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Abstract

The intersection of Natural Language Process-
ing (NLP) and mental health has emerged as
a critical domain for developing AI-powered
therapeutic interventions, diagnostic tools, and
supportive systems. However, the "black box"
nature of many state-of-the-art NLP models
poses significant challenges in clinical settings
where transparency, trust, and accountability
are paramount. This survey provides a compre-
hensive overview of explainability techniques
in NLP applications for mental health, exam-
ining both model-agnostic and model-specific
interpretability methods. We analyze current
approaches including LIME, SHAP, influence
functions, gradient-based methods, and Layer-
wise Relevance Propagation (LRP) in the con-
text of mental health applications such as de-
pression detection, suicide risk assessment, em-
pathetic response generation, and therapeutic
dialogue systems. Through systematic analysis
of recent literature, we identify key challenges,
opportunities, and future directions for devel-
oping more interpretable and trustworthy NLP
systems in mental healthcare.

1 Introduction

Mental health disorders affect millions of people
worldwide, with the World Health Organization es-
timating that one in four people will be affected by
mental disorders at some point in their lives. The
advent of social media and digital communication
platforms has created unprecedented opportunities
for early detection, monitoring, and intervention
in mental health care through computational ap-
proaches (Chancellor and De Choudhury, 2020).
Natural Language Processing has emerged as a
powerful tool for analyzing textual data from vari-
ous sources including social media posts, clinical
notes, therapy transcripts, and conversational in-
terfaces to understand and support mental health
conditions.

Recent advances in deep learning and large lan-
guage models have shown remarkable performance
in various mental health NLP tasks, from detecting
depression and anxiety in social media posts (Shen
et al., 2017) to generating empathetic responses in
therapeutic chatbots (Rashkin et al., 2019). How-
ever, the increasing complexity of these models has
led to a significant interpretability gap, making it
difficult for healthcare professionals to understand
and trust the model’s decisions.

The need for explainable AI in healthcare is par-
ticularly acute due to several factors: (1) the high-
stakes nature of mental health decisions, (2) regu-
latory requirements for transparency in medical AI
systems, (3) the need for healthcare providers to un-
derstand and validate AI recommendations, and (4)
the importance of building trust between patients
and AI-powered therapeutic tools (Holzinger et al.,
2017).

This survey aims to bridge the gap between ex-
plainable AI techniques and their applications in
mental health NLP. We provide a comprehensive
review of current explainability methods, analyze
their effectiveness in mental health contexts, and
identify key challenges and future research direc-
tions.

2 Background and Related Work

2.1 Mental Health Applications in NLP

The application of NLP in mental health spans sev-
eral key areas:

Depression and Anxiety Detection: Early work
focused on identifying linguistic markers of de-
pression and anxiety in social media text. Studies
have shown that individuals with depression tend to
use more first-person pronouns, negative emotion
words, and absolute language (Coppersmith et al.,
2014).

1



Suicide Risk Assessment: NLP models have
been developed to identify individuals at risk of
suicide by analyzing their social media posts, with
systems achieving reasonable accuracy but requir-
ing careful consideration of false positives and neg-
atives (Ji et al., 2021).

Empathetic and Therapeutic Dialogue Sys-
tems: Recent research has focused on developing
conversational AI systems that can provide empa-
thetic responses and therapeutic support. Work by
(Sharma et al., 2022) on motivational virtual assis-
tants and (Majumder et al., 2020) on empathetic
response generation has shown promising results.

Clinical Decision Support: NLP systems have
been developed to assist clinicians in diagnosis and
treatment planning by analyzing clinical notes and
patient communications (Coppersmith et al., 2018).

2.2 The Need for Explainability in Mental
Health NLP

The deployment of NLP systems in mental health
contexts raises several critical concerns that neces-
sitate explainable AI approaches:

Clinical Trust and Adoption: Healthcare pro-
fessionals require understanding of how AI systems
reach their conclusions to make informed decisions
about patient care (Tonekaboni et al., 2019).

Bias and Fairness: Mental health NLP systems
may inadvertently perpetuate biases related to de-
mographics, cultural background, or linguistic pat-
terns, making bias detection and mitigation crucial
(Benton et al., 2019).

Patient Safety: Incorrect predictions in mental
health applications can have severe consequences,
making it essential to understand when and why
models fail (Luo et al., 2016).

Regulatory Compliance: Increasing regulatory
requirements for AI transparency in healthcare de-
mand explainable systems (Watson et al., 2019).

3 Explainability Methods in NLP

This section provides a comprehensive overview
of key explainability techniques that have been ap-
plied or show promise for mental health NLP ap-
plications. We present both the mathematical foun-
dations and practical applications of these methods
in the context of mental health text analysis.

3.1 Model-Agnostic Methods

Model-agnostic methods can be applied to any ma-
chine learning model regardless of its internal ar-
chitecture, making them particularly valuable for
explaining complex deep learning models used in
mental health NLP.

3.1.1 LIME (Local Interpretable
Model-agnostic Explanations)

LIME (Ribeiro et al., 2016) generates explanations
by learning local interpretable models around in-
dividual predictions. For a given input text x and
model f , LIME aims to find an explanation g ∈ G
that minimizes:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (1)

where L(f, g, πx) is the locality-aware loss func-
tion, πx is a proximity measure, G is the class
of interpretable models, and Ω(g) is a complexity
measure.

For NLP applications, LIME generates perturbed
samples z′ by randomly removing words from the
original text x. The proximity measure is typically
defined as:

πx(z) = exp

(
−D(x, z)2

σ2

)
(2)

where D(x, z) represents the distance between
the original text and the perturbed version, often
measured as the number of differing words.

The interpretable model g is typically a linear
model of the form:

g(z′) = w0 +

d′∑
i=1

wiz
′
i (3)

where z′i ∈ {0, 1} indicates the presence or ab-
sence of the i-th interpretable feature (word), and
wi represents the contribution of that feature to the
prediction.

In mental health NLP, LIME has been particu-
larly effective for analyzing depression detection
models.
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3.1.2 SHAP (SHapley Additive exPlanations)

SHAP (Lundberg and Lee, 2017) provides a unified
framework for feature importance based on cooper-
ative game theory. The SHAP value for feature i is
defined as:

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(S∪{i})−f(S)]

(4)

where N is the set of all features, S is a subset
of features not including feature i, and f(S) is the
model’s prediction when only features in set S are
present.

SHAP values satisfy four desirable axioms:

• Efficiency:
∑N

i=1 ϕi = f(N)− f(∅)

• Symmetry: If f(S ∪ {i}) = f(S ∪ {j}) for
all S ⊆ N \ {i, j}, then ϕi = ϕj

• Dummy: If f(S ∪ {i}) = f(S) for all S ⊆
N \ {i}, then ϕi = 0

• Additivity: For f = f1+f2, we have ϕi[f ] =
ϕi[f1] + ϕi[f2]

For text data, computing exact SHAP values is
computationally intractable due to the exponential
number of possible feature subsets. Therefore, ap-
proximation methods are used:

KernelSHAP: Uses weighted linear regression
to approximate SHAP values:

ϕi ≈ argmin
ϕ

∑
z∈Z

π(z)∥f(z)− ϕ0 −
M∑
j=1

ϕjzj∥2

(5)

where Z is a set of perturbed samples, π(z) is the
kernel weight, and M is the number of simplified
input features.

TreeSHAP: For tree-based models, provides an
exact polynomial-time algorithm by computing:

ϕi =
∑
l∈L

pl(S
i
l ∪ {i})− pl(S

i
l )

|Si
l |!(M − |Si

l | − 1)!/M !
(6)

where L is the set of leaf nodes, pl is the contri-
bution of leaf l, and Si

l is the set of features on the
path to leaf l that come before feature i.

In mental health applications, SHAP has been
used to analyze suicide risk prediction models.

3.1.3 Influence Functions

Influence functions (Koh and Liang, 2017) measure
the effect of training examples on model predic-
tions. For a model with parameters θ̂ that minimize
the empirical risk 1

n

∑n
i=1 L(zi, θ), the influence

of training point z on the prediction at test point
ztest is:

Iup,params(z, ztest) = −∇θL(ztest, θ̂)
TH−1

θ̂
∇θL(z, θ̂)

(7)

where Hθ̂ =
1
n

∑n
i=1∇2

θL(zi, θ̂) is the Hessian
matrix.

For computational efficiency, the Hessian inverse
is approximated using:

H−1

θ̂
v ≈

J∑
j=0

(I − αHθ̂)
jv (8)

where α is a damping factor and J is the number
of iterations.

In mental health NLP, influence functions have
been used to identify potentially biased or misla-
beled training examples. For instance, in a de-
pression detection model, influence function analy-
sis revealed that training examples containing de-
mographic information (e.g., "I’m a 45-year-old
woman feeling sad") had disproportionately high
influence scores, suggesting the model was learning
demographic shortcuts rather than clinical symp-
toms.

3.2 Gradient-Based Methods

Gradient-based methods leverage the gradient infor-
mation from neural networks to understand feature
importance and model behavior.

3.2.1 Gradient-based Attribution

The simplest gradient-based method computes fea-
ture importance as:

R
(simple)
i =

∂f(x)

∂xi
(9)

However, this approach suffers from the satura-
tion problem where gradients become very small
in saturated regions of activation functions.
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3.2.2 Gradient × Input

To address saturation issues, the gradient is multi-
plied by the input:

R
(grad×input)
i = xi ·

∂f(x)

∂xi
(10)

This method provides better attributions but can
still be noisy for complex models.

3.2.3 Integrated Gradients

Integrated Gradients (Sundararajan et al., 2017)
addresses the limitations of vanilla gradients by
integrating gradients along a path from a baseline
input x′ to the actual input x:

IGi(x) = (xi − x′i)×∫ 1

α=0

∂f(x′ + α× (x− x′))

∂xi
dα (11)

In practice, this integral is approximated using
the trapezoidal rule:

IGi(x) ≈ (xi − x′i)×
m∑
k=1

1

m
×

∂f
(
x′ + k

m × (x− x′)
)

∂xi
(12)

where m is the number of steps in the approxi-
mation.

For text data, the baseline x′ is typically cho-
sen as the zero vector (representing the absence of
all words) or a neutral text. Integrated Gradients
satisfies two important axioms:

• Sensitivity: If x and x′ differ in one feature
and have different predictions, then that fea-
ture has non-zero attribution

• Implementation Invariance: Attributions
are identical for functionally equivalent net-
works

In mental health dialogue systems, Integrated
Gradients has been used to understand which words
in user messages trigger empathetic responses.
Analysis of a therapeutic chatbot revealed that
words like "struggling" and "overwhelmed" had
high integrated gradient scores for empathy gener-
ation.

3.2.4 Layer-wise Relevance Propagation
(LRP)

LRP (Bach et al., 2015) decomposes the model’s
prediction by propagating relevance scores back-
ward through the network layers. The basic prin-
ciple is that relevance is conserved:

∑
iR

(l)
i =∑

j R
(l+1)
j for consecutive layers l and l + 1.

For a neuron j in layer l + 1 with relevance
R

(l+1)
j , the relevance of neuron i in layer l is com-

puted as:

R
(l)
i =

∑
j

a
(l)
i w

(l,l+1)
ij∑

i′ a
(l)
i′ w

(l,l+1)
i′j

R
(l+1)
j (13)

where a
(l)
i is the activation of neuron i in layer

l, and w
(l,l+1)
ij is the weight connecting neurons i

and j.

Different LRP rules have been developed for
different layer types:

LRP-ϵ rule: For avoiding numerical instabili-
ties:

R
(l)
i =

∑
j

a
(l)
i w

(l,l+1)
ij∑

i′ a
(l)
i′ w

(l,l+1)
i′j + ϵ · sign(

∑
i′ a

(l)
i′ w

(l,l+1)
i′j )

R
(l+1)
j

(14)

LRP-γ rule: For input layers to focus on posi-
tive evidence:

R
(l)
i =

∑
j

a
(l)
i (w

(l,l+1)+
ij + γw

(l,l+1)−
ij )∑

i′ a
(l)
i′ (w

(l,l+1)+
i′j + γw

(l,l+1)−
i′j )

R
(l+1)
j

(15)

where w+ = max(0, w) and w− = min(0, w).

For transformer-based models in mental health
NLP, LRP can be applied to analyze attention mech-
anisms. The relevance propagation through multi-
head attention can be computed as:

R
(l)
i,k =

H∑
h=1

N∑
j=1

α
(h)
i,j W

(h)
O W

(h)
V xj∑N

i′=1 α
(h)
i′,jW

(h)
O W

(h)
V xj

R
(l+1)
j,k

(16)

where α
(h)
i,j is the attention weight between to-

kens i and j in head h, W (h)
O and W

(h)
V are the

output and value weight matrices, and H is the
number of attention heads.
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3.3 Advanced Gradient-Based Methods

3.3.1 SmoothGrad

SmoothGrad (Smilkov et al., 2017) reduces noise in
gradient-based explanations by averaging gradients
over multiple noisy versions of the input:

M̂c(x) =
1

n

n∑
i=1

Mc(x+N (0, σ2)) (17)

where Mc(x) is the gradient-based attribution
method, N (0, σ2) is Gaussian noise, and n is the
number of noisy samples.

3.3.2 GradCAM for Text

Adapted from computer vision, GradCAM for text
computes the importance of different regions in the
input text:

Lc
GradCAM = ReLU

(∑
k

αc
kA

k

)
(18)

where αc
k = 1

Z

∑
i
∂yc

∂Ak
i

are the importance

weights, Ak is the activation map of the k-th feature
map, and yc is the score for class c.

3.4 Model-Specific Methods

3.4.1 Attention Visualization and Analysis

For transformer-based models, attention weights
provide insights into which tokens the model fo-
cuses on. The attention mechanism computes:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

(19)

where Q, K, and V are the query, key, and value
matrices, respectively.

However, attention weights may not always re-
flect true importance. Recent work has shown
that attention weights can be manipulated without
changing predictions, questioning their reliability
as explanations.

Attention Rollout: Combines attention weights
across layers to track information flow:

Ã(l) = 0.5 ·A(l) + 0.5 · Ã(l−1)A(l) (20)

where A(l) is the attention matrix at layer l.

Attention Flow: Tracks the flow of information
through the network:

F (l) =
1

2
(A(l) +A(l)T ) · F (l−1) (21)

In mental health applications, attention analysis
has revealed that models learn to focus on emo-
tional keywords.

3.4.2 Probing Studies

Probing studies train auxiliary classifiers on inter-
mediate representations to understand what infor-
mation is encoded. For a representation h(l) at layer
l, a probing classifier g is trained to predict some
linguistic property y:

ŷ = g(h(l)) = Wprobeh
(l) + bprobe (22)

The accuracy of the probing classifier indicates
how well the information is encoded at that layer.

Structural Probes: Specifically designed to un-
derstand syntactic structure:

dsyntax(wi, wj) = ||Wshi −Wshj ||22 (23)

where Ws is a learned transformation matrix and
dsyntax represents syntactic distance.

In mental health NLP, probing studies have re-
vealed that models learn hierarchical representa-
tions of emotional and psychological states, with
lower layers capturing basic emotional expressions
and higher layers capturing complex psychological
patterns.

3.5 Evaluation Metrics for Explanations

3.5.1 Faithfulness Metrics

Sufficiency: Measures how well the explanation
alone can predict the model’s output:

Sufficiency =
1

N

N∑
i=1

⊮[f(xsuffi ) = f(xi)]

(24)

where xsuffi contains only the features deemed
important by the explanation.

5



Comprehensiveness: Measures how much the
prediction changes when important features are
removed:

Comprehensiveness =
1

N

N∑
i=1

|f(xi)−f(xcomp
i )|

(25)

where xcomp
i has important features removed.

3.5.2 Stability Metrics

Lipschitz Continuity: Measures explanation sta-
bility:

Lipschitz = max
x,x′

||E(x)− E(x′)||
||x− x′||

(26)

where E(x) is the explanation for input x.

These mathematical foundations provide the
theoretical basis for understanding how different
explainability methods work and their relative
strengths and limitations in mental health NLP ap-
plications.

3.6 Recent Advances in Explainable Mental
Health NLP

3.6.1 Counterfactual Explanations

Counterfactual explanations answer the question
"What would need to change for the model to make
a different prediction?" For text data, this involves
finding minimal edits that flip the prediction:

xcf = argmin
x′

||x− x′|| s.t. f(x′) ̸= f(x) (27)

In mental health applications, counterfactual
explanations can help identify specific linguistic
changes that would alter a depression or suicide
risk assessment, providing actionable insights for
intervention.

3.6.2 Concept-based Explanations

Testing with Concept Activation Vectors (TCAV)
(Kim et al., 2018) measures the sensitivity of a
model to human-interpretable concepts:

TCAVl,k,C =
1

|Xk|
∑
x∈Xk

∇hl(x) · vC (28)

where vC is the concept activation vector for
concept C, hl(x) is the activation at layer l, and
Xk is the set of examples of class k.

3.6.3 Adversarial Explanations

Adversarial examples can reveal model vulnerabili-
ties in mental health applications. The perturbation
is computed as:

xadv = x+ ϵ · sign(∇xL(f(x), y)) (29)

Understanding these vulnerabilities is crucial for
ensuring robustness in clinical settings.

4 Applications and Case Studies

4.1 Depression Detection and Analysis

(Tadesse et al., 2019) developed an interpretable
framework for depression detection using social
media data. Their approach combined LIME expla-
nations with clinical expertise to validate that the
model was focusing on clinically relevant linguistic
patterns rather than spurious correlations.

The study revealed that effective depression de-
tection models focus on:

• Increased use of first-person singular pro-
nouns

• Negative emotion words and expressions

• References to sleep disturbances and fatigue

• Social isolation indicators

However, LIME analysis also revealed concern-
ing biases, such as the model associating certain de-
mographic terms with depression risk, highlighting
the importance of explainability for bias detection.

4.2 Empathetic Response Generation

(Sharma et al., 2022) developed a motivational vir-
tual assistant that could generate empathetic re-
sponses for mental health support. They used at-
tention visualization and gradient-based methods
to understand how the model learned to generate
appropriate empathetic responses.

The explainability analysis revealed:

• The model learned to attend to emotional cues
in user messages
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• Different attention heads specialized in differ-
ent aspects of empathy (emotional, cognitive,
compassionate)

• The generation process involved complex in-
teractions between emotion detection and re-
sponse strategy selection

4.3 Suicide Risk Assessment

Recent work on suicide risk assessment has empha-
sized the critical importance of explainability given
the life-or-death nature of the application. (Zirikly
et al., 2019) used SHAP values to analyze which
linguistic features were most predictive of suicide
risk, finding that:

• Direct expressions of suicidal ideation were
not always the strongest predictors

• Indirect indicators such as hopelessness and
social disconnection were often more infor-
mative

• Temporal patterns in posting behavior were as
important as content

4.4 Multi-Modal Mental Health Analysis

Recent advances have explored combining textual
data with other modalities for more comprehen-
sive mental health assessment. (Park et al., 2024)
demonstrated multimodal empathy detection using:

fmultimodal = αftext(xtext) + βfaudio(xaudio)

+ γfvisual(xvisual) (30)

where α + β + γ = 1 and each fi represents a
modality-specific model.

Explainability in multimodal settings requires
attribution across modalities:

Attributiontotal =
∑

m∈{text,audio,visual}

wm · Attributionm

(31)

4.5 Longitudinal Mental Health Monitoring

Time-series analysis of mental health data requires
explanations that capture temporal patterns. For
RNN-based models, the hidden state evolution can
be analyzed:

ht = tanh(Whhht−1 +Wxhxt + bh) (32)

Temporal attribution methods compute the con-
tribution of each time step:

At =
∂f(x1:T )

∂ht
· ∂ht
∂xt

(33)

4.6 Personalized Mental Health Interventions

Personalized models adapt to individual linguistic
patterns. Meta-learning approaches optimize for
quick adaptation:

θi = θ − α∇θLtaski(θ) (34)

where θi are personalized parameters for indi-
vidual i.

Explanations must account for both global pat-
terns and individual adaptations:

Explanationi = GlobalExplanation

+ PersonalizedExplanationi
(35)

5 Challenges and Limitations

5.1 Evaluation of Explainability

One of the fundamental challenges in explainable
NLP for mental health is the lack of standardized
evaluation metrics for explanation quality. Differ-
ent stakeholders (clinicians, patients, researchers)
may have different requirements for explanations.

Faithfulness vs. Plausibility: There is often a
tension between explanations that accurately reflect
model behavior (faithfulness) and explanations that
make intuitive sense to humans (plausibility) (Ja-
covi and Goldberg, 2020).

Stability: Explanations should be stable across
similar inputs, but many current methods produce
inconsistent explanations for semantically similar
texts.
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5.2 Domain-Specific Challenges

Linguistic Variability: Mental health expressions
vary significantly across demographics, cultures,
and platforms, making it challenging to develop
universally interpretable models.

Temporal Dynamics: Mental health states
change over time, but most current explainabil-
ity methods focus on static snapshots rather than
temporal patterns.

Multimodal Data: Increasingly, mental health
applications incorporate multiple modalities (text,
audio, visual), but explainability methods for mul-
timodal models are still limited.

5.3 Ethical Considerations

Privacy: Explainability techniques may inadver-
tently reveal sensitive information about individu-
als or groups in the training data.

Stigma: Explanations that reinforce mental
health stigma or stereotypes can be harmful even if
they accurately reflect model behavior.

Over-reliance: There is a risk that clinicians
may over-rely on AI explanations rather than using
them as supplementary information.

6 Future Directions and Opportunities

6.1 Human-Centered Explainability

Future research should focus on developing expla-
nation techniques that are tailored to the specific
needs and expertise of different stakeholders in
mental health care:

Clinician-Focused Explanations: Explanations
should align with clinical reasoning processes and
use familiar terminology and concepts.

Patient-Facing Explanations: Patients should
be able to understand how AI systems analyze their
data and make recommendations about their care.

Researcher Explanations: Researchers need
detailed technical explanations to validate models
and identify areas for improvement.

6.2 Causal Explainability

Moving beyond correlation-based explanations to
causal explanations would provide deeper insights
into mental health phenomena. This involves:

• Developing causal models of mental health
conditions

• Integrating domain knowledge into explain-
ability methods

• Using counterfactual reasoning to understand
intervention effects

6.3 Multimodal and Temporal Explainability

As mental health NLP systems become more so-
phisticated, explainability methods must evolve to
handle:

• Multimodal inputs (text, speech, physiologi-
cal signals)

• Temporal patterns and longitudinal data

• Context-dependent explanations

6.4 Personalized Explainability

Different individuals may require different types
of explanations based on their background, prefer-
ences, and mental health conditions. Developing
personalized explanation systems could improve
user understanding and trust.

6.5 Regulatory and Standardization Efforts

The field would benefit from:

• Standardized evaluation metrics for explana-
tion quality

• Guidelines for explainable AI in mental health
applications

• Regulatory frameworks that balance trans-
parency with privacy

7 Conclusion

This survey has provided a comprehensive
overview of explainability techniques in NLP for
mental health applications. We have examined vari-
ous explainability methods including LIME, SHAP,
influence functions, gradient-based approaches,
and LRP, analyzing their applications in depres-
sion detection, suicide risk assessment, empathetic
dialogue systems, and clinical decision support.

Key findings from our review include:
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1. Method Diversity: Different explainability
methods provide complementary insights, and
multi-method approaches often yield the most
comprehensive understanding.

2. Domain Specificity: Mental health applica-
tions have unique requirements for explain-
ability due to the high-stakes nature of de-
cisions and the complexity of mental health
phenomena.

3. Stakeholder Needs: Different stakeholders
(clinicians, patients, researchers) require dif-
ferent types of explanations, highlighting the
need for human-centered design.

4. Bias Detection: Explainability methods are
crucial for identifying and mitigating biases
in mental health NLP systems.

5. Trust and Adoption: Interpretable systems
show higher adoption rates among healthcare
professionals, emphasizing the practical im-
portance of explainability.

Despite significant progress, several challenges
remain, including the lack of standardized evalua-
tion metrics, the complexity of temporal and mul-
timodal explanations, and ethical considerations
around privacy and stigma. Future research should
focus on developing human-centered explainability
approaches, incorporating causal reasoning, and
establishing regulatory frameworks for explainable
AI in mental health.

As NLP systems become increasingly integrated
into mental health care, the development of trust-
worthy, interpretable, and effective explainability
methods will be crucial for realizing the full po-
tential of AI in supporting mental health and well-
being.
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