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Abstract

Deep learning has an edge over the tra-
ditional machine learning algorithms, like
SVM and Naive Bayes, for sentiment anal-
ysis because of its potential to overcome
the challenges faced by sentiment anal-
ysis and handle the diversities involved,
without the expensive demand for man-
ual feature engineering. Deep learning
models promise one thing - given suffi-
cient amount of data and sufficient amount
of training time, they can perform the
task of sentiment classification on any text
genre with minimal restrictions and no
task-specific or data-specific manual fea-
ture engineering. In this survey, we de-
scribe some of the different approaches
used in sentiment analysis research.

1 Introduction

Previous research work has shown that basic ma-
chine learning techniques produce effective results
in performing several natural language process-
ing tasks like topic categorization of documents.
However the same techniques cannot be naively
used for sentiment classification. The non-trivial
nature of the latter demands extra effort to con-
tribute effectively towards opinion classification.
Opinions need more understanding (Pang et al.,
2002) for them to be analyzed properly.

We discuss some techniques from the two ma-
chine learning paradigms: traditional models,
which have proved useful for sentiment analysis
since over the past few decades, and deep learning
models, which have emerged as a powerful tool for
natural language processing in recent years.

2 Traditional Paradigm

Extensive research has been done over the past
years to exploit popular machine learning algo-
rithms for the task of sentiment classification
(Pang et al., 2002). Depending on the prob-
lem statement in opinion mining, these classifiers
have shown good performance accuracy, provided
proper feature engineering and pre-processing
steps are carried out prior to the classification pro-
cess.

2.1 Features Used

To perform classification, traditional machine
learning algorithms require hand-crafted features
as input. Hence, given an input piece of text, the
first step is to decide upon the features which can
be useful for sentiment classification. Researchers
have experimented with varied schemes of fea-
ture extraction (Gonzalez-Ibanez et al., 2011;
Buschmeier et al., 2014), some of which are enu-
merated as follows:

o Lexical features: The occurrence of n-grams
(generally unigrams and bigrams in labeled
documents, either as count or as boolean rep-
resentation, can be used as features. An alter-
native to using all n-grams (occurring in doc-
uments) can be to use only some fixed num-
ber of most frequently occurring n-grams in
the dataset for classification purposes.

e Sentiment lexicon-based features: The
SentiWordNet (Esuli and Sebastiani, 2006) is
a lexical resource that adds sentiment-related
information to the WordNet. It tags the
synsets with three scores - positive, nega-
tive and objective score — between 0.0 and
1.0, which can be used as features for clas-
sification. Also a set of predefined positive
and negative sentiment lexicons such as that



formed by Hu and Liu (Hu and Liu, 2004)
can be used. Given a piece of text, the occur-
rence of one or more of these words can be
used in the form of a feature vector.

e Parts of Speech: Appending each word with
parts of speech tag helps in sense disam-
biguation of the word to some extent which
in turn can help in sentiment classification.
For example, the word love expresses posi-
tive sentiment when used as a verb (People
love comedy movies) but is neutral in senti-
ment when used as a noun (He writes love
stories). Hence POS tags can serve as useful
features for detecting sentiments.

e Adjectives and Adverbs: Adjectives (and
adverbs to certain extent) have been the fo-
cus of many researchers for sentiment detec-
tion as it is argued that they carry most of the
information regarding sentiment of a docu-
ment. Hence, using these as features can pro-
duce good classification results (Pang et al.,
2002).

e Interjections and Question marks: Ex-
pressions like ‘haha’ or ‘wow’ contain strong
sentiment information and hence can be used
as features. Also, question marks can change
the sentiment orientation of a text. For
example, the statement ‘It’s a great weather.’
is a positive opinion whereas ‘It’s a great
weather?’ clearly reflects negative notion.

2.2 Traditional Models

Naive Bayes Classifier is the simplest and the
most widely used probabilistic classification al-
gorithm (Russell et al., 2003; McCallum et al.,
1998). It is based on Bayes’ Theorem. It basically
calculates the posterior probabilities of events and
assigns the label with the maximum posterior
probability to the event.

A major assumption made by the Naive Bayes
Classifier is that the features are conditionally in-
dependent, given the sentiment class of the doc-
ument (Pang et al., 2002), which is not true in
real-life situations. Furthermore, another problem
with this technique is that, if some feature value,
which was not encountered in the training data, is
seen in the input data, its corresponding probabil-
ity will be set to 0. Bayes classifier fails in this

case. To remove this undesirable effect, smooth-
ing techniques are applied (Chen and Rosenfeld,
2000).

Maximum Entropy classifier is another model
which performs probabilistic classification, mak-
ing use of the exponential model. It is based on
the Principle of Maximum Entropy (Jaynes, 1957)
which states that subject to the prior data which
has been precisely stated, the probability distri-
bution which describes this data with the current
knowledge in the best possible manner is the one
with the largest possible entropy value. This tech-
nique has been proven to be effective in many NLP
classification tasks (Berger et al., 1996) including
sentiment analysis.

Max entropy classifier is seen to outperform the
Naive Bayes in many cases (Pang et al., 2002)
(though not always). One major advantage of this
classifier is that it makes no conditional indepen-
dence assumption on the features of the documents
to be classified, given a sentiment class. Hence, it
is applicable to real-life scenarios, unlike in case
of Naive Bayes.

Support Vector Machines (SVMs) (Cortes
and Vapnik, 1995) have proved to be highly
effective for the categorization of documents
(Joachims, 1998) based on similar topics. As op-
posed to the probabilistic classifiers like the pre-
vious two (Rennie et al., 2003), this method aims
to find large margin between the different classes.
It is a supervised learning model which analyzes
data and learns patterns which can be used to clas-
sify the data.

Support vector machines attempt to find a hy-
perplane (in case of 2-class classification prob-
lem) which not only separates data points based on
the category they belong to, but also tries to max-
imize this separation gap between the two classes,
i.e., this is a constrained optimization problem.

One major advantage of this classifier is that it
makes no assumption on the documents to be clas-
sified and it endeavors to find the best classifica-
tion margin for the data at hand instead of rely-
ing on probability values. It is one of the widely
used machine learning algorithms, which yields
very good results for the task of sentiment anal-
ysis (Pang et al., 2002).

2.3 Possible Limitations

Most of the classical machine learning algorithms
for text classification are either rule-based or



corpus-based. Their efficiency depends on the
quality of the annotated corpora as well as the fea-
ture engineering task involved prior to the classi-
fication. The features need to be manually hand-
crafted as well as they differ from domain to do-
main and document to document, which makes it
less generic and more text-specific.

The accuracy of these systems depends on how
the features were chosen, which makes the system
liable. Furthermore, it is very difficult, and many
a times not feasible, to adapt a system designed
for a particular problem to new problems or in dif-
ferent language for the same problem. And for
texts like tweets, which do not follow any rules
or grammar as such, these approaches tend to per-
form very badly.

Hence, extensive pre-processing and feature
engineering need to be done specific to the text
genre, language and the problem statement using
other NLP tools Since these tools are not 100%
accurate, the loss in accuracy in the pre-processing
steps will in turn affect the overall accuracy of the
sentiment analysis task. Hence, pre-processing
steps, especially feature extraction steps, need to
be carefully managed. Although good accuracy
values have been reported in literature and these
algorithms seem to work well for a long time,
there is a large scope of improvement, which
cannot be overlooked.

3 Introduction to Deep Learning
Paradigm

Neural networks recently have become a very pop-
ular topic of research in the field for natural lan-
guage processing, including sentiment analysis.
Neural networks are proving useful in solving al-
most any machine learning classification problem.
The only adjustment required is defining its ar-
chitecture — number of hidden layers to be used,
number of hidden units to be present in each layer,
activation function for each node, error threshold
for the data, the type of inter-connections, etc.

Once a suitable neural network architecture is
designed for the problem at hand, a solution to the
classification problem can be obtained using deep
learning models. The only demand for deep learn-
ing models is enough training data and enough
time and resources to train the network for clas-
sification.

Deep learning is a branch of machine learn-
ing based on a set of algorithms that attempt
to model high-level abstractions in data by us-
ing model architectures, with complex struc-
tures or otherwise, composed of multiple non-
linear transformations.

— defined by Deng and Yu (Deng and Yu,
2014)

Clearly, a traditional machine learning algo-
rithm can be designed using deep learning but not
necessarily vice-versa. This is because neural net-
works are capable of capturing very complex char-
acteristics of data without any significant involve-
ment of manual labour as opposed to the machine
learning systems. Deep learning uses deep neu-
ral networks to learn good representations of the
input data, which can then be used to perform spe-
cific tasks.

3.1 Advantages of Deep Learning

Although the traditional machine learning algo-
rithms like SVM have shown good performance in
various NLP tasks for the past few decades, they
have some shortcomings and deep learning models
have the potential to overcome these limitations to
a large extent. Some of the advantages of deep
neural networks are:

o A strength of the deep learning models is no
demand for carefully optimized hand-crafted
features. Instead of the features, they take
word embeddings as input which contain con-
text information, and the intermediate layers
of the neural network learn the features dur-
ing the training phase itself. This means that
a necessity, which is at the base of the tradi-
tional classification models, is no longer re-
quired for the functioning of deep learning
models.

e Deep learning allows good representation
learning. While feature representations of in-
put text can be learned automatically from the
training data for a particular task, the repre-
sentations of the words, containing context
information, can be learned from raw corpus
in an unsupervised manner. This disregards
any need for manual construction of appro-
priate features or word information.



e As discussed before, sentiment analysis con-
sists of varied problem statements. The
ability to adapt to the task variations with
very small changes in the system itself adds
a feather in the cap of the deep learning
paradigm.

3.2 Basic Neural Networks

Neural Networks play an important role in ma-
chine learning and cognitive science. These have
been widely used in the field of image processing
and pattern recognition. Recently, they are becom-
ing popular for solving Natural Language Process-
ing problems. A neural network can be used to
learn the word embeddings as well as in turn use
them as input for NLP tasks like sentiment classi-
fication. The basic structure of a fully-connected
neural network, which uses one hidden layer, is
shown in Fig 1.
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Figure 1: A Fully-Connected Simple Neural Net-
work

The weights on edges are learned by means of
back-propagation of errors through the layers of
the neural network based on the inter-connections
and the non-linear functions. The labeled data
is fed to the network a number of times (called
epochs) for the network to learn the weight pa-
rameters until the error becomes negligible (in the
ideal case). Generally, for experiments, training is
done for a fixed number of times to reach a mini-
mum error value when the network does not con-
verge any further.

4 Word Embeddings

Neural networks in NLP, unlike other traditional
algorithms, do not take raw words as input, since
the networks can understand only numbers and
functions. Hence words need to be transformed
into feature vectors, or in other words word em-
beddings (Mikolov et al., 2013), which capture the
characteristics and semantics of the words if ex-
tracted properly. The word vectors can be learned

by feeding large raw corpus into a network and
training it for sufficient amount of time.

Bengio et al. (Bengio et al., 2003) presented
the first large-scale deep learning model for nat-
ural language processing to learn the distributed
representation of words by using language mod-
eling (Figure 2. The network is trained on a raw
corpus, which is expressed as sequence of words.
The idea is (a) to associate each word in the vo-
cabulary with a real-valued word feature vector of
m dimensions, (b) to express the joint probability
function of word sequences in terms of the feature
vectors of the words occurring in the sequence,
and (c) to learn the word feature vectors and the
parameters of the probability function simultane-
ously.
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Figure 2: Bengio’s Neural Network Model (Ben-
gio et al., 2003)

Each word embedding may be of any dimen-
sionality as the user wishes. Higher dimensional-
ity implies more information captured but on the
other hand incurs higher computational expense.
Hence, a trade-off is to be chosen to balance both.
Google has released pre-trained vectors trained on
part of Google News dataset (about 100 billion
words)!, which can be used by researchers. The
model contains 300-dimensional vectors for 3 mil-
lion words and phrases. These can then be used as
inputs into the neural networks for any NLP tasks.

The quality of the word vectors is defined by
how the vectors distinguish between dissimilar
words and are close for similar ones. The close-
ness of word vectors is generally determined by
cosine distance (Mikolov et al., 2013). For exam-

lavailable at https://code.google.com/
archive/p/word2vec/



ple, embeddings of words cat and dog are closer to
that of horse as compared to that of play. In addi-
tion, certain directions in this induced vector space
are observed to specialize towards certain seman-
tic relationships (unlike one-hot encoding) like
gender, verb tense and even country-capital rela-
tionships between words (Mikolov et al., 2013).
For example, following relationships are captured
by the pre-trained Google vectors:

(<word> implies corresponding word vector)

<king> + <queen> = <boy> + <girl>

<playing> + <played> = <trying> +
<tried>
<Japan> + <Tokyo> = <Berlin> +

<Germany>

Hence, this substantiates the utility of these vec-
tors, i.e., word embeddings as features for several
canonical NLP prediction tasks like part-of-speech
tagging, named entity recognition and sentiment
classification (Collobert et al., 2011).

5 Neural Network Architectures for NLP

Generally, for NLP tasks, we tend to use the
Window Approach (Collobert et al., 2011). This
method assumes that the tag to be assigned to a
word in a sentence depends upon its neighbouring
words. Hence, a fixed window size (additional
hyper-parameter) is chosen and this amount of
words is fed into the network to tag the middle
word (Fig. 3). The feature window is not defined
for border words (start/end) and hence padding is
done in the sentences.
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Figure 3: Window-level Neural Network Archi-
tecture

The window-level approach cannot be applied
to macro-text level tasks like sentiment classifi-
cation because sentiment tag requires the whole
sentence to be taken into consideration, whereas
in window level approach, only a portion of sen-
tence is considered at a time. Also, for other NLP
tasks as well, one word may depend on some word
which does not fall in the pre-decided window.
Hence, sentence-level approach is a viable alter-
native, which takes the feature vectors of all the
words in the input text as input (Collobert et al.,
2011).

Figure 4 shows the overall structure of such a
network which takes the whole sentence as input.
The sequence layer can have different structures
to handle the sequence of words in the text. For
sentence classification, since sentences can be of
variable size, there is a pooling layer after the
sequence layer, which is a feature map of a fixed
size. This is then fed into fully connected layers
of neurons to produce a single tag for the whole
sentence.
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Figure 4: Sentence-level Neural Network Archi-
tecture

The number of layers, the number of units in
each layer, the structure of the sequence layer,
the dimensionality of the word vectors, the inter-
connections and the activation functions are some
of the hyper-parameters of the neural network
model, which need to be tuned to achieve the best



performance for a particular task.

5.1 Convolutional Neural Networks (CNN)

Collobert et al. proposed a unified neural network
architecture (Collobert et al., 2011) which can be
applied to numerous Natural Language Process-
ing tasks like Part-Of-Speech Tagging, Parsing,
Chunking, Semantic Role Labeling and Named
Entity Recognition. The architecture, known as
CNN (Convolutional Neural Network), takes con-
catenated word vectors of the text as input and in-
volves convolutional and max-pooling layers prior
to the general neural network framework.

Convolution Layer: It is a sort of generalization
of window approach where a window of
fixed size is moved over the sentence and
the weight matrix is same for each sequence.
One feature vector is obtained by convoluting
over each sequence. This layer is meant to
extract local features from sequence of words
in the sentence. The network can have a num-
ber of window sizes and a number of weight
matrices, each forming one channel.

Max-Pooling Layer: The length of the output of
convolution layer depends on length of the
input sentence and the number of channels
used. To establish uniformity in the size
of the sentence vector, max-pooling layer is
used to select the maximum value for each
feature across all windows. This is preferred
over simple averaging because for the classi-
fication, all words do not contribute equally;
their relative significance is captured by the
max-pooling layer. Now the global feature
vector size for the sentence is proportional to
that of individual words and to the number of
channels used, i.e., its length is constant for
all sentences of varying length.
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Figure 5: Model architecture with two channels in
CNN (Kim, 2014)

The “sentence vector” is then fed into a fully
connected neural network with 0/1/2/.. hidden
layers and activation functions like softmax or
sigmoid to ultimately reach the output layer
whose size is equal to the number of labels. A
model architecture of CNN is shown in Figure 5
(Kim, 2014).

5.2 Recursive Neural Tensor Networks
(RNTN)

A recursive neural tensor network (RNTN)
(Socher et al., 2013) is a kind of deep learning
model in which the same set of weights is applied
recursively over a structure (e.g. tree), to produce
a structured or a scalar prediction over variable-
length input, by traversing the given structure in
topological order. The RNTN model takes as in-
put, the word vectors and the parse tree of the text,
and then computes vectors for the nodes in the tree
using a single tensor-based composition function.
This model is a modification over the recursive
neural networks which uses a simple weight ma-
trix shared across all the nodes.

The input sentence is first converted into a
constituent parse tree. The leaves of the tree are
represented by the corresponding word vectors.
The vector representations of the parent nodes
are computed in a bottom-up fashion using a
tensor-based compositionality function g, which
uses the vectors of the children nodes as features
for a classifier at the parent node. This function,
which is shared over the whole network, varies
for different models based on the task to be
performed. An example of the structure of a
recursive neural tensor network for sentiment
classification is shown in Figure 6.

Recursive neural tensor networks are a powerful
model to capture the meaning of longer phrases in
a principled way (Socher et al., 2013) and under-
stand the compositionality in complex tasks such
as sentiment detection. It is able to accurately cap-
ture the effects of several phenomena like negation
and their scope at various tree levels. The only ex-
tra pre-processing step which this model requires
is construction of a parse tree for the input sen-
tence and in cases like tweets which do not follow
any syntax or grammatical rules, the efficiency of
the model is affected adversely due to the demand
for correct parse tree construction.
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Figure 6: Example of Recursive Neural Tensor
Network (Socher et al., 2013)

5.3 Recurrent Neural Networks (RNN)

Recurrent Neural Network Models (Mikolov et al.,
2010) are a form of neural networks which do
not depend on the window size to work for Nat-
ural Language Processing tasks. RNN is capable
of conditioning the network on all the previously
seen inputs (words in case of a sentence). In addi-
tion to dependency on the current input, the value
of each hidden layer unit also depends on its previ-
ous state, thereby propagating the effects of words
over the sentence (Fig 7).
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Figure 7: A Recurrent Neural Network with three
time steps

The word vectors for each word is fed into the
network one by one and the effect of each word
is carried on till the end of the sentence, thereby
ensuring that the dependency of each word on
all other words is captured through activations of
neurons and back-propagation on weight matrices.
The goal of an RNN implementation is to allow
propagation of context information through far-

away time-steps.

RNN model works by propagating weight ma-
trices over the time-steps. However, this creates
anomalies which are not acceptable in practice.
Intuitively, one should be able to predict a word
more accurately given more context (i.e., more
number of words preceding this) as compared to
lesser context. However, RNN tends to perform
the opposite due to the problems of Vanishing Gra-
dient and Gradient Explosion problems. The gra-
dient signal can result in being multiplied a large
number of times (as per the number of time-steps)
by the weight matrix associated with the inter-
connections between the neurons of the recurrent
hidden layer. This implies that, the magnitude of
weights can have a strong impact on the learning
process.

Vanishing Gradient Problem: While back track-
ing a few steps, the gradient may go on get-
ting smaller and smaller due to small weight
values (less than 1.0) and a time may come
when it is close to zero. This means the effect
between the far away words in a sequence be-
comes negligible or zero.

Gradient Explosion Problem: The gradient value
may explode over the time steps, if the weight
values are large (majority being greater than
1.0). This means the weight matrices over-
power the word vector values in the learning
process, which is again not desirable.

Hence, RNN model, due to its unavoidable lim-
itations, is inappropriate for natural language pro-
cessing tasks. Though it has its merits, the un-
reliability of the back-propagation of information
makes it less favourite among the researchers. The
necessity is some modification in the network so
as to preserve the pros while mitigate the cons.
Some of the improved versions are Gated Recur-
rent Units (GRU) and Long Short Term Memory
Models (LSTM).

5.4 Long Short Term Memory (LSTM)
models

Long Short Term Memory networks (Hochreiter
and Schmidhuber, 1997) are a modified version of
the recurrent neural networks but with much more
complicated activation units. The key element of
an LSTM model is a memory cell. Here, informa-
tion is stored in two ways (hence the name Long
Short Term Memory):



Short-term Memory as activations of the neu-

rons which capture the recent history,
Long-term Memory as weights which are
modified based on back propagation

This model allows retention of information over
a much longer period (more than the usual 10-12
steps as in case of RNNs) through the use of the
memory cell and hence produces appreciable re-
sults when applied to NLP tasks.

The internal units of an LSTM model are shown
in Fig 8. The network architecture is very complex
and its structure can be broken down into certain
stages 2:

1. Input Gate : It uses the input word and the
past hidden state to determine whether or not
the current input is worth preserving.

2. New Memory Generation : It uses the input
word and the past hidden state to generate a
new memory which includes aspects of the
new word.

3. Forget Gate : 1t uses the input word and the
past hidden state to make an assessment on
whether the past memory cell is useful for
computation of the current memory cell.

4. Final Memory Generation : It first takes the
advice of the forget gate and accordingly for-
gets the past memory; it then takes the ad-
vice of the input gate and accordingly gates
the new memory and lastly it sums these two
results to produce the final memory.

5. Output/Exposure Gate : It makes the as-
sessment regarding what parts of the mem-
ory needs to be exposed/present in the hidden
state.

So the LSTM model (Gers et al., 2000) consists
of memory cells to maintain information over long
periods of time, and the gating units to decide what
information to store and when to apply that infor-
mation. This division of responsibilities enables
the network model to remember salient events
over arbitrarily long period of time.

The task of sentiment analysis is generally as-
signing a label to the whole sentence and not to
the individual words. Hence, the outputs produced
at each time-step, i.e, with each input word, need
to be reconciled to finally get a single label for

*http://cs224d.stanford.edu/lecture_notes/LectureNotes4.pdf

Input: Does 2 matter?

Output/Exposure:
How much ¢V should be exposed?

Figure 8: Detailed Internals of an LSTM

whole sentence. One way is to have a number
of LSTM cells for each of which the outputs are
passed through a mean-pooling layer before going
through logistic regression.

Hence, in spite of the fact that the LSTM net-
work is very complicated and has its own disad-
vantages like huge computational complexity, the
network offers promising results since it is capa-
ble of taking into account the whole sentence as
context to generate results.

6 Experimental Results

We discussed some basic machine learning tech-
niques from the two paradigms so far. However,
for performing classification tasks efficiently, re-
searchers are frequently coming up with modified
systems based on these architectures and the ex-
perimental results reported in literature reflect the
viability of the different techniques. Although ex-
tensive research has been done using traditional
models (as the term traditional suggests), a good
amount of work has been done using deep learn-
ing models too in recent years. In fact, the latter is
seen to outperform the traditional systems in most
cases, thereby establishing its utility in the field of
natural language processing, including sentiment
analysis.

We tabulate and compare experimental results,
reported in literature, on some datasets, for some
of the following models:

Traditional Paradigm ::

1. Naive Bayes (Pang et al., 2002) : With uni-
gram and unigram-+bigram as features (Pang
et al., 2002)



2. SVM (Pang et al., 2002) : With unigram
and unigram+bigram as features (Pang et al.,
2002)

3. NBSVM (Wang and Manning, 2013)
SVM with Naive Bayes unigram and uni-
gram+bigram features (Wang and Manning,
2012)

4. Tree-CRF (Nakagawa et al., 2010) : Depen-
dency tree-based sentiment classification us-

ing CRFs with hidden variables (Nakagawa
et al., 2010)

Deep Learning Paradigm ::

5. CNN-rand, CNN-static, CNN-nonstatic, and
CNN-multichannel (Yoon Kim, 2014) : Four
variants of the Convolutional Neural Net-
work based on the variations in the usage of
word vectors (Kim, 2014)

6. DCNN : Dynamic Convolutional Neural Net-
work with k-max pooling, as given in (Kalch-
brenner et al., 2014) (Kalchbrenner et al.,
2014)

7. LSTM, Bidirectional LSTM, 2-layer LSTM,
2-layer Bidirectional LSTM, Tree-LSTM :
Long Short Term Memory Models and their
variants, as given in (Tai et al., 2015) (Socher
etal.,2015)

8. RNN : Recurrent Neural Networks, as given
in (Socher et al., 2013) (Socher et al., 2013)

9. MV-RNN : Matrix-Vector Recursive Neural
Network with parse trees, as given in (Socher
et al., 2013) (Socher et al., 2013)

10. RNTN : Recursive Neural Tensor Network
with tensor-based feature function and parse

trees, as given in (Socher et al., 2013) (Socher
etal., 2013)

11. RAE : Recursive Autoencoders, as given in
(Socher et al., 2011) (Socher et al., 2011)

12. RAE-pretrain : Recursive Autoencoders with
pre-trained word vectors from Wikipedia, as
given in (Socher et al., 2011) (Socher et al.,
2011)

13. DRNN : Deep Recursive Neural Networks,
as given in (Irsoy and Cardie, 2014) (Irsoy
and Cardie, 2014)

14. VecAvg : A model that averages neural word
vectors and ignores word order, as given in
(Socher et al., 2013) (Socher et al., 2013)

15. Paragraph-Vec : Logistic regression on top
of paragraph vectors, as given in (Le and
Mikolov, 2014) (Le and Mikolov, 2014)

6.1 Performance of Models on Stanford
Sentiment Treebank Dataset

The sentiment treebank dataset® introduced by
Stanford (Socher et al., 2013) contains /1,855 sen-
tences (movie reviews along with their parse trees
giving rise to 215,154 phrases. These are an-
notated with sentiment scores ranging between 0
and 1 where 0 means most negative and 1 means
very positive. Experiments are performed on this
dataset (using the standard train/development/test
splits) for two subtasks of classification:

Fine grained sentiments: The dataset is catego-
rized under 5 labels as — very negative (0 —
0.2), negative (0.2—0.4), neutral (0.4—0.6),
positive (0.6 — 0.8) and very positive (0.8 —
1).

The train/development/test splits of 8544 /
1101 /2210 are used here.

Binary sentiments: The dataset is categorized un-
der 2 labels as — negative (0 — 0.4) and posi-
tive (0.6 —1) with neutral sentences removed.
The train/development/test splits of 6920 /
872/ 1821 are used here.

We show a comparison of the performance of
the three basic traditional models : Naive Bayes
with unigram features, Naive Bayes with uni-
gram+bigram features and SVM with unigram
features® (Pang et al., 2002) with the accuracy val-
ues for some of the deep learning models in Table
1 (the results are taken from papers cited alongside
the classification models in the table).

6.2 Performance of Models on Benchmark
Datasets

We show experimental results on the following
benchmark datasets:

1. MR’ : Movie reviews with one sentence per
review; classification involves detecting pos-
itive/negative reviews (Pang and Lee, 2005)

3available at http://nlp.stanford.edu/
sentiment/index.html

*Experimental results are taken from (Socher et al., 2013)

Savailable at http://www.cs.cornell.edu/
people/pabo/movie-review—data/



Fine-grained Binary
Models (5-class) (2-class)
Traditional Paradigm
Naive Bayes (unigrams) 41.0 81.8
Naive Bayes (uni-bigrams) 41.9 83.1
SVM (unigrams) 40.7 79.4
Deep Learning Paradigm
CNN-rand (Kim, 2014) 45.0 82.7
CNN-static (Kim, 2014) 45.5 86.8
CNN-nonstatic (Kim, 2014) 48.0 87.2
CNN-multichannel (Kim, 2014) 47.4 88.1
DCNN (Kalchbrenner et al., 2014) 48.5 86.8
LSTM (Tai et al., 2015) 45.8 86.7
Bidirectional LSTM (Tai et al., 2015) 49.1 86.8
2-layer LSTM (Tai et al., 2015) 47.5 85.5
2-layer Bidirectional LSTM (Tai et al., 2015) 46.2 84.8
Constituency Tree LSTM (Tai et al., 2015) 50.6 86.9
RNN (Socher et al., 2013) 43.2 82.4
MV-RNN (Socher et al., 2013) 44 .4 82.9
RNTN (Socher et al., 2013) 45.7 85.4
RAE-pretrain (Socher et al., 2011) 43.2 82.4
DRNN (Irsoy and Cardie, 2014) 49.8 86.6
VecAvg (Socher et al., 2013) 32.7 80.1
Paragraph-Vec (Le and Mikolov, 2014) 48.7 87.8

Table 1: Results (Accuracy values in %) of different machine learning approaches for sentiment classifi-

cation on Stanford Sentiment Treebank dataset

2. MPQA® : Opinion polarity detection subtask
of the MPQA dataset (Wiebe et al., 2005)

3. CR’ : Customer reviews of various products
(cameras, MP3s etc.); task is to predict posi-
tive/negative reviews (Hu and Liu, 2004)

4. Subj® : Subjectivity dataset where the task is
to classify a sentence as being subjective or
objective (Pang and Lee, 2004)

The summary statistics of these datasets are
given in Table. The comparison of the traditional
models with some of the deep learning models
are shown in Table 2 which reports the average
accuracy values of 10-fold cross-validation exper-
iments performed on the datasets (the results are

Savailable at http: //www.cs.pitt.edu/mpga/

Tavailable at http: //www.cs.uic.edu/~liub/
FBS/sentiment-analysis.html

8available at http://www.cs.cornell.edu/
people/pabo/movie-review—data/

taken from papers cited alongside the classifica-
tion models in the table).

7 Conclusion

The classification performance of the different
models on the different datasets gives a rough idea
of the utility of the different models in different
scenarios for sentiment classification. On most of
the datasets, the performance of the deep learn-
ing models, especially CNN and LSTM variants,
is over-whelming. Convolution Neural Networks
(Kim, 2014) give the best accuracy for binary sen-
timent classification on Stanford Sentiment Tree-
bank dataset (CNN-multichannel : 88.1%), Movie
Review (MR) dataset (CNN-nonstatic : 81.5%),
MPQA dataset (CNN-static : 89.6%) and Cus-
tomer Review (CR) dataset (CNN-multichannel :
85.0% ) while Constituency Tree LSTM model (Tai
et al., 2015) performs the best for fine-grained sen-
timent classification of Stanford Sentiment Tree-



Models MR MPQA CR Subj
Traditional Paradigm
Naive Bayes (unigrams) (Wang and Manning, 2012) 77.9 85.3 79.8 92.6
Naive Bayes (uni-bigrams) (Wang and Manning, 2012) 79.0 86.3 80.0 93.6
SVM (unigrams) (Wang and Manning, 2012) 76.2 86.1 79.0 90.8
SVM (uni-bigrams) (Wang and Manning, 2012) 77.7 86.7 80.8 91.7
NBSVM (unigrams) (Wang and Manning, 2012) 78.1 85.3 80.5 92.4
NBSVM (uni-bigrams) (Wang and Manning, 2012) 79.4 86.3 81.8 93.2
Tree-CRF (Wang and Manning, 2012) 77.3 86.1 81.4 -
Deep Learning Paradigm
CNN-rand (Kim, 2014) 76.1 83.4 79.8 89.6
CNN-static (Kim, 2014) 81.0 89.6 84.7 93.0
CNN-nonstatic (Kim, 2014) 81.5 89.5 84.3 934
CNN-multichannel (Kim, 2014) 81.1 89.4 85.0 93.2
RAE (Socher et al., 2011) 76.8 85.7 - -
RAE-pretrain (Socher et al., 2011) 77.7 86.4 - -

Table 2: Results (Accuracy values in %) of different machine learning approaches on MR, MPQA, CR

and Subj Datasets

bank dataset (50.6%) — more than 8% perfor-
mance gain over the traditional models. This
clearly exhibits the efficacy of deep learning mod-
els for sentiment analysis.

Neural networks are versatile, owing to the fact
that they avoid task-specific engineering, thereby
disregarding any sort of prior knowledge related
to the data. Hence, man-made features, which
have to be carefully optimized to produce proper
results in case of traditional models, are not at
all necessary while using deep learning models.
Although the widely popular traditional models
like Naive Bayes and SVM have proved useful
for so long, the potential of the deep learning
paradigm cannot be overlooked. In fact, the latter
promises to perform much better than the former,
with minimal constraints on the task or data for
sentiment analysis.
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