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In this survey, we briefly study Phrase-based, Factored and Hierarchical transla-

tion models. First we learn basics of Phrase-based model. Then we get introduced

to an interesting SMT approach called Factored translation models. We also study

mathematical modeling of the Factored models. Finally, we compare Factored models

with Phrase-based models and know their disadvantages which are pulling them back

in the race with Phrase-based models. Finally, we study a comparatively different

approach called Hierarchical Phrase-based models.

1 Phrase-based models

Firstly we will discuss the state-of-the-art approach to statistical machine translation

called Phrase-based models [Koehn et al., 2003]. The objective of Phrase-based models

is to reduce the restrictions of word-based models by translating chunks of words

which are contiguous, also called Phrases. Note that these phrases need not be

linguistic phrases.

1.1 Motivation

• Going beyond word-to-word translation: words may not be the best candidates

for the smallest units of translation

• Experiments show that phrase-based models outperform word-based models

and results hold for almost all language pairs

• Phrase learning helps resolving ambiguities, as context can provide useful clues

about translation
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• Model becomes simpler as we do away with the complex notions of fertility,

insertion, deletion, etc.

• Intuitively, phrase-based models should take MT closer to the syntax of the

languages

1.2 Mathematical model

Phrase-based models use noisy channel approach as shown below. Bayes rule is used

to create a Generative model in which translation probability is split into two parts:

Reverse translation probability and probability of target sentence.

argmaxep(e|f) = argmaxep(f |e).p(e)

p(f |e) is further decomposed into translation model and distortion model.

p(f |e) = Πiφ(fi|ei).d(ai, bi−1)

p(e) acts as a n-gram languge model.

p(e) = p(e1).p(e2|e1).p(e3|e2)...p(em|em−1)

1.3 Decoding

Decoding of phrase-based models is based on Beam search algorithm. Target sentence

is generated left-to-right in form of partial translations.

Decoding starts with an empty hypothesis. A new hypothesis is expanded from an

existing hypothesis as follows: A sequence of untranslated words and a possible target

phrase translation for them is selected. The target phrase is attached to the existing

output sequence. The source words are marked as translated and the probability cost

of the hypothesis is updated. The cheapest (highest probability) final hypothesis with

no untranslated source words is the output of the search. The hypotheses are stored

in stacks. Each stack can hold only a beam of the best n hypotheses. Future cost is

determined using the estimated phrase translation cost without considering expected

distortion cost.
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Time complexity of the beam search is quadratic in sentence length, and linear in

beam size.

1.4 Phrase learning

There are three basic methods suggested to learn the phrases.

• Generate all phrases consistent with the word alignments

• Generate phrases from the word sequences that are covered by a single subtree

in a syntactic parse tree

• Directly learn phrase alignments using phrase-based joint probability model

2 Factored Translation models

Phrase-based models are limited to the mapping of small contiguous word chunks

without using any linguistic information such as morphology, syntax, or semantics.

Therefore, phrase-based models were extended to factored models [Koehn and Hoang,

2007b] to include this type of information. The factored approach allows additional

annotation at the word level. A word in this framework is not only a token, but a

vector of factors that represent different levels of annotation as shown in Figure 1.

Figure 1: Factored representations of input and output words [Koehn and Hoang,

2007b]
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2.1 Motivation

We will consider a case where we are translating from English to Hindi. Now, if the

input word is plays, then possible outputs may be: х�ltA h{ (khelta hai) or х�ltF h{

(khelti hai). Both output are equally probable. As the number of translation options

increases for English phrase ’e’, probability of ’e’ being translated to Hindi phrase ’f’

(p(f |e)) decreases. Thus, if we use phrase-based model in this case, then the system

can not decide the correct output just based on input English phrase. It requires some

extra information about the input. In our example, we require geneder information to

decide whether output should be х�ltA h{ (khelta hai) or х�ltF h{ (khelti hai). This is

in general true for translating from morphologically poor language to morphologically

richer language. Factored models can incorporate this extra information together with

surface words.

2.2 Decomposition of Factored translation

The single translation step in phrase-based model is broken down into a sequence

of mapping steps that either translate source factors into target factors, or generate

additional target factors from existing target factors. For example, we consider two

translation mappings and one generation mapping as follows [Koehn and Hoang,

2007b]:

• Translation step 1: Translate lemmas

• Translation step 2: Translate parts of speech (POS) and other morphological

tags

• Generation step: Generate target surface form given target lemma, target POS

tag and target morphology These mappings are shown in Figure 2.

Note that Translation steps map factors in source phrases to factors in target

phrases and Generation steps map target factors within individual target words. As

all mapping steps operate on the same phrase segmentation of the input and output

sentence into phrase pairs, thes models are called synchronous factored models.

Let us consider an example to understand these mapping steps. Suppose we are

translting a word boys from English to Hindi. Then the three mapping steps in our

morphological analysis and generation model may provide the following applicable

mappings:
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Figure 2: A sequence of mapping steps in Factored models

• Translation: Mapping lemmas

boy → lwкA (ladka), y� vк (yuvak), etc.

• Translation: Mapping morphology

NN|directCase|plural → NN|-e, NN|-on, etc.

• Generation: Generating surface forms

lwкA|NN|-e → lwк� (ladke)

lwкA|NN|-on → lwкo\ (ladkon)

y� vк|NN|-e → y� vк (yuvak)

y� vк|NN|-on → y� vкo\ (yuvakon)

The application of these mapping steps to an input phrase is called expansion. Given

the multiple choices for each step (reflecting the ambiguity in translation), each input

phrase may be expanded into a list of translation options. English boys|NN|directCase|plural

may be expanded as follows:

• Translation: Mapping lemmas

{?|lwкA|?|?, ?|y� vк|?|?}

• Translation: Mapping morphology

{?|lwкA|NN|-e, ?|lwкA|NN|-on, ?|y� vк|NN|-e, ?|y� vк|NN|-on}

• Generation: Generating surface forms

{lwк� |lwкA|NN|-e, lwкo\|lwкA|NN|-on, y� vк|y� vк|NN|-e, y� vкo\|y� vк|NN|-

on}
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2.3 Statistical modeling of Factored models

Factored translation modeling is very much similar to the statistical modeling ap-

proach of phrase-based models. In fact, in Section 2.4 we will see that phrase-based

models are a special case of factored models. The main difference lies in the prepa-

ration of the training data and the type of models learned from the data [Koehn and

Hoang, 2007b]. Training:

• Additional factors are generated for the words in the training data. As manual

annotation is expensive, these factors are typically generated using automatic

annotation tools such as POS tagger.

• Word aligner is used to learn the alignemnts between words or factors in training

data. Generally same method is used as in phrase-based models (GIZA++

alignments). Note that the word alignment methods may operate on the surface

forms of words or on any other factors.

• Then, we learn translation and generation tables from the word-aligned parallel

corpus and define scoring methods that help us to choose between ambiguous

mappings.

• The models for the translation steps are acquired from a word-aligned parallel

corpus in the same manner as that of phrase-based models. For the specified

factors in the input and output, phrase mappings are extracted. The set of

phrase mappings (now over factored representations) is scored based on relative

counts and word-based translation probabilities.

• The generation distributions are estimated on the output side only. The word

alignment plays no role here. In fact, additional monolingual data may be used.

The generation model is learned on a word-for-word basis.

• An important component of statistical machine translation is the language

model. Typically an n-gram model over surface forms of words is learned on

target side corpus. In the framework of factored translation models, such se-

quence models may be defined over any factor, or any set of factors.
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Combination of components:

Factored translation models can be seen as the combination of several components

(language model, reordering model, translation steps, generation steps). These com-

ponents define one or more feature functions that are combined in a log-linear model [Koehn

and Hoang, 2007b]:

p(e|f) =
1

Z
exp

n∑

i=1

λihi(e, f)

Z is a normalization constant that is ignored in practice. To compute the probability

of a translation e given an input sentence f, we have to evaluate each feature function

hi.

The feature function for a bigram language model component is (m is the number

of words ei in the sentence e):

hLM(e, f) = pLM(e) = p(e1).p(e2|e1).p(e3|e2)...p(em|em−1)

The translation of the input sentence f into the output sentence e breaks down to

a set of phrase translations (f̄j, ēj). For a translation step component, each feature

function hT is defined over the phrase pairs (f̄j, ēj) given a scoring function τ :

hT (e, f) =
∑

j

τ(f̄j, ēj)

For a generation step component, each feature function hG given a scoring function

γ is defined over the output words ek only:

hG(e, f) =
∑

k

γ(ek)

The feature functions follow from the scoring functions (τ , γ) acquired during the

training of translation and generation tables. The feature weights λi in the log-linear

model are determined using a minimum error rate training method.

Decoding:

Compared to phrase-based models, the decomposition of phrase translation into

several mapping steps leads to additional computational complexity. Multiple tables

have to be searched instead of a single table look-up to obtain the possible transla-

tions for an input phrase. Entries in the phrase table that may be potentially used for

a specific input sentence are called Translation options [Koehn and Hoang, 2007b].
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Decoding algorithm is similar to that of a Phrase-based model (Beam search).

The beam search decoding algorithm starts with an empty hypothesis. Then new

hypotheses are generated by using all applicable translation options. Hypotheses are

created until we get the hypotheses that covers the full input sentence. The highest

scoring complete hypothesis indicates the best translation according to the model.

Since all mapping steps operate on the same phrase segmentation, the expansions

of these mapping steps can be efficiently precomputed prior to the heuristic beam

search and stored as translation options. Given input phrase, all possible translation

options are thus computed before decoding.

But we face a problem of combinatorial explosion of the number of translation

options given a sequence of mapping steps. This problem is currently solved by heavy

pruning of expansions and limiting the number of translation options per input phrase

to a maximum number, by default 50. This is, however, not a perfect solution.

2.4 Phrase based models: A special case of Factored models

Phrase-based models are a special case of factored models, i.e., we can derive phrase-

based model by using appropriate feature functions in factored model. First we will

see the noisy channel modeling of phrase-based models [Koehn et al., 2003]:

argmaxep(e|f) = argmaxep(f |e).p(e)

Here, p(e) is modeled as a Language model:

p(e) = p(e1).p(e2|e1).p(e3|e2)...p(em|em−1)

Whereas p(f |e) is expressed in terms of translation and distortion models:

p(f |e) = Πiφ(fi|ei).d(ai, bi−1)

Here, φ is a translation probability function and d is a distortion function. ai and

bi−1 denote the starting position of the current phrase and ending position of previ-

ous phrase respectively. To derive phrase-based model from factored model, we will

consider following feature functions:

• Language model: hLM(e) = log(p(e))

• Translation model: hT (e, f) =
∑

j log(φ(fj|ej))

• Distortion model: hR(e, f) =
∑

j log(d(aj, bj−1))
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Now, to prove:

argmaxe(
1

Z
exp

∑

j

λjhj(e, f)) = argmaxe(p(e).Πjφ(fj|ej).d(aj, bj−1))

Derivation:

LHS = argmaxe(
1
Z
exp

∑
j λjhj(e, f))

= argmaxe(
1
Z
exp(λ1

∑
j log(φ(fj|ej)) + λ2

∑
j log(d(aj, bj−1)) + λ3log(p(e))))

Z can be ignored as it is a normalization constant.

= argmaxe(exp(λ1

∑
j log(φ(fj|ej)) + λ2

∑
j log(d(aj, bj−1)) + λ3log(p(e))))

Considering weight of each model as 1, i.e., λ1 = λ2 = λ3 = 1

= argmaxe(exp(
∑

j log(φ(fj|ej)) +
∑

j log(d(aj, bj−1)) + log(p(e))))

Expanding exponential function over summation,

= argmaxe(exp(
∑

j log(φ(fj|ej)).exp(
∑

j log(d(aj, bj−1))).exp(log(p(e)))))

As exp(log(p(e)) = p(e),

= argmaxe(exp(
∑

j log(φ(fj|ej)).exp(
∑

j log(d(aj, bj−1))).p(e)))

Also, exp(
∑

j log(φ(fj|ej)) = Πjlog(φ(fj|ej)) and exp(
∑

j log(d(aj, bj−1))) = Πjlog(d(aj, bj−1)),

= argmaxe(p(e).Πjφ(fj|ej).d(aj, bj−1))

= RHS

Thus, we proved that Phrase-based model can be derived from Factored model by us-

ing three feature functions: Language model, translation model and distortion model.

Hence, we can say that Phrase-based models are a special case of Factored models.
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2.5 Disadvantages of Factored models

Factored models create more accurate translations but also create many more un-

knowns compared to phrase-based model.

For example, consider two pairs of sentences,

1. Factored: Ram|null eats|+musc food|null → rAm хAnA хAtA h{ (raam khana

khata hai)

Unfactored: Ram eats food → rAm хAnA хAtA h{ (raam khana khata hai)

2. Factored: Sita|null eats|-musc food|null → sFtA хAnA хAtF h{ (sita khana khati

hai)

Unfactored: Sita eats food → sFtA хAnA хAtF h{ (sita khana khati hai)

Now, consider two different cases:

• Case 1: With only sentence 1 in training data

Test phrase: eats|-musc (for factored model), eats (for phrase-based model)

As combination eats|-musc will be absent in the phrase table of factored model,

output will be unknown. But phrase-based model has eats in its phrase table.

Hence, output will be хAtA h{ (khata hai), even though it is incorrect.

• Case 2: With both, sentence 1 and 2 in training data

Test phrase: eats|-musc (for factored model), eats (for phrase-based model)

Now, combination eats|-musc will be present in the phrase table of factored

model and hence output will be хAtF h{ (khati hai), which is correct. Whereas,

phrase-based model has two possible outputs for eats with equal probability.

Hence, probability of correct translation for factored model is 1, whereas for

phrase-based model, it is 0.5.

Data sparseness:

Even though factored models generate accurate translations, they face severe problem

of data sparseness which limits their performance. The example of data sparseness

with factored models can be seen in case 1 above.

Data sparseness can be classified as follows:
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• Sparseness in translation: Combination of factors does not exist on the

source side in the training data

E.g. Consider case 1 of above example. Phrase table of factored model did not

have factor combination eat|-musc on the source side. Hence, output generated

was unknown.

• Sparseness in Generation: Combination of factors does not exist on the

target side in the training data

E.g. Consider generation step of generating Hindi surface form from Hindi

lemma and suffix. Let translations steps be English surface word to Hindi

lemma and English gendet to Hindi suffix.

Let training data contain two sentences:

– Ram|null eats|+musc food|null → rAm|.|. хAnA|.|. хAtAh{|хA|tAh{

– Sita|null runs|-musc → sFtA|.|. dOwtFh{|dOw|tFh{

Now, let the test sentence be: Sita|null eats|-musc.

The output will be: sFtA eats|-musc

Because, even though translation tables have entry for Sita to sFtA, eats to хA

and -musc to tFh{, generation table does not have entry for хA|tFh{ to хAtFh{.

Decoding complexity:

As we saw in Section 2.3, decoding of factored models may generate huge number

of translation options. This is obvious from the fact that factored models consider

extra information apart of surface word. The number of translation options increase

exponentially with number of factors used. As it is unmanageable for a system to

handle large number of options, it either results in degraded translation output or it

takes large time to translate.

Hence, it is not suggested to use many factors while designing a factored model,

as it may degrade the translation system performance. Moses decoder allows four

factors by default.

More complex setups of factored models can dramatically increase the complexity

of factored models. Combination of translation options of various steps can cause

combinatorial explosion. During decoding, pruning will likely discard good hypothe-

ses, as stacks will be filled with too many factor combinations.
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Figure 3: Sample Factored model [Tamchyna and Bojar, 2013]

Consider the factored setup shown in Figure 3. This setup uses two translation

steps (lemma → lemma, tag → tag). It also uses one generation step (Target lemma,

tag → Form). For each source phrase, the decoder generates all possible translations

of the lemmas. Then it combines each lemma with all consistent translations of the

tags (resulting in a subset of Cartesian product of the lemma/tag options). Finally,

each combination generates zero, one or more phrases of target forms.

An expansion is considered consistent if the target side has the same length and

if the shared factors match. If the steps share some of the output factors, the order

of application of mapping step plays a significant role. In this case, only consistent

translation options can be generated during expansion [Tamchyna and Bojar, 2013].

3 Hierarchical Phrase-based models

Hierarchical phrases are phrases which contain subphrases. Hierarchical model is

based on Synchronous-CFG. This model is learnt from the parallel data without

any syntactic annotations. This model combines Phrase-based and Syntax-based

translation. Hierarchical models are described in detail in [Chiang, 2005].

3.1 Problem with Phrase-based model

Even though phrase-based approach learns reordering well, there is often need of

learning reordering between phrases itself. Thus, the need of hierarchical phrases

arises.

Example: Mandarin to English phrase-based translation

Aozhou shi yu Beihan you bangjiao de shaoshu guojia zhiyi .

Australia is with North Korea have dipl. rels. that few countries one of .

Australia is one of the few countries that have diplomatic relations with North Korea.

Translation output of ATS (Alignment Template System) phrase-based system:
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[Aozhou] [shi] [yu Beihan] [you] [bangjiao] [de shaoshu guojia zhiyi] [.]

[Australia] [has] [dipl. rels.] [with North Korea] [is] [one of the few countries] [.]

Words in brackets are phrases learnt by ATS. The output translation is wrong.

The phrase-based model is able to order has diplomatic relations with North Korea

correctly (using phrase reordering) and is one of the few countries correctly (using a

combination of phrase translation and phrase reordering), but does not invert these

two groups as it should.

Hence, to get correct translation, we also need to learn hierarchical phrases of the

form:

<yu X1 you X2, have X2 with X1>

<X1 de X2, the X2 that X1>

<X1 zhiyi, one of X1>

Here, X1 and X2 are place-holders for subphrases.

3.2 Hierarchical Model

Hierarchical model consists of a set of SCFG rules of the form as shown above. In

SCFG, the elementary structures are rewrite rules with aligned pairs of right-hand

sides: X → <γ, α, ~>

Here, X is a nonterminal. γ and α are strings of nonterminals and terminals. ~ is

one-to-one correspondences between nonterminals in γ and α.

Rewrite rules for previous example:

X → <yu X1 you X2, have X2 with X1>

X → <X1 de X2, the X2 that X1>

X → <X1 zhiyi, one of X1>

Other rules (similar to phrase-table entries in phrase-based model):

X → <Azhou, Australia>

X → <Beihan, North Korea>

X → <shi, is>

X → <bangjiao, diplomatic relations>

X → <shaoshu guojia, few countries>

Glue rules:

All of the rules in SCFG use only X as a nonterminal, except for two special glue

rules, which combine a sequence of Xs to form an S:
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S → <S1 X2, S1 X2>

S → <X1, X1>

These rules give the model the option to build only partial translations using

hierarchical phrases, and then combine them serially as in a standard phrase-based

model.

Hierachical model is a log-linear model:

w(X → <γ, α>) = Πi φi(X → <γ, α>)λi

Where the φi are features defined on rules. Features analogous to Pharaohs default

feature set are:

• P(γ|α) and P(α|γ): P(γ|α) is similar to the phrase translation probability used

in noisy channel model.

• Lexical weights: Pw(γ|α) and Pw(α|γ) to analyze how well the words in α

translate the words in γ.

• Phrase penalty (exp(1)): Allows model to learn preference for longer or shorter

derivations.

Let D be the derivation of the grammar. We can represent D as a set of triples

<r, i, j> , each of which stands for an application of a grammar rule r to rewrite a

nonterminal that spans i to j on the source side. Then, the weight of D is decided as:

w(D) = Π<r, i, j>ǫD ∗ plm(e)
λlm ∗ exp(-λwp|e|)

Weight of a derivation is product of the weights of the rules used in the translation,

multiplied by the language model factor and word penalty. Word penalty is to control

the length of target output sentence.

Training of this model includes word alignment of bilingual corpus and extraction

of set of rules consistent with word alignments. Extraction of rules is divided into

two steps:

• Identifying Initial phrase pairs: Find phrases from the phrase-table which are

consistent with word alignments.

• Obtain rules from phrases: Find phrases that contain other phrases and replace

the contained phrases (subphrases) with nonterminal symbols.

As this method generates large number of rules, some constraints are applied on the

extracted rules to filter them out. Parameter estimation of the model and decoding

process is not discussed here.
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Thus, we studied three different approaches of statistical machine translation out

of which Phrase-based and Factored models share many processes and parameters

that are used in training and decoding as they are based on the concept of phrases.

Whereas, Hierarchical models are based on the concept of Hierarchical phrases and

follow completely different methodology.

Summary

• We studied Phrase-based models: Mathematical modeling, decoding, phrase

learning

• We studied Factored models: Mathematical modeling, training and decoding

• We also studied how Phrase-based models are a special case of Factored models

• We discusses some disadvantages of Factored models such as Data sparseness

and huge decoding complexity

• We studied Hierarchical phrase-based models and Synchronous CFG
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