
Literature Survey: Machine Translation

Shreya Alva
Shubham Dewangan

Nitish Joshi
Pushpak Bhattacharyya

CFILT, Indian Institute of Technology Bombay, India
{shreya, nitishjoshi, shubhamd, pb}@cse.iitb.ac.in

Abstract
Machine Translation lies at the heart of Nat-
ural Language Processing, which in turn is
one of the of the core components of the Ar-
tificial Intelligence discipline. In this report,
we have a brief look at the legacy approaches
to machine translation, while also examining
the path that Machine Translation is headed
on, with the newest approach to this classic
problem - namely neural machine translation
This report is a brief introduction to the major
works in the field of neural machine transla-
tion.

1 Introduction

Artificial Intelligence is transforming the way we
interact with the world as it bridges the gap between
humans and machines. Machine translation (MT)
is the task wherein computers transform input from
one natural language into another natural language,
while preserving the meaning of the original input.
It also serves the purpose of bridging the language
divide between humans with the help of automa-
tion. The input to an MT system can be a sentence,
a block of text or whole documents. This problem
is fraught with all kinds of ambiguities that make
this problem very challenging for a computer that
has no world knowledge or intuitive understanding
of human language; to name a few of the ambigui-
ties that exist in this field are morphological (what
words to use and how to combine sub-word units),
syntactic (relating to grammar), semantic (to infer
the meaning of the words, as same word can mean
different things like river or financial bank) and so
on.

Traditionally there existed 3 approaches to ma-
chine translation (Bhattacharyya, 2015): direct MT,
Rule Based MT (abbreviated to RBMT) and Data
Driven MT. Under Data Driven MT we have 2 ap-
proaches, Example Based and Statistical MT (ab-
breviated to EBMT and SMT respectively). We

will discuss the legacy approaches of Rule Based
MT and Example Based MT in Chapter 2 and Sta-
tistical MT in section 3.

However, in the past decade Neural Network
based approaches have gained momentum, as they
have in several other fields. This seminar report is
an exploration of the journey of machine transla-
tion, and where it is headed. The main challenge
is to make systems that deliver adequate and flu-
ent translations. Researchers keep endeavoring to
improve the translation quality, which is most com-
monly measured by the BLEU (bilingual evaluation
understudy) score, a metric that captures how good
the translation done by the machine is by compar-
ing the precision and recall of n-grams (n=1,2,3,4)
with some reference translations. Although there
may be several translations that need not be among
the reference ones, BLEU (and its interactive form,
iBLEU) remain the most popular metrics due to the
simplicity of calculation and its good correlation
with human judgment.

2 Legacy Approaches: RBMT and
EBMT

2.1 Rule Based Machine Translation
(RBMT)

The original approach to machine translation re-
quired a critical involvement by humans and lin-
guistic experts, as training data was not widely
available nor were the computational resources of
the time up to the mark to exploit the language
transfer information could be provided by data.
In this approach, humans explicitly stated rules
that specified how an input sentence is to be anal-
ysed, transferred into an intermediate representa-
tion which is then used to generate the target lan-
guage sentence.

These kinds of systems suffer from a high preci-
sion, low recall condition such that when the rules

can be correctly applied, they generate the right
output, but most of the time these rules cannot be
aptly applied. When more than one rule is applica-
ble to a sentence, there can be a conflict between
rules, so careful ordering is necessary.

There are two approaches to RBMT - Interlingua
and Transfer Based MT.

2.1.1 Interlingua based MT
Interlingua is an intermediate language that repre-
sents meaning without any ambiguity. To perform
translation, the system needs to convert input from
the source language to the form of the interlingua,
and then from the interlingua to the target language.

Universal Networking Language (UNL) is one
such interlingua. Information is represented
sentence-wise. Each sentence can be represented
by a hypergraph wherein the nodes are concepts
and directed edges depict relations. Concepts are
known as universal words (UWs) and are gathered
from the lexicon (lexicon entries have syntactic
and semantic attributes). They are a language-
independent representation of word knowledge.
For example, food(icl ¿ salad) denotes the noun
salad. The ’icl’ notation captures inclusion phe-
nomenon and forms an is-a structure like in se-
mantic nets. A standard set of relation labels (RLs)
relate UWs and thus capture conceptual knowledge.
Speech acts such as speaker’s time, aspect, view,
of an event, are depicted via attribute labels.
The reasons that establish the authority of UNL
are that it is the only interlingua that does these
together:

(1) uses semantic relations to connect words with
the main predicate of the sentence.

(2) gives an unambiguous word representation
(3) lucidly expresses properties of speakers’ and

referents worldview
However creating a UW dictionary that can link

different languages lexemes is challenging - the
two main obstacles being:

(1) granularity of conceptual space is not the
same in all languages and

(2) the existence of multiwords. Multiwords are
combinations of words characterized by noncompo-
sitionality (the meaning of the combination word
cannot be derived by the words that make it up)
and fixed collocation of words, in structure and
order. Examples: the prepositional verb took off
which means to run away, phrasal-prepositional
verb catch up with which could either mean reach-
ing someone person ahead of you, or just getting to

talk with someone you haven’t met in a long time.
To perform translation, first in the Analysis stage,
the source sentence is converted to the interlingua,
and then the interlingua is converted to the target
sentence (generation or G-stage). Since the inter-
lingual representation requires full disambiguation,
the A-stage is a complete natural language analysis
problem. From the interlingua representation it can
be converted into the target language in these 3
stages: selecting the appropriate lexemes and in-
serting the function words, identifying the case and
generating the correct morphology (verb form and
so on) and planning the syntax i.e. deciding the
word order for these words.

2.1.2 Transfer based MT
Since complete disambiguation of a sentence is
a very difficult task, and not even necessary for
closely related languages wherein ambiguity can
be preserved without affecting the meaning, Trans-
fer based MT gained traction. The process involves
taking the source sentence up to an intermediate
stage in the Vauquois triangle and then perform-
ing transfer to an intermediate representation. This
does not demand complete disambiguation of the
sentence. The defining characteristic of transfer-
based MT is the application of well-defined transfer
rules that work with the generalizations of lexical
objects to perform structural transformations (JJ:
adjectives, NP: noun phrases, V: verb) . Trans-
fer rule T: REPS -> REPT is a mapping from the
source language representation REPS to target lan-
guage sentence representation REPT. To capture
the common operation in translating from an SVO
language like English to an SOV language like
Hindi, a rule of this form < V NP -> NP V >, that
reverses the constituents of a verb phrase applies.

2.2 Example Based Machine Translation
(EBMT)

The core idea is translation by analogy. To perform
a translation, we compare the input to the system
to the parallel corpora database that the system pos-
sesses, which is done by computing text similarity.
The fundamental requirement of text similarity are:
(1) a valid measure of similarity; it should measure
similar texts as indeed similar and dissimilar ones
as dissimilar, and (2) resources like large lexical
knowledge networks that enable one to capture the
notion of ’similarity’. Transfer takes place through
templates that are learned from data. EBMT shares
stages of processing with RBMT and SMT. The

processing that they perform on the source sen-
tences is common to all three; but their outputs
differ.

2.2.1 How EBMT is done
The broad steps that are to be followed while doing
EBMT are:
1) Compute similarity with templates available
2) Stitch the matching fragments together
3) Smooth boundary friction
The drawback of EBMT is that it doesn’t scale up
well.

3 Statistical Machine Translation (SMT)

Pure SMT relies wholly on data, the model is built
without any human intervention, using corpuses.

It has been the ruling paradigm for until the
early 2010s. To teach a machine how to translate,
it needs examples which give it this information:
Translation of the words (the bilingual word map-
pings) i.e. what word maps to what word(s) and the
correct positions for the translated words in the tar-
get sentence (alignment). The underlying principle
of SMT is word alignment.

3.1 Word Alignment
When a sentence in one language is translated to an-
other, there exists a mapping between the words. A
word from either side of the translation can map to
zero, one or more words on the other side. The phe-
nomenon of mapping one word to multiple words
on the other side is called fertility. A word can map
to multiple words due to:
1. Synonymy on target side, (e.g., ’water’ in En-
glish translating to jal, paani, neer, etc., in Hindi),
2. Polysemy on source side (e.g., ’brightened’
translating to ’khil uthna’, as in her face bright-
ened with joy –> usakaa cheharaa khushi se khil
uthaa)
3. Syncretism (’to run’ translating to ’bhaaga’,
’bhaagi’, ’bhaage’) These alignments are the key to
translation.

To learn these word mappings the system re-
quires several parallel sentences, that will intro-
duce the possibility of a particular alignment and
others to establish their certitude. Given a sentence
pair, the other pair must be of one of the two types:
one-same-rest-changed (only one word is common
to both sentences) and one-changed-rest-same (the
sentences only differ by one word). To compute
these mappings, the Expectation Maximization al-
gorithm is used.

The basic equation of SMT is:
argmax

e
ê = argmax

e
P (e|f) = argmax

e
P (e) · P (f |e)

where e is a sentence from the sentence bank E
of language 1 (say, English), and f is from the sen-
tence bank F of language 2 (the foreign language,
like French), P(e) is the language model P(e) and
P(f | e) is the translation model. P(e) is computed
from the product of N-grams obtained from L1’s
corpora. On the other hand, P(f | e) would be the
product of word translations given the input words,
subject to the effect of alignment.

IBM proposed several approaches to build a
translation model and alignment model, of which
the 3 most important and basic approaches were:

3.1.1 IBM Model 1
It is the most basic model and builds on the follow-
ing assumptions:

1. Length of the input m and length of the output
l is same, i.e. P (m+ l) = ε

2. The probabilities of all alignments are equal
i.e. any word can map to any word with equal
probability. Therefore,∏m
j=1 P (aj |f

j−1
1 , aj−1

1 , e,m) = 1
(l+1)m

3. The word fj depends on the jth word in the
alignment a in e which is eaj , i.e.,∏m
j=1 P (fj |f

j−1
1 , aj−1

1 , e,m) =∏m
j=1 P (fj |eaj)

Combining all the three assumptions and applying
optimization stels, the IBM model-1 becomes:

P (f |e) = ε

(l + 1)m

m∏
j=1

l∑
i=0

P (fj |eaj) (1)

Drawbacks of IBM model-1:

• The condition of input and output sentence
having the same length is too rare and limit-
ing.

• Due to language phenomenon, words usually
occur in phrases, and it is unlikely that they
would have equal alignment probability across
languages.

• There could be zero or more alignments pos-
sible for a single input word.

3.1.2 IBM Model 2
Assumptions of this model are as follows:

1. It takes alignment into consideration and
models it separately i.e.,∏m
j=1 P (aj |f

j−1
1 , aj−1

1 , e,m) =∏m
j=1 P (aj |j, l,m)

2. As before, fj depends on eaj .

The resulting translation model is:

P (f |e) = ε.
m∏
j=1

l∑
i=0

(
P (i|j, l,m).P (fj |ei)

)
(2)

It suffers from similar drawbacks as model 1, only
having addressed the issue of accounting for align-
ment.

3.1.3 IBM Model 3
Works with an alignment model that considers fer-
tility of words. Fertility η(φ|f) can be defined
as for each word in foreign sentence, number of
words φ = 0, 1, 2, . . . are generated. Note that
fertility can also take care of NULL mapping.

Translation by IBM model-3 is a four step pro-
cess:.

1. Fertility: For each source sentence word
si, fertility φi is chosen with probability
P (φi|ei).

2. Null Insertion: Number of target words to be
generated from NULL is chosen with proba-
bility η(φ|NULL).

3. Lexical Translation: Translation of each word,
like IBM model-1, is done by P (f |e).

4. Distortion: Probability of translating fi (for-
eign word in ith position) to sj (source word
in jth position) is modeled by d(j|i, l,m).

p(f |e) =
l∑

a1=0

l∑
a2=0

· · ·
l∑

am=0

(
P (f, a|e)

)
=

l∑
a1=0

l∑
a2=0

· · ·
l∑

am=0

[(
m− φ0

φ0

)
pm−wφ00 pφ01

l∏
i=1

(
φi!η(φi|ei)

)
×

m∏
j=1

(
t(fj |eej)d(j|aj ,m, l)

)]
(3)

IBM Model 4 and IBM Model 5 are more power-
ful, but they are too complex. Process of translating

a new input sentence, say fnew is called Decoding.
We apply the same Noisy channel model:

ebest = argmaxenew

(
P (enew)P (fnew|enew)

)
= argmaxenew

(
P (enew)

ε

(l + 1)m

∑
a

m∏
j=1

P (fnewj |enewaj)

)

= argmaxenew

(
P (enew)

ε

(l + 1)m

m∏
j=1

l∑
i=0

P (fnewj |enewaj)

)

= argmaxenew

(ε

(l + 1)m

)(
P (enew0)

)(l∏
i=1

P (enewi |enewi−1)
)

(m∏
j=1

l∑
i=0

P (fnewj |enewaj)
)

(4)
When languages have different fertilities, word
based translation suffers. Thus phrase based trans-
lation is the most seminal way of doing SMT, with
phrases (not necessarily linguistic) instead of words
being the translation units.

One major drawback of SMT is that it requires
individual tuning of various components. Thus
ushered in the era of Neural Machine Translation -
which comprises of an end to end system that can
be jointly tuned instead of having to adjust each of
the individual components.

4 Sata-Anuvadak

As the name Sata-Anuvadak (Kunchukuttan et al.,
2014) suggests, this literature is about 100 transla-
tors. This work focuses on multiway translation of
Indian Languages. In this work, Indian languages
from various families are considered and following
objectives were investigated:

1. To understand translation patterns involved
when translating between same language fam-
ily and other.

2. To leverage use of shared characteristics be-
tween Indian language. The shared character-
istics in brief are as follows:

(a) Free Word Order with SOV(Subject-
Object-Verb) form being canonical.

(b) Most of the Indian languages have scripts
derived from the Brahmi Script.

(c) Vocabulary and Grammatical rules are
majorly derived from Sanskrit language.

(d) Most of the Indian languages are mor-
phologically rich in nature.

3. To investigate the effect of pre-processing and
post-editing in SMT systems for Indian lan-
guages.

In general, this literature worked on four systems,
they were:

1. Baseline Phrase-Based System: This system
is used to investigate relationship between
translation models while taking Language
families and corpus size into consideration.

2. English-Indian Language with reordering :
This system focuses on English to Indian Lan-
guage translation by applying reordering rules
on English side so that both the sides conform
to the same word order.

3. English-Indian Language with Hindi-tuned
source side reordering: This system uses bet-
ter reordering rules and concludes that when
creating rules by considering the English-
Hindi reordering rules benefits the overall sys-
tem.

4. Indian Language- Indian Language with
Transliteration: For the unknown words
translation, that don’t share the same script,
Transliteration can be done by exploiting the
Unicode ranges that has been allotted to In-
dian languages.

But, the current focus of the project is Indian-
Indian language and that too very specifically,
Hindi-Marathi and for that we have taken the
results of System1 described above as the baseline
for all our experiments. Since, Hindi & Marathi
share the same Devanagari script, thus, Translitera-
tion technique needn’t be applied as a post-editing
step.

The following important conclusions came out
of the work:

1. Translation accuracy between Indo-Aryan lan-
guage families show best results because of
the same word order and similar case marking
whereas the Dravidian languages being more
morphologically rich show less accuracies.

2. The effect of increasing corpus size benefits
the Indo-Aryan languages to a great extent.
For morphologically poor languages, the ef-
fect of increase in corpus size helps the trans-
lation accuracies to improve whereas for mor-
phologically richer languages, increasing the
corpus size is not that worth it.

3. Morphologicially richer to poorer languages
translation gives poor results because of ab-
sence of source side phrases because of mor-
phological richness, solution to which, mor-
phological segmentation can help solve this
issue.

Figure 1: Sata-Anuvadak System1 Re-
sults(Kunchukuttan et al., 2014)

5 Morfessor

5.1 Introduction
5.1.1 What is Morpheme
Morpheme is a indivisible morphological unit of a
language that carries some meaning. For example:
un, break, able together forms ’unbreakable’. Here
’un’ , ’break’ & ’able’ constitutes the morpheme
set of English language.

5.1.2 Why Learning Morpheme Important?
When considering language with large vocabu-
lary, learning morphemes helps. In support of this
statement, consider a task of estimation of n-gram
model, which means finding the probabilities of all
the words in the n-gram sequence. When the vocab-
ulary size is large enough, the n-gram estimation
faces two major problems, they are:

1. Since the vocabulary size considered is very
high and when the word itself is considered
as the basic unit, then there exists large set of
word representations and thus increasing data
sparsity. The n-gram estimation because of
data sparsity is poor as a result.

2. When considering morphologically rich lan-
guages, they have large number of word forms
which are not even seen at the time of training.
The model fails to deal with new word forms.
Thus, learning sub-word units like morphemes
may help dealing with this issue.

5.2 Approaches

In the work(Creutz and Lagus, 2002), there are 2
unsupervised approaches to learn morphemes are
discussed. They are discussed below with minor
details:

5.2.1 Method1: Recursive Segmentation &
MDL Cost

1. Model Cost Using MDL: To define the
model cost, few terminology we must be
aware of are:

• Tokens: The total number of words in
a text or corpus regardless of how often
they are repeated.
• Types: The total number of distinct to-

kens in a text or corpus is called types.
For example: In the sentence ”I am In-
dian. I love India.”, there are 6 tokens
and 5 types in this example.
• Codebook: The vocabulary of all the

morph types is termed as morph code-
book or simply codebook.

The total cost is divided into two parts: (1)
Cost of Source Text and (2) Cost of Codebook.
Refer to the equation 5

C = Cost(Sourcetext) + Cost(Codebook)

=
∑
tokens

−logp(mi) +
∑
types

k ∗ l(mj)

(5)

The MDL cost function described in the equa-
tion 5 is explained below:

(a) Cost(Source Text): The cost of source
text is the sum of negative likelihood of
the morph, summed over all the tokens
in the source text.

(b) Cost(Codebook): The cost of codebook
is the total length in bits required to repre-
sent all the morph types in the codebook.
The term l(mj represents the length of
the morph token and ’k’ represents the
number of bits required to represent a
character. Say, for English lowercase
alphabets, 26 different representation is
required which would be sufficed by 5
bits i.e. 32 different representations.
The probability of mi is calculated by

maximum-likelihood estimate as follows
in equation 6:

p(mi) =
count(mi) in source text

total count of morph tokens
(6)

(c) Recursive Segmentation: A recursive
approach is applied for the search of
best morph segmentation. The below de-
scribed points tell us in brief about the
recursive segmentation technique:
• Initially, all the tokens in the source

text is considered as valid morphs
and are added to the codebook.
• These tokens are tried for all differ-

ent splits into two and the one with
minimum total cost is chosen. The
total cost is calculated by recursively
performing this step on the two seg-
ments we have after segmentation.
• The segmentation can be seen as a

binary tree and an example of it is
shown in the figure 2. The figure
takes two words into consideration
from Finnish language with some
overlap in the morphs. There are
numbers associated with each boxes
in format a:b where a represents the
position where segmentation is hap-
pening and b represents the count of
that token in source text. The count
of chunk must be equal to the sum of
occurences of its parents i.e. in the
example the morph ’auton’ is hav-
ing count as 9 which is sum of oc-
curences of ’linja-auton’ (5) & ’au-
tonkulijettajallakaan (2)’.
• To find a split, we search for the ex-

act match of the word in this hierar-
chical structured tree and recursively
trace the splits until the leaf nodes
are reached.

(d) Adding & Removing Morphs: When
we encounter a new word in the source
text, we just don’t use the already seen
morphs to split the word as that may lead
to local optima. For, each new word
seen:
• if the word has been observed al-

ready, remove its instance from the
tree and decrease the count of all the

Figure 2: Hierarchical Segmentation of 2 words from
Finnish Language (Creutz and Lagus, 2002)

children associated with that chunk.
Do the segmentation of the word
afresh. This may result in better seg-
mentation and will avoid local op-
tima issue.
• if the word is observed for the first

time, segment it by looking at all the
possible split it can hold which has
the minimum cost associated as de-
scribed in the previous section.

(e) Dreaming: Since, the cost is updated
only with every next token processed, the
quality of segmentation of the words that
occurred at the very beginning and didn’t
occur again in the training stage might
be poor as the model learns new morphs
gradually. To resolve the quality issue
of poor segmentation of the words that
occurred in the beginning, we do a step
called Dreaming, where no new words
are processed, rather process the words
already seen and that too in random order.
Dreaming continues for some specific
amount of time or until there is reason-
able decrease in the cost. The figure 3
shows how dreaming lead to decrease in
the cost.

5.2.2 Method2: Sequential Segmentation &
ML Cost

1. Model Cost Using Maximum Likelihood:
The cost function used is the likelihood of
the data given the model. The ML estimate is
described in the equation 7. The ML estimate
for the morph tokens is as same as the one
described in the previous method 6. In this

Figure 3: Effect of Dreaming on Cost (Creutz and La-
gus, 2002)

method, we are just considering the probabilty
of data given the model and ignoring the cost
of the model.

Cost(Sourcetext) =
∑

morphtokens

−logp(mi)

(7)

2. Search Algorithm: This section describes
how the splitting is done. The following steps
are followed to learn the splittings.

(a) For the initialization, using a Poisson dis-
tribution with λ = 5.5, the length of the
split is sampled and using this length of
the interval, the splitting of words is car-
ried out. If the length of the interval sam-
pled is greater than the chunk left after
segmenting, then segmentation for that
word stops.

(b) The following steps are repeated some
fixed number of times which is a hyper-
parameter to the training process:

i. The morph probabilities are esti-
mated for the splitting we have.

ii. With the splitting we have, i.e. the
codebook, re-segment the source text
using the Viterbi algorithm to find
the best segmenatation of the words
into morphs with minimum cost.

iii. If not last iteration, test the segme-
natation using the Rejection criteria.
If the segmentation doesn’t fit accord-
ing to the Rejection Criteria, make
the split randomly as done in the ini-

tialization step. This random split-
ting leads to better learning of the
model as it leads to learning of new
morphs. Without this random split-
ting, the model would not achieve
optimal solution.

(c) Rejection criteria: The following rules
are followed under the Rejection criteria
defined:

i. Removal of rare morphs: The
morphs which occurs just once till
previous iteration are removed as it
is known fact that the morphs whose
occurrence is extremely low are most
probably wrong morphs.

ii. Reject the segmentation if it contains
multiple single letter morphs. Mul-
tiple single-letter morphs in the seg-
mentation is often the sign of bad
performance of the model meaning
that model is stuck in local optimum.

5.2.3 Method3: MAP Estimate

This section is closely related to Mathematical For-
mulation decribed in Morfessor 1.0(Creutz and La-
gus, 2002). According to the work (?), the Mini-
mum Description Length (MDL) principle & Max-
imum a Priori (MAP) Estimate are equivalent &
produce the same result.

1. MAP of the overall probability: The aim is
to induce a model of the language from given
source-text in an unsupervised manner. The
model of the language (M) consists of two
elements:

(a) Lexicon: The lexicon is the set of dis-
tinct morphs in the source text. Basically,
it is the vocabulary of the segmented cor-
pus.

(b) Grammar: The grammar contains the
information about how the segmented
text can be recombined.

The aim is to create a model of the language
in such a way that the set of morphs is concise
& also gives the concise representation of the
source text or the corpus. The MAP estimate
for the parameters that is to be maximized is

describes in the following equation 8 and 9

argmax
M

P (M |corpus) =

argmax
M

P (corpus|M) ∗ P (M)
(8)

P (M) = P (lexicon, grammar) (9)

The equation 8 shows that the MAP estimate
is composed of two parts i.e. The Model prob-
ability & ML estimate of the corpus given
the Model. The equation 9 describes that the
model of the language is calculated as the
joint probability of the lexicon & the grammar
which incorporates our assumption that the
morphology learning task must be affected by
some or the other features.

2. Lexicon: The lexicon is the vocabulary of the
segmented text or simply the collection of all
the morph units in the corpus. Each morph
carries some properties and in the Morfessor
Baseline model, the only properties consid-
ered are frequency of morphs in the source-
text or the corpus & the string that morph is
composed of which also implicitly carries the
information of the length of string i.e. the
number of characters in the sequence.

3. Grammar: The grammar contains the infor-
mation about how the segmented text can be
recombined. But in the baseline model of
Morfessor, the grammar is not considered and
is taken into consideration in later models. So,
the P(M) reduces to P(lexicon) only. In ab-
sence of grammar, the model could not decide
whether morph should be placed in starting,
ending or the middle of the word formed. The
probability of morph µi is ML estimate and is
calculated as described in the equation 10.

PP (µi) =
fµi
N

=
fµi∑M
j=1 fµj

(10)

4. Corpus: The words present in the corpus are
represented as a sequence of morphs. There
might be multiple segmentation of a word and
is chosen based on the MAP estimate. The
probability of Corpus given the model is es-
timated as described in equation 11 where in

the corpus W words have been considered &
each word is split into nj morphs. The kth

morph of the jth word is termed as µjk.

P (corpus|M) =

W∏
j=1

nj∏
k=1

P (µjk) (11)

5. Search Algorithm: A greedy search algo-
rithm is utilized for finding the optimal lexi-
con and the segmentation. Different segmen-
tation is tried and the segmentation that pro-
duces the highest probability is selected. This
continues until there is no significant improve-
ment seen.
The probabilities are replaced by log probabil-
ities & the product is replaced by sum. The
negative log probability is considered as code
lengths as in MDL framework.

6. Recursive Segmentation: A recursive ap-
proach is applied for the search of best morph
segmentation. The below described points
tell us about the recursive segmentation tech-
nique:

• Initially, all the tokens in the source text
is considered as valid morphs and are
added to the codebook.
• These tokens are tried for all different

splits into two and the one with mini-
mum code length is chosen. The total
code length is calculated by recursively
performing this step on the two segments
we have after segmentation.
• The segmentation can be seen as a binary

tree and an example of it is shown in
the figure 4. The figure takes two words
into consideration from language with
some overlap in the morphs. There are
numbers associated with each boxes in
format a:b where a represents the posi-
tion where segmentation is happening
and b represents the count of that token
in source text. The count of chunk must
be equal to the sum of occurences of its
parents i.e. in the example the morph
’auton’ is having count as 9 which is sum
of occurences of ’linja-auton’ (5) & ’au-
tonkulijettajallakaan (2)’.
• To find a split, we search for the exact

match of the word in this hierarchical

structured tree and recursively trace the
splits until the leaf nodes are reached.
• The above steps are repeated for mul-

tiple epochs and in between 2 epochs
the words are randomly shuffled to avoid
any inherent bias because of the words
appearing in the corpus.

Figure 4: Hierarchical Segmentation of 2 words from
Finnish Language(Creutz and Lagus, 2002)

6 BiRNN encoder, RNN decoder
architecture

Bahdanau et al. (2015) proposed the first system
that jointly learnt how to align and translate input
and output sentences with a novel architecture.
The probability of the output sequence is given by
the following equation:

p((y) =

T∏
t=1

p({yt|y1, . . . , yt−1})

The conditional probability for each output
word is given by:

p(yi|y1, . . . , yi−1,x) = g(yi, si, ci)

where, x is the input sentence having words de-
noted by vectors x1 . . .xTx and si is the hidden
state of the RNN at time i.
The words of a sentence are encoded as one-hot
vectors on a limited vocabulary of the words of a
language. The input is encoded by a Bi-directional
RNN (BiRNN). The forward RNN reads the in-
put sequence, in the given order and calculates a
sequence of forward hidden states; the backward
RNN does the reverse operation. The encoder
maps the input sentence to a sequence of anno-
tations. Each word has an annotation associated

(hj), whose value is the concatenation of the 2 hid-
den states.
The model generates a context vector for each word
in the output sentence; this was different from pre-
vious models of NMT. ci is the context for target
word i. ci =

∑Tx
j=1 αijhj . αij is the weight of

each annotation, given by:

αij =
exp (eij)∑Tx
k=1 exp (eik)

(12)

eij scores how well the input words around position
j and output words at position i match.

Figure 5: Proposed Model generating target word yt
Bahdanau et al. (2015)

Whenever the proposed model generates an out-
put word, it searches for a set of positions in a
source sentence where the most relevant informa-
tion can be found. The output word is predicted
based on the context vectors associated with those
pertinent source sentence words as well as the pre-
viously generated output words. The decoder uses
softmax at the final layer and finds the associated
probability for each word in the target vocabulary.
In earlier approaches to NMT, the entire input sen-
tence was encoded to a fixed size vector. Here
instead a subset of context vectors is adaptively
chosen on the fly while decoding.

In this paradigm, alignment is not considered to
be a hidden variable, it is computed by a feedfor-
ward neural network; model directly finds a soft
alignment which means each word need not map
to with certainty to a word/words (known as hard
alignment) but we can assign different probabilities
of its mapping to all words in the sentence. The
default option for gated units in OpenNMT-py is

LSTM.

7 Word Embeddings

Word Embeddings are the n-dimensional vector
representation of the word. The general accepted
length of the word embedding vector is 300. The
whole vocabulary is represented as Word Embed-
ding Matrix and is pre-learned using the algorithm
like Word2Vec, Glove, Bert, and many others. The
following subsection describes in brief the most
common and basic algorithms for obtaining the
Word Embeddings from a mono-lingual corpora.

7.1 Word2Vec
Word2Vec ((Mikolov et al., 2013a), (Mikolov et al.,
2013b)) was a breakthrough technique for finding
word embeddings as opposed to earlier methods
that used global counts for obtaining vector repre-
sentation of the words. The Word2Vec model gave
a representation that was found successful in word
analogy tasks. For instance, the very famous word
analogy example is the vector arithmetic operation
as ”king - man + woman” gave a vector representa-
tion close to that of ”queen” which was surprisingly
great result and made Word2Vec the state-of-the-art
technique of finding word embeddings.

The Word2Vec model chooses a window size
say 5 (2 words before and 2 words after the word
in focus), and applies either of the two approaches
to learn word embeddings. They are as follows:

Figure 6: CBOW Visualization ((Mikolov et al.,
2013a))

• Continuous Bag-of-Words model: The
CBOW model aims to predict the word in

Figure 7: Skip-gram visualization ((Mikolov et al.,
2013a))

focus by looking at the words surrounding it
i.e. which lies in context window range. Ex-
ample: The dog —- at strangers. {using The,
dog, at & strangers, the CBOW model tries to
predict the word ’barks’. }

• Skip-gram model: The Skip-gram model
aims to predict the context words by looking
at the word in focus. {using the word ’barks’
the Skip-gram model tries to predict the words
The, dog, at & strangers } The training proce-
dure of Word2Vec using Skip-gram model is
described in Appendix.

7.1.1 Word2Vec Training
The Word2Vec training is explained below using
Skip-gram model with negative sampling

• Creating the Training Data: A window
size is chosen say 5(2 words before and
2 words after the focus word), and the
entire mono-lingual corpus is scanned. To
understand exactly how training data set is
chosen, take an example sentence as follows:
The cat sat on the mat.

The cat sat on the mat.

Table 1: Training Data

focus context target
sat the 1
sat cat 1
sat on 1
sat the 1
on cat 1
on sat 1
on the 1
on mat 1

But, all our examples are with target ‘1’ (i.e
for ex: ‘the’ lies in context of ‘sat’, so out-
put label is 1, otherwise ‘0’) which makes the
embeddings learn nothing from training. How-
ever, the model will give 100% accuracy in
training set, the model learns only the Garbage
embeddings.

Negative Sampling: Adding some ’k’ negative
samples for each training example to the train-
ing set, i.e. word pairs that are not actually
neighbours and giving target value ‘0’.

Table 2: Negative Sampling

focus context target
sat the 1
sat kite 0
sat table 0
sat cat 1
sat mango 0
sat bike 0
sat on 1
sat the 1
on cat 1
on sat 1
on the 1
on mat 1

• Initialize two matrices called Embedding ma-
trix and Context matrix of size (vocab size *
chosen dimension)

• Take focus word (sat), context word (the) and
negative samples (kite, table) for first step of
training.

• Get word embedding of focus word & context
word using Embedding matrix and Context

matrix respectively. (v1, v2, v3, v4 represents
word embedding in table 3)

Table 3: Error Calculation

e1 e2 target e1.e2 sigmoid error
Sat
[v1]

The
[v2]

1 0.7 0.66 0.34

Sat
[v1]

Kite
[v3]

0 0.2 0.5 -0.5

Sat
[v1]

Table
[v4]

0 -1.6 0.16 -0.84

The objective function ((Goldberg and Levy,
2014)) to be maximized is as follows:

argmax
Θ

∑
(w,c)εD

logσ(vc.vw)+
∑

(w,c)εD′

logσ(−vc.vw)

(13)
where, vc : embedding of the context word and

vw : embedding of the word in focus

7.2 GloVe

GloVe ((Pennington et al., 2014)) stands for Global
Vectors for word represntation. GloVe embedding
uses global counts knowledge, unlike word2vec.
The learning of the embedding is based on co-
occurrence matrix formed using the mono-lingual
corpus and trains the word vectors (embeddings)
such that their difference predict the co-occurrence
ratios. Some pair of words occur more often than
others and hence the method ensures that such pairs
do not contribute much towards the objective loss
function by introducing a weight factor for each
word-pair based on its frequency of occurrence.

7.2.1 GloVe Training
The GloVe training is purely based on co-
occurrence matrix. The principle under which
GloVe method works is: The ratio of co-occurrence
between two words in context tells about the mean-
ing of the word in focus. The loss function being
minimized is as follows:

∑
i,j

weight(Xij)(dot(wi.w̃j)+bi+b̃k−log(Xij))
2

(14)
where,

• Xij : co-occurrence value of ith and jth word
in co-occurrence matrix X.

• wi : word-embedding of input word

• w̃j : word-embedding of output word

• bi and b̃k: bias terms

8 Bilingual Word Embeddings

There are different ways of representing words in
neural models. One particular method is One Hot
Encoding. In this scheme, we have a very high
dimensional vector for every input word. The di-
mension of this vector is equal to the number of
words in our vocabulary. Every word in this vector
has a position and this position is set to 1 for the
current word and all the other positions are set to
0.For instance:

• man = (0, 0, 1, 0)T

• tan = (0, 0, 0, 1)T

• crib = (1, 0, 0, 0)T

This one-hot vector is very sparse since most of
the entries are 0. We map these one hot vectors to
lower dimensional space where every input word
represents a vector in that space. This is generally
referred to as Word Embedding. We typically in-
clude a word embedding layer between our one-hot
vector and the hidden layer of the network. Word
embeddings give us clustering i.e. generalizing
between words and backoff i.e. robust predictions
under unseen contexts. A complete set of word em-
beddings can identify similar words and naturally
capture relationships between words. For example:

Figure 8: Visualizing the relationship representing ca-
pabilities of word vectors

In Mikolov et al. (2013c), the aim is to learn
a linear mapping W ∈ Rdd between the word
vectors of a seed dictionary.

min
W∈Rdxd

1

n

n∑
i=1

l(Wxi, yi)

Typically the square loss is used as the learning ob-
jective. W is constrained to be orthogonal since it
preserves distances between word vectors and like-
wise word similarities. Experimentally, it had been
observed to improve quality of inferred lexicon.

Once a mapping W is learned, one can infer
word correspondences for words that are not in the
initial lexicon. Translation t(i) of source word i is
obtained as: t(i) ∈ argminj∈1...nWxi, yi

Word embeddings can improve the quality of
language translations when embeddings between
two or more languages are aligned using a trans-
formation matrix. Many approaches have been
suggested to align word embeddings, and we will
be discussing a few of them.

This paper Joulin et al. (2018) presents a differ-
ent approach to Bilingual Word Mapping. They
minimize a convex relaxation of the cross-domain
similarity local scaling (CSLS) loss, which signifi-
cantly improves the quality of bilingual word vec-
tor alignment. The CSLS criterion is a similarity
measure between the vectors x and y defined as:

CSLS(x, y) = −2cos(x, y)+
1

k

∑
y′∈Ny(x)

cos(x, y′) +
1

k

∑
x′∈Nx(y)

cos(x′, y)

(15)

where Ny(x) is the set of k nearest neighbors
of the point x in the set of target word vectors
Y = y1, . . . , yN , and cos is the cosine similar-
ity. They removed the orthogonality constraint
and found that it does not degrade the quality of
aligned vectors. Finding k nearest neighbors of
Wxi among elements of Y is equivalent to finding
elements of Y having the largest dot product with
Wxi. Employing this idea leads to the convex for-
mulation when relaxing orthogonality constraint
on W. Their approach can be generalized to other
loss functions by replacing the term xTi W

T yTj by
any function convex in W. They apply Extended
Normalization: instead of computing the k-nearest
neighbors amongst the annotated words, use the
whole dictionary use unpaired words in dictionar-
ies as ’negatives’. Dataset used was Wikipedia
fastText vectors and for supervision a lexicon com-
posed of 5k words and their translations.
The success of orthogonal mapping methods re-
lies on the assumption that embedding spaces are
isomorphic; i.e., they have the same inner-product
structures across languages, but this does not hold
for all languages, especially distant languages.

Hoshen and Wolf (2018) align fastText embeddings
with orthogonal mappings and reported 81% En-
glish–Spanish word translation accuracy but only
2% for English–Japanese.

To combat this, Zhang et al. (2019) puts forth a
preprocessing technique called ’Iterative Normal-
ization’ that makes orthogonal alignment easier by
transforming monolingual embeddings and simulta-
neously enforcing that: (1) individual word vectors
are unit length, and (2) each language’s average
vector is zero. Iterative Normalization technique:
For every word i, we iteratively transform each
word vector xi by making the vectors unit length,
Then making their mean zero.
This is what sets them apart from previous ap-
proaches:

• Earlier, the zero-mean condition was moti-
vated based on the heuristic argument that
two randomly selected word types should
not be semantically similar (or dissimilar) in
expectation.

• But word types might not be evenly dis-
tributed in the semantic space, some words
may have more synonyms.

• Single round of length and center normaliza-
tion doesn’t suffice.

9 Transformer

While RNNs and LSTM based Neural Networks
had been established as the state of the art ap-
proaches in sequence modeling tasks like MT, they
are constrained by sequential computation. Typi-
cally, the generated sequence of hidden states ht is
a function of the previous hidden states ht−1 and
the input at time t. Attention mechanisms have be-
come a vital part of such models recently, allowing
modeling of dependencies regardless of their dis-
tance in the input or output sequences. The Trans-
former, proposed by Vaswani et al. (2017) is model
architecture forgoes recurrence and instead relying
entirely on an attention mechanism to draw global
dependencies between input and output. The Trans-
former allows for significantly more parallelization,
faster training time and reached a new state of the
art in translation quality.

Figure 9: The Transformer model architecture.

Both the encoder and the decoder are composed
of a stack of N = 6 identical layers. Each encoder
layer has two sub-layers. The first is a multi-head
self-attention mechanism, and the second is a sim-
ple, position-wise fully connected feed-forward
network. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)). As for the de-
coder, it inserts a third sub-layer, which performs
multi-head attention over the output of the encoder
stack. A residual connection is employed around
each of the two sub-layers, followed by layer nor-
malization. The self-attention mechanism is also
modified to prevent positions from attending to sub-
sequent positions. This masking, combined with
the fact that the output embeddings are offset by
one position, ensure that the predictions for posi-
tion i can depend only on the known outputs at
positions less than i.

The authors have chosen to describe the attention
function as mapping a query and a set of key-value
pairs to an output, wherein they are all vectors.

9.1 Attention
There are two kinds of attention described in the
paper. The input consists of queries and keys of
dimension dk, and values of dimension dv.

• Scaled Dot-Product Attention: is computed

via matrix multiplication on a set of queries,
using highly optimized code for the same.
Q,K, V are the query, key, and value matrices
where the respective vectors are packed in. It
is much faster and space-efficient in practice
compared to additive attention.

Attention(Q,K, V) = softmax
QKTV√

dk
(16)

The product is divided by
√
dk to counter-

act when softmax function is pushed into ex-
tremely low gradient regions when the dot
products grow too large in magnitude for large
values of dk.

• Multi-Head Attention: Instead of a single
attention function, the authors discovered that
projecting the queries, keys, and values h
(fixed as 8) times, in parallel, with different,
learned linear projections into dimension dv,
was beneficial. Multi-head attention allows
the model to jointly attend to information
from different representation subspaces at
different positions. Due to the reduced dimen-
sion of each head, the total computational
cost is similar to that of single-head attention
with full dimensionality.

MultiHead(Q,K,V)=Concat(head1,...,headh)WO(17)

where,
headi = Attention(QWQ

i ,KW
K
i , V W

V
i)(18)

The multi-head is utilized in 3 ways. In encoder-
decoder attention layers, queries come from the
previous decoder layer, and the memory keys and
values come from the output of the encoder, allow-
ing every position in the decoder to attend over all
positions in the input sequence (reminiscent of se-
quence to sequence models). In the encoders’ self-
attention layers, the queries, keys, and values come
from the output of the previous layer, allowing it
to attend to all positions in the previous encoder
layer. In the decoder, however, as constrained by
the auto-regressive property, each position is only
allowed to attend to positions up to and including
that position.

9.2 Position-wise Feed-Forward Networks
Each of the layers in our encoder and decoder
contains a fully connected feed-forward network,
which is applied to each position separately and
identically. While the linear transformations are
identical across different positions, there is no

weight sharing between layers.

FFN(N) = max(0, xW1 + b1)W2 + b2

9.3 Positional Encoding
Since the model contains no recurrence (or
convolution), to impart the model with knowledge
about the order of the sequence or the positions in
the sequence, positional encodings are added to
the input embeddings at the bottoms of the encoder
and decoder stacks. In this work, they chose sine
and cosine functions of different frequencies:

PEpos,2i = sin(pos/100002i/dmodel)
PEpos,2i+1 = cos(pos/100002i/dmodel)
where pos is the position and i is the dimension.

9.4 Advantages of Self-Attention
The authors mention 3 key benefits of using self-
attention. These are:

• Total computational complexity per layer:
Complexity per Layer is O(n2d) operations
for self-attention layers and O(nd2) for recur-
rent layers, making the former faster when the
sequence length n is smaller than the represen-
tation dimensionality d, which is most often
the case.

• A self-attention layer connects all positions
with a constant number of sequentially exe-
cuted operations, whereas a recurrent layer re-
quires O(n) sequential operations. This means
parallelizing computation is easier in the for-
mer case.

• Path length between long-range dependen-
cies in the network is also constant with self-
attention layers. Learning long-range depen-
dencies is a key challenge in many sequence
transduction tasks, and shorter paths lend to
easier learning.

10 Byte Pair Encoding

Closed vocabulary systems are those that have a fi-
nite, predefined vocabulary; the test set will contain
words from the vocabulary itself, i.e., there will be
no unknown words. But, translation is an open
vocabulary problem, it might happen that in real-
world situations, a word in the test set was never
seen during training. Such words are called Out of
Vocabulary or OOV words. In an open vocabulary
system, such OOV words are replaced by a special

token, ¡UNK¿ while the output is generated. Neu-
ral machine translation (NMT) models typically
operate with a fixed vocabulary on the source and
target side (due to memory and computational con-
straints). Thus OOV words pose a problem that im-
pacts the output’s fluency and adequacy. Instead of
using words as input and output tokens during trans-
lation, Sennrich et al. (2016) found that in addition
to making the translation process simpler, subword
models achieve better accuracy for the translation
of rare words than large-vocabulary models and
back-off dictionaries, They are also able to produc-
tively generate new words that were not seen at
training time i.e. they could learn compounding
and transliteration from subword representations.
The intuition behind this approach comes from the
fact that some words are translatable, even if they
are new to a competent translator based on a trans-
lation of known subword units such as morphemes
or phonemes. Such words can be of these types:

• Named entities: can often be copied from
source to target text via transcription or
transliteration. Example: Barack Obama (En-
glish) as (Hindi).

• Cognates and loanwords: with a common ori-
gin can differ in regular ways between lan-
guages so that character-level translation rules
suffice. Example: Kettle (English) as (ketlii,
Hindi)

• Morphologically complex words: words con-
taining multiple morphemes, for instance,
formed via compounding, affixation, or in-
flection, maybe translatable by translating the
morphemes separately. Example: Solar Sys-
tem (English) as Sonnensystem (Sonne + Sys-
tem, German).

In an analysis of a sample of 100 rare tokens
in their German training data, they found that the
majority of tokens are potentially translatable from
English through smaller units. They identified 56
compounds, 21 names, 6 loanwords with a com-
mon origin (emancipate→ emanzipieren), 5 cases
of transparent affixation, 1 number, and 1 computer
language identifier.

Byte Pair Encoding (BPE) (Gage, 1994) is a
simple data compression technique that iteratively
replaces the most frequent pair of bytes in a se-
quence with a single, unused byte. The authors
adapted this algorithm for word segmentation by
merging characters or character sequences instead.

Their algorithm is as follows:

• Initialize the symbol vocabulary with the char-
acter vocabulary. Represent each word as a
sequence of characters, plus a special end-of
word symbol ’·’ to allow restoration to the
original tokenization after translation.

• Iteratively count all symbol pairs and replace
each occurrence of the most frequent pair (’X’,
’Y’) with a new symbol ’XY’.

• Each merge operation produces a new symbol
that represents a character n-gram. Frequent
character n-grams (or whole words) are even-
tually merged into a single symbol, thus BPE
requires no shortlist.

They evaluated two methods of applying BPE:-

• Learning two independent encodings, one for
the source, one for the target vocabulary. This
has the advantage of being more compact in
terms of text and vocabulary size and having
stronger guarantees that each subword unit has
been seen in the respective language’s training
corpus.

• Joint BPE: learning the encoding on the union
of the two vocabularies. This improves con-
sistency between the source and the target seg-
mentation.

When BPE is applied independently, the same
name may be segmented differently in the two lan-
guages, which makes it harder for the neural mod-
els to learn a mapping between the subword units.
To increase the consistency between English and
Russian segmentation despite the differing alpha-
bets, they transliterated the Russian vocabulary into
Latin characters with ISO-9 and learnt the joint
BPE encoding. Then they transliterated the BPE
merge operations back into Cyrillic to apply them
to the Russian training corpus. For OOVs, the
baseline strategy of copying unknown words works
well for English→ German. However, when alpha-
bets differ, like in English→ Russian, the subword
models do much better.

The final symbol vocabulary is equal to the size
of the initial vocabulary plus the number of merge-
operations. Also, the number of merge operations
acts as a hyperparameter which can be further tuned
for optimal performance.

11 Pivot Based MT

Having looked at some of the literature that is
present in the domain of subword translation, we
now look at another way we can alleviate the prob-
lem of data scarcity for low resource languages
namely Pivot based approaches. In this approach
we use an intermediate language called a Pivot lan-
guage such that we have parallel corpora from the
actual source to the pivot and from the pivot to
the actual target. In this way, we circumvent the
need for a parallel corpus from the actual source
to the actual target language. This usage of pivot
languages is a boon for us especially in situations
where the parallel corpora for the source and the
target is very scarce. For pivot based translation we
have several approaches that we can use :

1. Triangulation Approach: In this approach,
we combine the source-pivot phrase table and
the pivot-target phrase table to get the source-
target phrase table.

2. Sentence Translation Approach: In this ap-
proach, we first translate from source to pivot
and then from pivot to target language.

3. Corpus Synthesis Approach: In this ap-
proach, we build the source-target corpus by
either translating the pivot sentences form
the source-pivot corpus using the pivot-target
translation system or by translating the pivot
sentences from the pivot-target sentences us-
ing the source-pivot translation system.

One of the major problems in pivot based trans-
lation systems is the propagation of error. The
translation produced by the pivot-target system is
dependent on the quality of the translation of the
source-pivot system i.e. any errors in the first stage
are bound to be carried onto the second stage. The
paper by Cheng (2019). addresses this concern by
joint training for the pivot based NMT. The crux
of the approach is that the source-to-pivot and the
pivot-to-target systems are allowed to interact with
each other during the training phase through either
sharing of word embeddings on the pivot language
or maximizing the likelihood of the cascaded model
on a small source-target parallel corpus. The ob-
jective function can be visualized as consisting of
a source-to-pivot likelihood, a pivot-to-target like-
lihood, and a connection term that connects both
the models and whose influence is governed by a
hyperparameter. The models are connected using

word embeddings of the pivot. They can also be
connected by using a small bridging corpus.

12 Word and Morpheme injected NMT

We suspected that BPE could cause ambiguity due
to word segmentation as smaller word segments
might have lesser context when compared to the
whole word. This leads us to augment our BPE
model by adding a word and morpheme features
to it. The idea was to merge word and morpheme
embeddings with underlying BPE embeddings to
explore if this addition can help the model to miti-
gate the problem of ambiguity and learn better. For
combining embeddings, we have used Multi-Layer
Perceptron.
We updated this model by initializing it with pre-
trained BPE embeddings. We’ve accomplished
it by first obtaining pre-trained BPE embeddings
from (Heinzerling and Strube, 2018) and then used
these pre-trained BPE embeddings to initialize our
model. We’ve managed to get pre-trained embed-
dings for around eighty per cent of our vocabulary,
and the rest was initialized with random vectors.
We further updated the model by replacing the soft-
max function with sparsemax function while calcu-
lating attention. The intuition behind it was, there
can be several words in a sentence which may not
contribute at all to the attention, but the softmax
function will give them some non zero probability
score(though low). This could lead to an unnec-
essary diminishment in the intensity of the final
context vector as the ultimate context vector is a
weighted sum of probability scores from all the
words. With the use of sparsemax function, we can
eliminate this problem as sparsemax function will
truncate those probability scores to zero, which are
too low or say less than some given threshold

13 BERT augmented NMT

BERT(Devlin et al., 2019)(Bi-directional Encoder
Representation From Transformer) makes use of
Transformer, an attention mechanism that learns
contextual relations between words (or sub-words)
in a text. BERT is typically used for other down-
stream tasks like next sentence prediction and text
classification. We aimed to leverage the BERT
model in our NMT task. We accomplished this,
by taking sentence vector(which captures the con-
textual relationship between words in a sentence)
generated by BERT and then merging this sentence
vector with the sentence vector generated by an en-

coder using the multi-layer perceptron(MLP). The
sentence vector generated by BERT is of 768 di-
mensions, while that produced by the encoder is
of 300 dimensions. The final vector after merging
former two vectors is of 768 dimensions which is
then passed to the decoder.

14 Conclusion

Machine Translation has come a long way since
the time of RBMT. Now, humans do not need to
hand craft their translation systems, programming
it with rules and examples that would guide it. The
approach didn’t scale well, suffered from a high
precision low recall fault, and was cumbersome and
expensive. Data became the driver of MT systems
with SMT learning mappings and their probabilities
from corpuses. Such systems required calibration
of several subsystems. Their success lead them to
be the reigning paradigm for a long time. In recent
years however, with powerful processors and mas-
sive amounts of data, Neural Networks managaed
to catch up with SMT. SMT still performs better
in low resource conditions, but NMT has the ad-
vantage of being an end to end model, that can be
trained jointly. NMT achieves translations of good
quality due to its attention mechanism, whereby
it can concentrate on different parts of the input
sentence and the output it has generated thus far, to
predict the next time. To rectify the issue of NMT
needing large amounts of parallel data, researchers
are trying to adopt an unsupervised approach and
leverage monolingual data. The key tenets of this
are proper initialization of the model, good lan-
guage models and the concept of back-translation.
There is still scope for improving the performance
of such models and to understand how exactly these
models work.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Pushpak Bhattacharyya. 2015. Machine translation.
CRC Press.

Yong Cheng. 2019. Joint training for pivot-based neu-
ral machine translation. In Joint Training for Neural
Machine Translation, pages 41–54. Springer.

Mathias Creutz and Krista Lagus. 2002. Unsupervised
discovery of morphemes. In Proceedings of the

ACL-02 workshop on Morphological and phonologi-
cal learning-Volume 6, pages 21–30. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. ArXiv, abs/1810.04805.

Yoav Goldberg and Omer Levy. 2014. word2vec
explained: deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint
arXiv:1402.3722.

Benjamin Heinzerling and Michael Strube. 2018.
BPEmb: Tokenization-free Pre-trained Subword
Embeddings in 275 Languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Armand Joulin, Piotr Bojanowski, Tomas Mikolov,
Hervé Jégou, and Edouard Grave. 2018. Loss in
translation: Learning bilingual word mapping with
a retrieval criterion. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2979–2984, Brussels, Bel-
gium. Association for Computational Linguistics.

Anoop Kunchukuttan, Abhijit Mishra, Rajen Chatter-
jee, Ritesh Shah, and Pushpak Bhattacharyya. 2014.
Sata-anuvadak: Tackling multiway translation of in-
dian languages. pan, 841(54,570):4–135.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013c. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Mozhi Zhang, Keyulu Xu, Ken-ichi Kawarabayashi,
Stefanie Jegelka, and Jordan Boyd-Graber. 2019.
Are girls neko or shōjo? cross-lingual alignment of
non-isomorphic embeddings with iterative normal-
ization. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 3180–3189, Florence, Italy. Association
for Computational Linguistics.

https://www.aclweb.org/anthology/L18-1473
https://www.aclweb.org/anthology/L18-1473
https://doi.org/10.18653/v1/D18-1330
https://doi.org/10.18653/v1/D18-1330
https://doi.org/10.18653/v1/D18-1330
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P19-1307
https://doi.org/10.18653/v1/P19-1307
https://doi.org/10.18653/v1/P19-1307

