≤ 25%), 
while the rest of the listed paraphrases 
do not havea match.
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Conclusion

• We extend ideas from language modeling for prepositional paraphrasing
• Using an LSTM encoder along with distant supervision helps prepositional paraphrasing

• We use abstract labels as a representation for semantic relations
• Using semantic relations which have a lexical resource associated with them have added 

benefits 
• We use FrameNet information to show how it can help the system to predict unseen labels
• Our results for frame element predictions are not so good, but results for frame prediction 

are promising

• We use pre-trained language models to develop unsupervised paraphrasing 
systems
• We pose the paraphrasing problem as fill-in-the-blank problem
• BERT can be used to uncover a preposition as it has been trained to uncover a ‘unknown’ 

word
• T5 can be used to uncover for free paraphrasing as it has been trained to uncover multiple 

words 
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