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Abstract

Humans do have the ability to explain the rationale or process behind the decision they make: be
it intuition, observation , experience or logical thinking. Coming to complex AI algorithms e.g
deep learning, they are treated as black-box. Thus, as these algorithms become more and more
pervasive into human lives, the need for explainable artificial intelligence arises. This research
seminar focuses on understanding various aspects of this field, the various approaches that have
been proposed in this domain and it’s application to the field of Natural Language Processing.
The aim has been to come up with key questions to be asked in this domain which can be further
investigated and used to develop state-of-the art models in Natural Language Processing, keeping
in mind performance with explainability component. In this survey of the field we will look at
Interpretability algorithms and approach to causal reasoning systems.

1 Introduction

The models that are trained on large amounts of data, that is mostly created by users. Thus, likely to
contain human biases and prejudices.Therefore, models that are learned i.e trained using these data will
also carry such prejudices and biases which can be harmful.

1.1 Need for Interpretable Models

Training a classifier on historical datasets, reporting human decisions, could lead to the discovery of
some bad preconceptions. Moreover, since these rules can be deeply concealed within the trained
classifier, we risk to consider, maybe unconsciously, such practices and prejudices as general rules.
We are warned about a growing black box society, governed by secret algorithms protected by
industrial secrecy, legal protections, obfuscation, so that intentional or unin- tentional discrimina-
tion becomes invisible and mitigation becomes impossible. Automated discrimination is not new
and is not necessarily due to black box models. A computer program for screening job applicants
were used during the 1970s and 1980s in St. Georges Hospital Medical School (London). The
program used information from applicants forms, without any reference to eth- nicity. However,
the program was found to unfairly discriminate against ethnic minorities and women by inferring the
information from surnames and place of birth, and lowering their chances of being selected for interview.

A study at Princeton University shows how text and web corpora can contain human biases: names
associated with the black people are noted to be significantly more associated with unpleasant terms than
that of pleasant terms, in comparison to the names of whiltes. Therefore, the models that are learned on
such text data have a huge possibility of having the prejudices reflected in the data.

If we look at another example that is related to Amazon.com. In the year 2016, the software used by
Amazon that was used to determine the regions of the US to which Amazon would offer free same-day
delivery, unintentionally restricted minority regions from participation into the program (often when the
surrounding regions were allowed.
There are many works where it is shown that how accurate black box classifiers can result from an



accidental pertubation in the training data. For example, US military trained a deep learning classifier to
distinguish between enemy tanks and friendly tanks. The classifier gave high accuracy on test set, but
performed poorly on real data. It was later discovered that enemy tank photos were taken on overcast
days, while friendly tank photos on sunny days. Similarly, it is also shown that a classifier trained to
recognize wolves and husky dogs were basing its predictions to classify a wolf solely on the presence of
snow in the background.
Nowadays, Deep Neural Networks (DNNs) have been reaching very good per- formances on different
pattern-recognition tasks such as visual and text clas- sification which are easily performed by humans:
e.g., saying that a tomato is displaced in a picture or that a text is about a certain topic. Thus, what differ-
ences remain between DNNs and humans? Despite the excellent performance of DNNs it seems to be
a lot. It is shown the alteration of an image (e.g. of a tomato) such that the change is undetectable for
humans can lead a DNN to tag the image as something else (e.g., labeling a tomato as a dog). It is also
shown that it is easy to produce images that DNNs believe to be recognizable with 99.99 % confidence,
but which are completely unrecognizable to humans (e.g., labeling white static noise as a tomato).

2 Explainability of Deep Neural Networks

There are two aspects when it comes to explanations of the operation of deep networks: one is explaining
the processing of the data by the network, another is the representation of the data inside the network.
This explanation of processing asks the question “Why this input leads to that output?”. Now, explanation
about representation asks “What information is contained by the network?”.

2.1 Explanations of Deep Network Representations
Although the number of individual operations in a network is huge, deep networks can be organized
into a much smaller number of sub components: example: The aim with explanation of deep network
representations is to understand the role and associated structure of the data that flows through these
bottlenecks. This work can be divided as follows :

1. Role of Layers:The property of layers can be understood if they show the ability to help solve
various problems from the whatever the network was originally trained on. Ref: [Sharif Razavian
et al.2014]

2. Role of Individual Units: When we look at a layer: a layer can be subdivided into individual
neurons or individual convolutional filters. The role of such individual units can be understood:

• qualitatively: by creating visualizations of the input patterns that maximize the response of a
single unit
• quantitatively, by testing the ability of a unit to solve a transfer problem

2.2 Algorithms for Explanability
2.2.1 Sensitivity Analysis
In this section, we describe another strategy which is is inspired by the back-propagation strategy in
vision [4]. It measures how much each input unit contributes to the final decision, which can be approx-
imated by first derivatives.

In the case of deep neural models, the class score Sc(e) is a highly non-linear function. We approxi-
mate Sc(e) with a linear function of e by computing the first-order Taylor expansion

Sc(e) = w(e)T e+ b

where w(e) is the derivative of Sc with respect to the embedding e.

w(e) =
∂Sc
∂e

The saliency score is given by



Figure 1: Layer wise Relevance Propagation 1

S(e) = |w(e)|

Understanding Sensitivity Analysis Sensitivity analysis explains variation of the function not the
function value itself.
Observation:

d∑
i=1

(
∂f

∂xi
) = ||∇xf ||2 (1)

Problem: Shattered gradients. Input gradient (on which sensitivity analysis is based), becomes
increasingly highly varying and unreliable with neural network depth.

2.2.2 Layerwise Relevance Propagation
Layerwise Relevance Propagation(LRP) is not sensitive to gradients unlike sensitivity analysis. A deep
neural network is a feed-forward graph of elementary computational units (neurons), each of them
realizing a simple function. The same graph structure can be used to redistribute the relevance f(x) at
the output of the (1) network onto pixel-wise relevance scores Rp , by using a local redistribution rule as
follows:

R
(l)
i =

∑
j

zij∑
i′ zi′j

R
(l+1)
j with zij = x

(l)
i w

(l,1+1)
ij (2)

Application of this rule in a backward pass produces a relevance map (heatmap) that satisfies the
desired conservation property : the relevance that flows in a layer of neural network, same flows out
from that layer. This decom- position algorithm is termed Layer-wise Relevance Propagation (LRP).
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2.2.3 LIME: Locally Interpretable Model-agnostic Explanations
This section is based on [Ribeiro et al.2016] The goal of LIME is to identify an interpretable model over
the interpretable representation that is locally faithful to the classifier.
Intuition

• Perturb the input and see how the predictions change. In terms of interpretability, change the compo-
nents that make sense to humans (e.g. words or part of an image), even if model is using complicated
components as features (eg. word embeddings).

• Key intuition: Easier to approximate a black-box model by a simple model locally (in neighbor-
hood of the prediction we want to explain) as opposed to trying to approximate a model globally.

2.3 Integrated Gradients

Introduced in Axiomatic Attribution for Deep Networks by [Sundararajan et al.2017].
Problem Statement: Attribute a deep network’s prediction to its input features
E.g. Attribute a diagnostic network’s prediction to patient’s symptoms, measurements, history
E.g. Attribute an Object Recognition Network’s prediction to its pixels

2.3.1 Approach: Axioms
• We list desirable criteria (axioms) for an attribution method

• Integrated Gradients the only method that satisfies these desirable criteria.

2.3.2 Baselines: Need
• A baseline is an uninformative input used for comparison

– Object recognition: black image, noise image
– For f = x*y + z, and attribution at x,y,z=1,1,1, natural baseline is 0,0,0

• Baselines are necessary for attributions

2.3.3 Axiom: Implementation Invariance
Two networks that compute identical functions for all inputs get identical attributions even if their archi-
tecture/parameters differ
E.g. f1 = x*y + z and f2 = y*x + z should get the same attributions

Not satisfied by Layer-wise relevance propagation

2.3.4 Axiom: Sensitivity
• If baseline and input have different scores, but differ in a single variable,then that variable gets some

attribution.

• If a variable has no influence on a function, then it gets no attribution.

E.g. f1 = x*y + z and f2 = y*x + z should get the same attributions
Not satisfied by Layer-wise relevance propagation

2.3.5 Axiom: Linearity Preservation
• Attributions(*f1 + ß*f2) = *Attributions(f1) + ß*Attributions(f2)

• Attributions have additive semantics. It is best to respect any existing linear structure.
2http://www.heatmapping.org/



2.3.6 Axiom: Completeness
• sum(attributions) = f(input) - f(baseline)

• Every method that satisfies Linearity preservation, Sensitivity and Implementation invariance, and
Completeness is a path integral of a gradient.

2.3.7 Axiom: Symmetry Preservation
Symmetric variables with identical values get equal attributions.

• E.g. For f = x*y + z, the ”optimal” attribution at x,y,z=1,1,2 should be equal for x and y.

• Integrated Gradients is the unique path method that satisfies these axioms. (there are other methods
that take an average over a symmetric set of paths)

2.4 Using influence functions to understand influence
This section is based on [Koh and Liang2017].

GOAL:Trace a model’s prediction back to its training data, identifying training points most re-
sponsible for given prediction.
Approach: Two ways

• Upweighting a training point

• Perturbing a training input

Calculationg Influence:

• Computational challenges

• Conjugate gradents(CG)

• Stochastic Estimation

2.4.1 Upweighting a training point
• How would the model’s predictions change if we did not have this training points ?

• Naive approach: remove the training point and retrain the network (slow)

• Influence functions: give us an approximations

• IDEA: compute the parameter change if z were upweighted by small ε

θ̂ε,z
def
= argmin

θ∈Θ

1

n

n∑
i=1

L (zi, θ) + εL(z, θ) (3)

• Influence function is given by

Iup,params(z)
def
=

dθ̂ε,z
dε

∣∣∣∣∣
ε=0

= −H−1

θ̂
∇θL(z, θ̂) (4)

where,

Hθ̂
def
=

1

n

n∑
i=1

∇2
θL
(
zi, θ̂

)
(5)

Which is the hessain and is positive defininte(PD) by assumptions

• The influence of upweighting z on the loss at the test point ztest has closed form expression

Iuploss (z, ztest) =
dL
(
ztestθ̂ε,z

)
dε

∣∣∣∣∣∣
ε=0

= ∇θL
(
ztest, θ̂

)> dθ̂ε,z
dε

∣∣∣∣∣
ε=0

= −∇θL
(
ztest, θ̂

)>
H−1
â ∇θL(z, θ̂)

(6)



2.4.2 Perturbing a training point

• Consider perturbation z → zδ

dθ̂ε,zδ,−z
dε

∣∣∣∣∣
ε=0

= Iup,params (zδ)− Iup,params(z) = −H−1

θ̂

(
∇θL

(
zδ, θ̂

)
−∇θL(z, θ̂)

)
(7)

• Approximating the perturbation effect on the loss at ztest

Ipertloss (z, ztest)>
def
= ∇δL

(
ztest, θ̂zδ,−z

)>∣∣∣∣
δ=0

= −∇θL
(
ztest, θ̂

)>
H−1

θ̂
∇x∇θL(z, θ̂) (8)

2.4.3 Efficiently calculating influence

Two challenges in calculating equation 8

• Requires forming and inverting hessian of empirical risk, with training examples its expensive for
deep neural networks

• We would like to calculating equation8 for all training points

2.5 Semantically Equivalent Rules for Adversarial Examples

This section is based on [Ribeiro et al.2018]

2.5.1 Overview

SEARs: Semantically equivalent adversaries Rules

• Proposing a set of Rules

• Selecting a set of Rules

– Semantic Equivalence

– High Adversary Count

– Non-redundancy

• Generating SEARs for a model

Semantic Score:

S
(
x, x′

)
= min

(
1,
P (x′|x)
P (x|x)

)
(9)

Ratio between probability of a paraphrase and the probability of the sentence itself.

SemEq
(
x, x′

)
= 1

[
S
(
x, x′

)
≥ τ

]
(10)

SEA
(
x, x′

)
= 1

[
SemEq

(
x, x′

)
∧ f(x) 6= f

(
x′
)]

(11)

2.6 Sanity check for saliency maps

This section is based on [Adebayo et al.2018]



2.6.1 Overview
• GOAL: An actionable methodology based on randomization tests to evaluate the adequacy of ex-

planation approaches.

• Shown that some existing saliency methods are independent both of the model and of the data
generating process

• Claim:

– Methodology applies in generality to an explanations approx.
– Suitability of an explanation method for a given task at hand.

• Approach

– Model parameter randomization test
∗ Cascading Randomization
∗ Independent Randomization

– Data randomization test

2.6.2 Model Parameter Randomization Test
• Cascading Randomization

– Overview: Randomize the weights of a models starting from the top layer ,all the way to the
bottom layer.

– Result:
∗ The gradient map and GradCAM marks are sensitive to model parameters.
∗ Guided BackProp and Guided GradCAM - show not change regardless of model degrada-

tion - across all architectures and datasets.

• Independent Randomization

– Overview:
∗ Layer-by-layer randomization with the goal of isolating the dependence of explanations by

layer.
∗ Assess the dependence of saliency masks on lower vs. higher layer weights.

– Result: Guided BackProp and Guided GradCAM - show not change

2.6.3 Dataset Randomization Test
By randomizing the labels, evaluates the sensitivity of an explanation method to the relationship between
instances and labels.

2.7 Attention is not explanation

This section is based on [Jain and Wallace2019].

2.7.1 Correlation Between Attention and Feature Importance Measures
Empirically characterized the correlation between weights and corresponding features importance scores
in two ways. Correlation between attention weights and

1. Gradient based measures of feature importance

2. Difference in model output induced by leaving features out



Adversarial Attention The proposal is the following optimization problem to identify adversarial
attention weights.

α(1), . . . , α(k)maximize f

({
α(i)

}k
i=1

)
subjectto ∀iTV D

[
ŷ
(
x, α(i)

)
, ŷ(x, α̂)

]
≤ ε

(12)

Wheref

({
α(i)

}k
i=1

)
is :∑k

i=1 JSD
[
α(i), α̂

]
+ 1

k(k−1)

∑
i<j JSD

[
α(i), α(j)

] (13)

3 Causality and Causal Reasoning

3.1 The Predicate Calculus in AI

Predicate calculus or simply put logic cab be thought of as a notation for internal representations useful
for the database in a production system.

Its characteristics are:predicate calculus allows the deduction of new facts that is based on form or
facts, also helps in question answering and planning support.

Logic cannot be thought of as mere representation but a language. We still need to decide what and
how of the representation
Logic can also be define as formalism to express something which is true and false. Which can be used
to infer new facts. Which helps in our understanding.

What is a proposition ?: Proposition is a statements that cab be eigher TRUE or FALSE but not both
at the same time.

Examples:
Predicate:English-meaning

• RAIN:”It is raining heavilty”

• SUNNY:”It is sunny morning”

• MANSOCRATES:”Socrates was a man of great caliber”

• MANTURING:”Turing was a man of great caliber”

• ANHJKFG”I like to go to the movies friday night”

3.2 Propositional Logic

To form propositinoal logi, propositions can be combined with connectives to form sentences.

• AND: if both X and Y are true, then (X AND Y) is true

• OR: if at least one of X or Y is true then (X OR Y) is true.

• IMPLIES: when X IMPLIES Y is TRUE if X is true, then Y is true.

• NOT: NOT X assumes the opposite of values of X. That is if X is false,NOT X is true and vice-versa.

• EQUIV: if X and Y are both true or both false, then X EQUIV Y is true .

3.3 Truth tables

To tell if a statement is true or false?, we Use a truth table:



Figure 2: Truth table 3

3.4 WFF: Well formed formula
A term can be

1. a constant whose value is fixed is a term

2. a variable whose value varies is a term

3. If function f takes n-input, and i1, .., in are said to be the terms, then f(i1, ..., in) is also a term.

An atom can be defined asa predicate with terms for arguments, e.g. P (t1, ..., tn) :
A well-formed formula (wff) is: an atom is a wff.

If A and B are formulas , then

• NOT A

• A OR B

• A AND B

• A IMLIES B

• A Equiv B are all wff.

If A is a wff and B is a free variable in A, then (FOR ALL B) A and (EXISTS B) A are formulas.

3.5 First Order Predicate Calculus: Semantics
Interpretation of the formulas cab be defined as establishing a correspondence between constants, func-
tions, predicates.
More formally, the interpretation of a formula X: a nonempty domain D and assignment of ”values” to
constance, symbol and predicate:

• each constant is assigned element of domain D

• each function with n-place input, a mapping from Dnto D is assigned.

• each predicate symbol of n-place, a mapping from Dn to T, F is assigned.

SEMANTICS can be defined as : A formula is TRUE under an interpretation if.

• If G and H are evaluated, then NOT G,G AND H, G IMPLIES H, G OR H, etc. have values in the
obvious way.

• (FORALL X) G is T if G is T for every x in D,otherwise F

• (EXISTS X) G is T if ONE x in D makes it T else F



3.6 Model Semantics
A MODEL of the domain is:an interpretation that makes our sentences TRUE.

• A TAUTOLOGY (or simply, VALID formula)is a formula that is TRUE under ANY interpretation

• A FALLACY (or, an INCONSISTENT formula)is a formula that is FALSE under ANY interpreta-
tion

• A formula is SATISFIABLE if there is at least ONE interpretation that makes it TRUE.

3.6.1 Inference
A formula G is a LOGICAL CONSEQUENCE of a set of formulas F1, F2, ...FN iff any interpretation
that makes F1ANDF2AND...ANDFN true ALSO makes G true.

DEDUCTION THEOREM
G is a logical consequence of a set of formulas F1ANDF2AND...Fn iff
[(F1ANDF2AND...Fn)IMPLIESG] is a tautology.
REFUTATION PROOF
iff F1ANDF2AND...FnAND(NOTG) is a fallacy (or inconsistent).

3.6.2 Resolution
Resolution is an inference rule that is both SOUND and COMPLETE.

• SOUND = only true facts (logical consequences) are inferred

• COMPLETE = ALL facts that follow CAN be inferred

.
It is important to note that: Modus Ponens is sound but not complete -I can’t infer everything with

modus ponens.So usually, to get completeness, we have a collection of inference rules.With resolution,
we only need ONE.

The Resolution Principle We have just seen the following inference rule in action. Given two sen-
tences in clause form:
If one clause contains P and the other NOT P,remove these from the two clauses and form the disjunction
of the remaining literals

3.6.3 Forward Chaining
Forward chaining also called forward reasoning is a method of reasoning when we are using an inference
engine. Formally, this can be described logically as repeated application of modus ponens.
Application Forward chaining is one of the popular implementation strategy when it comes for expert
systems, business and production rule systems. The opposite of forward chaining is backward chaining.

Overview of Methodology Forward chaining starts with the available data and uses inference rules
to extract more data (from an end user, for example) until a goal is reached. An inference engine using
forward chaining searches the inference rules until it finds one where the antecedent (If clause) is known
to be true. When such a rule is found, the engine can conclude, or infer, the consequent (denoted by Then
clause), resulting in the addition of new information to its data.

The way how Inference engines work is that it will iterate through this process until a specific goal is
reached.

3.6.4 Illustrated Example
Suppose that the goal is to conclude the color of a pet named Fritz, given that he croaks and eats flies,
and that the rule base contains the following four rules:

Suppose that the goal is to conclude the color of a pet named Fritz, given that he croaks and eats flies,
and that the rule base contains the following four rules:



1. If X croaks and X eats flies - Then X is a frog

2. If X chirps and X sings - Then X is a canary

3. If X is a frog - Then X is green

4. If X is a canary - Then X is yellow

Let us illustrate forward chaining by following the pattern of a computer as it evaluates the rules.
Assume the following facts:

• Fritz croaks

• Fritz eats flies

By applying forward reasoning, it can derived that Fritz is green by the inference engine in a series of
steps, let’s have a look:

1. Since the base facts indicate that ”Fritz croaks” and ”Fritz eats flies”, the antecedent of rule 1 is
satisfied by substituting Fritz for X, and the inference engine concludes:
Fritz is a frog

2. The antecedent of rule 3 is then satisfied by substituting Fritz for X, and the inference engine con-
cludes:
Fritz is green

3.6.5 Backward Chaining
Backward chaining (or backward reasoning) is an inference method described colloquially as working
backward from the goal. It is used in automated theorem provers, inference engines, proof assistants,
and other artificial intelligence applications.

3.7 Causal Reasoning for Explainable Artificial Intelligence
3.7.1 ATOMIC: An Atlas of Machine Commonsense for If-Then reasoning
This section is based on [Sap et al.2019]

Overview ATOMIC is a knowledge graph for machine commonsense covering if-then inferential
knowledge around everyday situation. It key properties are:

• ATOMIC, a new resource for machine commonsense: 880k if-event-then-* knowledge triples

• Free-form for efficient knowledge gathering

• Models can learn to make commonsense inferences.

ATOMIC dataset
Teaching neural models cause and effect reasoning using ATOMIC

• Can models generalize out of ATOMIC to previously unseen events ?

• Can models exploit the structure of nine inference dimensions ?

Sample from ATOMIC training data

3.7.2 Event2Mind: Commonsense Inference on Events, Intents, and Reactions
This section is based on [Rashkin et al.2018]

This work investigates a new commonsense inference task:
Example annotations of intent and reactions for 6 event phrases. Each annotator could fill in upto three

free-responses for each mental state
Overview of Model Architecture



Figure 3: Nine inference dimension can be grouped into causes, effects and state related to the event 4

Figure 4: Sample from ATOMIC training data 5



Figure 5: Examples of commonsense inference on mental states of event participant 6

Figure 6: Example annotations of intent and reactions for 6 event phrases 7



Figure 7: Overview of Model Architecture 8
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