
Chapter 3

Classical Optimization and
Search Techniques

In this chapter we discuss a few popular optimization techniques in use in current
day natural language processing algorithms. First we present the Hidden Markov
Model (HMM) used for part-of-speech tagging (POS-tagging) among other tasks.
Then we formulate the POS-tagging problem using HMM and present its classical
solution which is due to the Viterbi algorithm [13].

Then we present Conditional Random Fields, an alternative to HMMs, which
find applications in pattern recognition and machine learning problems such as
shallow parsing [3], named entity recognition and gene finding.

Conditional Random Fields are followed by a description of a popular variant
of the gradient descent algorithm, namely the iterative scaling algorithm. This
finds use in solving for the training objectives of exponential models which use
maximum likelihood estimation on the training data to get the parameters.

Then we present Support Vector Machines (SVM) which are supervised learn-
ing models used for classification and regression analysis. They have been success-
fully applied to numerous applications mainly because of their ability to perform
non-linear classification via the usage of a technique called the Kernel trick.

Finally a couple of probabilistic meta-heuristic optimization techniques are
presented. The first is genetic algorithms which are inspired from the principle
of natural selection. The second is simulated annealing which efficiently finds a
good approximation to the global optimum of a given function in a large search
space.

3.1 Hidden Markov Model

The Hidden Markov model is a stochastic model in which the system being mod-
eled is assumed to be a Markov process with unobserved (hidden) states. A key
aspect of the HMM is its Markov property which is described in brief below along
with other background definitions required.

19

3.1.1 Stochastic Process

Definition 1. Stochastic Process: A stochastic process is a collection of random
variables often used to represent the evolution of some random value over time.

There is indeterminacy in a stochastic process. Even if we know the initial
conditions, the system can evolve in possibly many different ways.

3.1.2 Markov Property and Markov Modelling

Definition 2. Markov Property: A stochastic process has the Markov property if
the conditional probability distribution of future states of the process (conditional
on both past and present values) depends only upon the present state, not on the
sequence of events that preceded it. That is, the process is memoryless.

A Markov model is a stochastic model that follows the Markov property. Next
we present the HMM through the urn problem which eases the exposition. In a
further sub-section the formal description of the HMM is given.

3.1.3 The urn example

There are N urns, each containing balls of different colours mixed in known pro-
portions. An urn is chosen and a ball is taken out of it. The colour of the ball is
noted and the ball is replaced. The choice of the urn from which the nth ball will
be picked is determined by a random number and the urn from which the (n−1)th

ball was picked. Hence, the process becomes a Markov process.
The problem to be solved is the following: Given the ball colour sequence, find

the underlying urn sequence. Here the urn sequence is unknown (hidden) from
us and hence the name Hidden Markov Model. The diagram1 below shows the
architecture of an example HMM. The quantities marked on the transition arrows
represent the transition probabilities.

3.1.4 Formal Description of the Hidden Markov Model

The hidden Markov model can be mathematically described as follows:

N = number of states
T = number of observations
θi=1...N = emission parameter for an observation associated with state i
φi=1...N,j=1...N = probability of transition from state i to state j
φi=1...N = N -dimensional vector, composed of φi,1...N ; must sum to 1
xt=1...T = state of observation at time t
yt=1...T = observation at time t
F (y|θ) = probability distribution of an observation, parametrized on θ
xt=2...T ∼ Categorical(φxt−1

)

yt=1...T ∼ F (θxt)

1Source:http://en.wikipedia.org/wiki/Hidden_Markov_model

20

http://en.wikipedia.org/wiki/Hidden_Markov_model

Figure 3.1: An example Hidden Markov Model with three urns

3.1.5 The Trellis Diagram

Given the set of states in the HMM, we can draw a linear representation of the state
transitions given an input sequence by repeating the set of states at every stage.
This gives us the trellis diagram. A sample trellis is shown in Figure 3.22. Each
level of the trellis contains all the possible states and transitions from each state
onto the states in the next level. Along with every transition, an observation is
emitted simultaneously (in the figure a time unit is crossed and observations vary
with time).

Figure 3.2: An Example Trellis

2Source: Prof. Pushpak Bhattacharyya’s lecture slides on HMM from the course CS 344 - Artifi-
cial Intelligence at IIT Bombay, spring 2013

21

3.1.6 Formulating the Part-of-Speech tagging problem using HMM

The POS tagging problem can be described as follows. We are given a sentence
which is a sequence of words. Each word has a POS tag which is unknown. The
task is to find the POS tags of each word and return the POS tag sequence corre-
sponding to the sentence. Here the POS tags constitute the hidden states. As in the
urn problem, we again assume that words (balls) are emitted by POS tags (urns), a
property called the lexical assumption. That is, the probability of seeing a particu-
lar word depends only on the POS tag previously seen. Also, as was the case in the
urn problem, the probability of a word having a particular POS tag is dependent
only on the POS tag of the previous word (urn to urn probability). Having mod-
elled the problem as given above, we need to explain how the transition tables are
constructed. The transition probabilities come from data. This is a data-driven ap-
proach to POS tagging, and using data on sentences which are already POS tagged
we construct the transition tables. Given this formulation, we next present an al-
gorithm which given an input sentence and the transition tables outputs the most
probable POS tag sequence.

3.1.7 The Viterbi Algorithm

The Viterbi algorithm is a dynamic programming algorithm for finding the most
likely sequence of hidden states that result in the sequence of observed states. Here
the hidden states are the POS tags (or urns in the example) and the observed se-
quence is the word sequence (ball colours).

The state transition probabilities are known (in practice these are estimated
from labeled data) and so are the probabilities of emitting each word in the sen-
tence given the POS tag of the previous word. We start at the start of the input
sentence. We define two additional POS tags ˆ and $ to represent the tag for the
start of the sentence and the terminal character at the end of the sentence (full stop,
exclamation mark and question mark).

A straight-forward algorithm to find the most probable POS tag sequence (hid-
den sequence) would be to just try all possibilities starting from the beginning of
the sentence. Here, our problem has more structure. We will exploit the Markov
assumption we made earlier to get a much more efficient algorithm which is pre-
cisely the Viterbi algorithm.

In the trellis for POS tagging problem the following are the major changes to
be done.

• The observations (words) do not vary with time. Instead they vary with the
position of the pointer in the input sentence.

• The states are the POS tags. The state transition probabilities are pre-computed
using a POS-tagged corpus.

Next, we observe that due to the Markov assumption, once we have traversed
a part of the sentence, the transition probabilities do not depend on the entire sen-

22

tence seen so far. They depend only on the previous POS tag. This crucial obser-
vation gives rise to the Viterbi algorithm:

Suppose we are given a HMM with S possible POS tags (states), initial prob-
abilities πi of being in state i, the transition probabilities P (sj |si) of going from
state i to j and the emission probabilities P (xt|si) of emitting xt from the state si.
If the input sentence is x1, x2, . . . , xT then the most probable state sequence that
produces the sentence y1, y2, . . . , yT is given by the recurrence relations

V1,k = P (y1|sk)πk (3.1)

Vt,k = P (yt|sk)maxsx∈S(P (sk|sx).Vt−1,x) (3.2)

where Vt,k is the probability of the most probable state sequence which emitted
the first t words that has k as the final state. The Viterbi path (most likely state
sequence) can be remembered by storing back pointers which contain the state
sx which was chosen in the second equation. The complexity of the algorithm is
O(|T ||S2|) where T is the set of words, the input sequence and S is the set of POS
tags.

3.1.8 Pseudocode

Pseudocode for the Viterbi algorithm is given below:

Given
Set of states: Array S
Start state: s0
End state: se
Symbol sequence: Array w
State transition probabilities: Matrix a
Symbol emission probabilities: Matrix b
alpha: Matrix alpha

All indices in arrays start on 1 in this pseudocode

Returns
Total probability: p

Initialisation F1
foreach s in S do

alpha [1][s] := a[s0][s]*b[s][w[1]]
done

Induction F2
for i := 1 to length(w)-1 do

foreach s in S do
foreach s’ in S do

23

alpha[i+1][s] += alpha[i][s’]*a[s’][s]
done
alpha[i+1][s] *= b[s][w[i+1]]

done
done

Termination F3
foreach s in S do

p += alpha[length(w)][s]*a[s][se]
done

return p

3.1.9 Measuring the quality of output given by the algorithm

Here, we give the mathematical definitions of two terms popularly used in machine
learning to evaluate results, namely, precision and recall. These will be used later in
analysing the performance of an algorithm in Chatper 6. Since we are interested
in POS tagging, we define them for the current setting and skip giving the most
general definition possible.

Definition 3. Precision: The fraction of words which were correctly tagged is com-
puted as the precision. The precision for any particular tag is defined as the total
number of times it was correctly given as the output divided by the total number of
tims it was given as output.

Definition 4. Recall: Overall recall is defined as the fraction of correct tags among
the total number of words tagged. If every word in the corpus is assigned a tag,
then recall equals precision. Recall for a specific tag is defined as the total number
of times the tag was correctly given as output divided by the total number of times
it should have been given as output.

In the next section, we present Conditional Random fields simiar to HMMs are
used for sequence labeling tasks in NLP. However, they have a different approach
to the task.

3.2 Conditional Random Fields

Lafferty, McCallum and Pereira developed conditional random fields in 2001 [1]
and proposed them as a probabilistic model for segmenting and labeling sequence
data. One of the main advantages of CRFs over HMMs is the ability to relax the
strong independence conditions in HMM. In CRFs we can incorporate dependence
between words in any part of the sentence.

First we, present what random fields are.

24

3.2.1 Random Fields

A random field is a generalization of a stochastic process such that the underlying
parameter of the process, namely time, need no longer be a simple real value but
can take on values that are multi-dimensional vectors.

Definition 5. Random Fields: Given a probability space, an X-valued random
field is a collection of X-valued random variables indexed by elements in a topo-
logical space T . That is, a random field F is a collection {Ft : t is in T} where
each Ft is an X-valued random variable.

A topological space is one that allows for the definition of concepts such as
continuity, connectedness, neighbourhood. For our purposes, a rigorous mathe-
matical definition of topological space is not essential and hence will be skipped.

There are many types of random fields. The most common ones are listed here:

1. Markov Random Field

2. Gibbs Random Field

3. Conditional Random Field

4. Gaussian Random Field

A more detailed description of the types of random fields is outside the scope of this
thesis. But we will need the description of a Markov random field to understand
the definition of a conditional random field and hence it will be discussed in brief
here.

A Markov random field is derived from the definition of a random field in
a way similar to the derivation of a Markov process from a stochastic process. A
Markov random field exhibits the Markov property, that is the probability that the
random variable assumes a certain value depends on other random variables only
through the ones that are its immediate neighbours. Mathematically,

P (Xi = xi|Xj = xj , j 6= i) = P (Xi = xi|∂i)

where ∂i is the set of neighbours of the random variable Xi in the underlying
topological space.

3.2.2 Hammersley Clifford Theorem

Before, we present the formal definition of conditional random fields we will need
a fundamental theorem in random fields to proceed. First, we give the definition of
the Gibbs distribution (also Gibbs random field).

Definition 6. Gibbs distribution: A probability distribution P (X) on an undi-
rected graphical model G is called a Gibbs distribution if it can be factorized into

25

positive functions defined on cliques that cover all the nodes and edges of G. That
is,

P (X) =
1

Z

∏
c∈CG

φCXC

where CG is the set of all maximal cliques in G and Z is the normalizing factor
Z =

∑
x

∏
c∈CG φCXC .

The statement of the Hammersley-Clifford theorem [8] is given next.

Theorem 1. The Gibbs random field (Gibbs distribution) is exactly equivalent to
the Markov Random field.

This theorem is used in deriving the functional form of the conditional proba-
bility distribution for conditional random fields. In the next section, we formally
define conditional random fields and then we go on to study their application to
sequence labeling tasks.

3.2.3 The model

Let X be a random variable over data sequences to label, and Y be a random vari-
able over corresponding label sequences. All components Yi of Y are assumed to
range over a finite label set. In the discriminative framework of conditional random
fields, the conditional distribution P (Y |X) is constructed from paired observation
and label sequences. A formal definition of CRFs is given below.

Definition 7. Conditional Random Fields: Let G = (V,E) be a graph such that
Y = (Yv)v∈V , so that Y is indexed by the vertices of G. Then (X,Y) is a con-
ditional random field in case, when conditioned on X , the random variables Yv
obey the Markov property with respect to the graph: P (Yv|X,Yw, w 6= v) =
P (Yv|X,Yw, w ∈ N(v)), where N(v) is the set of neighbours of v.

CRF is very much similar to a Markov random field. The difference is that
the Markov condition should now hold on the conditional probability distribution
P (Y |X). Although, G could be any graph, we will be concerned only with se-
quences. Hence, we restrict G to be a simple chain and X and Y to be sequences.
By the Hammersley and Clifford theorem of random fields (Hammersley and Clif-
ford, 1971), the joint distribution of the label sequence Y given X has the form

Pθ(Y |X) = exp

∑
e∈E,k

λkfk(e, y|e, x) +
∑
e∈V,k

µkgk(v, y|v, x)


where y|S is the set of components of y associated with the vertices in the subgraph
S. The features f and g are known and given. The next step would be to estimate
the parameters θ using the training data. This is done using an iterative scaling
algorithm similar to the Improved Iterative Scaling algorithm.

26

It can be seen easily that CRFs encompass the class of HMMs. THe class of
CRFs is much more expressive as they allow arbitrary dependencies on the ob-
servation sequence. Most sequential classifiers are trained to make the best local
decision and hence cannot trade off at different positions against each other. They
are myopic about the impact of their current decisions on later decisions.

3.3 Improved Iterative Scaling

Iterative Scaling and its variants are all based on the central idea of the Gradient
Descent algorithm for optimizing convex training objectives. It is presented here
using a model which occurs at many places in a maximum entropy approach to
natural language processing.

3.3.1 The Model in parametric form

The problem we consider is a language modelling problem [12], which is to define
the distribution P (y|x), where y and x are sequences. For eg, y can be the POS tag
sequence and x the input sequence. Henceforth the boldface indicating that x is a
sequence will be dropped unless the context demands further elucidation.

Given just the above information, the maximum entropy approach maximises
the entropy of the model giving us a model of the following form.

PΛ(y|x) =
1

ZΛ(x)
exp

(
n∑
i=1

λifi(x, y)

)
. (3.3)

where

• fi(x, y) is a binary-valued function, called a feature of (x,y), associated with
the model. The model given above has n features.

• λi is a real-valued weight attached with fi whose absolute value measures
the ’importance’ of the feature fi. Λ is the vector of the weights: Λ =
{λ1, λ2, . . . , λn}.

• ZΛ(x) is the normalizing factor which ensures that PΛ is a probability dis-
tribution.

ZΛ(x) =
∑
y

exp

(
n∑
i=1

λifi(x, y)

)

3.3.2 Maximum Likelihood

The next thing to do would be to train the model, i.e find the parameters λi so as to
maximize some objective over the training data. Here, we choose to maximize the
likelihood of the training data. The likelihood is computed by assuming that the

27

model is the correct underlying distribution and hence is a function of the parame-
ters of the model. The likelihood of the training data is expressed as follows (N is
the number of training instances):

M(Λ) =
N∏
i=1

P (xi, yi)

=
N∏
i=1

PΛ(yi|xi)P (xi)

Now, we note that log(x) is a one-to-one map for x > 0. Therefore the value of
x which maximizes f(x) is the same as that which maximizes log(f(x)). Hence-
forth we work with the logarithm of the likelihood expression as it is mathemati-
cally easier to work with. The log-likelihood expression denoted by L(Λ) is given
below:

L(Λ) = log(M(Λ))

=
N∑
i=1

log (PΛ(yi|xi)) + C

where C is independent of Λ and is hence treated as a constant. It is dropped from
the expression hereforth as it does not affect the maximization problem.
Now, we express the log-likelihood expression in terms of the empirical probability
distribution p̃(x, y) obtained from the training data as follows:

p̃(x, y) =
c(x, y)∑
x,y c(x, y)

where c(x, y) is the number of times the instance (x, y) occurs in the training data.
The log-likelihood expression becomes the following:

Lp̃(Λ) =
∑
x,y

log
(
PΛ(y|x)c(x,y)

)
=

∑
x,y

p̃(x, y)log (PΛ(y|x))

We ignore
∑

x,y c(x, y) as it is constant for a given training set (= N).

28

3.3.3 The objective to optimize

Hence we arrive the objective to be maximized. The maximum likelihood problem
is to discover Λ∗ ≡ argmaxΛLp̃(Λ) where

Lp̃(Λ) =
∑
x,y

p̃(x, y)log (PΛ(y|x))

=
∑
x,y

p̃(x, y)
∑
i

λifi(x, y)−
∑
x,y

p̃(x, y)log

(∑
y

exp

(
n∑
i=1

λifi(x, y)

))

=
∑
x,y

p̃(x, y)
∑
i

λifi(x, y)−
∑
x

p̃(x)log

(∑
y

exp

(
n∑
i=1

λifi(x, y)

))

From the expression for log-likelihood we note that Lp̃(Λ) ≤ 0 always. Hence
Lp̃(Λ) = 0 is optimal. TO maximize the log-likelihood we could take the partial
derivate of the expression with each parameter λi which gives

∂Lp̃(Λ)

∂λi
=

∑
x,y

p̃(x, y)fi(x, y)−
∑
x,y

p̃(x)fi(x, y)
exp (

∑
i λifi(x, y))∑

y exp (
∑

i λifi(x, y))

=
∑
x,y

p̃(x, y)fi(x, y)−
∑
x,y

p̃(x)fi(x, y)PΛ(y|x)

The above expression contains all the parameters λi in it and is hence difficult to
solve for. Since a direct aproach via differentiation yielded too complex a problem
we take an iterative approach similar to the gradient descent algorithm which is
described next.

3.3.4 Deriving the iterative step

Suppose we have a model with some arbitrary set of parameters Λ = {λ1, λ2, . . . , λn}.
We would like to find a new set of parameters Λ+∆ = {λ1 +δ1, λ2 +δ2, . . . , λn+
δn} which yield a model of higher log-likelihood. The change in log-likelihood is

Lp̃(Λ + ∆)− Lp̃(Λ) =
∑
x,y

p̃(x, y)logP(Λ+∆)(y|x)−
∑
x,y

p̃(x, y)logPΛ(y|x)

=
∑
x,y

p̃(x, y)
∑
i

δifi(x, y)−
∑
x

p̃(x)log

(
Z(Λ+∆)(x)

Z(Λ)(x)

)
Now, we make use of the inequality −log(α) ≥ 1 − α to establish a lower

29

bound on the above change in likelihood expression.

Lp̃(Λ + ∆)− Lp̃(Λ) ≥
∑
x,y

p̃(x, y)
∑
i

δifi(x, y) + 1−
∑
x

p̃(x)
Z(Λ+∆)(x)

Z(Λ)(x)

=
∑
x,y

p̃(x, y)
∑
i

δifi(x, y) + 1−
∑
x

p̃(x)

∑
y exp (

∑
i(λi + δi)fi(x, y))∑

y exp (
∑

i λifi(x, y))

=
∑
x,y

p̃(x, y)
∑
i

δifi(x, y) + 1−
∑
x

p̃(x)
∑
y

((
exp(

∑
i λifi(x, y)

ZΛ(x)

)
exp

(∑
i

δifi(x, y)

))

=
∑
x,y

p̃(x, y)
∑
i

δifi(x, y) + 1−
∑
x

p̃(x)
∑
y

PΛ(y|x)exp

(∑
i

δifi(x, y)

)
= A(∆|Λ)

Now we know that is we can find a ∆ such that A(∆|Λ) > 0 then we have a
improvement in the likelihood. Hence, we try to maximize A(∆|Λ) with respect
to each δi. Unfortunately the derivative of A(∆|Λ) with respect to δi yields an
equation containing all of {δ1, δ2. . . . , δn} and hence the constraint equations for
δi are coupled.

To get around this, we first observe that the coupling is due to the summation
of the δis present inside the exponentiation function. We consider a counterpart
expression with the summation placed outside the exponentiation and compare the
two expressions. We find that we can indeed establish an inequality using an im-
portant property called the Jensen’s inequality. First, we define the quantity,

f#(x, y) =
∑
i

fi(x, y)

If fi are binary-valued then f#(x, y) just gives the total number of features which
are non-zero (applicable) at the point (x,y). We rewriteA(∆|Λ) in terms of f#(x, y)
as follows:

A(∆|Λ) =
∑
x,y

p̃(x, y)
∑
i

δifi(x, y)+1−
∑
x

p̃(x)
∑
y

PΛ(y|x)exp

(
f#(x, y)

∑
i

δifi(x, y)

f#(x, y)

)

Now, we note that fi(x,y)
f#(x,y)

is a p.d.f. Jensen’s inequality states that for a p.d.f,
p(x),

exp

(∑
x

p(x)q(x)

)
≤
∑
x

exp(p(x)q(x))

Now, using Jensen’s inequality, we get,

A(∆|Λ) ≥
∑
x,y

p̃(x, y)
∑
i

δifi(x, y) + 1−
∑
x

p̃(x)
∑
y

PΛ(y|x)
∑
i

(
fi(x, y)

f#(x, y)

)
exp(δif#(x, y))

= B(∆|Λ)

30

where B(∆|Λ) is a new lower-bound on the change in likelihood. B(∆|Λ) can be
maximized easily because there is no coupling of variables in its derivative. The
derivative of B(∆|Λ) with respect to δi is,

∂B(∆)

∂δi
=
∑
x,y

p̃(x, y)fi(x, y)−
∑
x

p̃(x)
∑
y

PΛ(y|x)fi(x, y)exp(δif
#(x, y))

Notice that in the expression for ∂B(∆)
∂δi

δi appears alone without the other parame-
ters. Therefore, we can solve for each δi individually. The final IIS algorithm is as
follows,

• Start with some arbitrary values for λis.

• Repeat until convergence

– Solve for ∂B(∆)
∂δi

= 0 for δi.

– Set λi = λi + δi

for each i.

This concludes the description of the Improved Iterative Scaling algorithm for
optimizing maximum likelihood estimation objectives. Next we look at a pow-
erful classification technique popular in Machine Learning called Support Vector
Machines.

3.4 Support Vector Machines

Support vector machines were invented by Vladimir N. Vapnik in the 1963 as a
supervised learning model. The basic SVM is a linear binary classifier although
both the restrictions can be lifted. First, we look at the motivation for SVMs from
a machine learning standpoint. Then the basic linear SVM will be presented from
which we can derive non-linear SVMs too.

3.4.1 Motivation

Suppose some given data points each belong to one of two classes, and the goal
is to decide which class a new data point will be in. In the case of support vector
machines, a data point is viewed as a p-dimensional vector, and we want to know
whether we can separate such points with a (p− 1)-dimensional hyperplane. This
is called a linear classifier. There are many hyperplanes that might classify the data.
One reasonable choice as the best hyperplane is the one that represents the largest
separation, or margin, between the two classes. So we choose the hyperplane so
that the distance from it to the nearest data point on each side is maximized. If
such a hyperplane exists, it is known as the maximum-margin hyperplane and the
linear classifier it defines if known as a maximum margin classifier. The model of
support-vector machines achieve precisely the maximum margin classifier.

31

Figure 3.3: An example of maximum margin hyperplane classification over per-
fectly separable data.

3.4.2 Linear SVM

Given some training data, D = {(xi, yi)|xi ∈ Rp, yi ∈ {+1,−1}}ni=1, we want to
find the maximum-margin hyperplane that divides the points having yi = 1 from
those having yi = −1. The algebraic expression of a general hyperplane is

w.x− b = 0

where w is the normal vector to the hyperplane. If the training data are linearly
separable, we can select two hyperplanes in a way that they separate the data and
there are no points between them, and then try to maximize their distance. The re-
gion bounded by them is called ”the margin”. These hyperplanes can be described
by the equations

w.x− b = 1

w.x− b = −1

The distance between these two hyperplanes is 2
||w|| . Hence our aim is to minimize

w. Also, we want to penalize those data points which fall within the margin. So
ideally,

w.x− b ≥ 1 for data points of the first class

w.x− b ≤ −1 for data points of the second class

32

This can be rewritten as
yi(w.x− b) ≥ 1 ∀ i.

If the data is not linearly separable, then finding such a hyperplane is impossible.
To still get a ’good’ classifier we introduce non-negative slack variables ξi, which
measure the degree of misclassification of the point xi.

The final objective function has two terms, one corresponding to the maxi-
mization of the margin size, the other corresponding to penalising the misclassified
examples (non-zero ξi), and the optimization becomes a trade-off between a large
margin and a small error penalty.

arg min
w,ξ,b

(
1

2
||w||2 + C

N∑
i=1

ξi

)
.

subject to

yi(w.x− b) ≥ 1− ξi ∀ i
ξi ≥ 0 ∀ i

The constrained optimization problem we have obtained above can be solved by
using Lagrange multipliers which convert constrained optimization problems to
unconstrained objectives via the use of additional variables. Using Lagrange’s
method here gives us the objective,

arg min
w,ξ,b

max
α,β

(
1

2
||w||2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(w.x− b)− 1 + ξi]−
N∑
i=1

βiξi

)

where αi, βi ≥ 0.
To solve the above problem, we use the technique of Primal-Dual algorithms.

That is, we first write its dual. The dual of the above problem is,

arg max
α

 N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjxi.xj


subject to

0 ≤ αi ≤ C ∀ i and
N∑
i=1

αiyi = 0

The theory of how the dual is generated from the primal is outside the scope of this
thesis. The dual problem is convex and hence can be solved by classical convex
optimization techniques. From the strong duality theorem we have that the optimal
values of the primal and the dual objectives coincide. From a property of duality

33

not presented here, we get that the solution to the primal can be expressed as a
linear combination of the training vectors,

w =
N∑
i=1

αiyixi

Since, αi ≥ 0 we notice that in the optimization for the primal if yi(w.xi − b) > 1
the corresponding αis are going to be set to zero. The xi whose corresponding αi
are greater than 0 are precisely the support vectors. They lie on the margin and
satisfy yi(w.xi − b) = 1.

3.4.3 Non-linear SVM

SVMs as originally proposed by Vapnik are linear classifiers. In 1992, Bernhard
Boser, Isabelle Guyon and Vladimir Vapnik [14] suggested a way to create non-
linear classifiers by using what is called the ’kernel trick’ to maximum-margin
hyperplanes. The resulting algorithm is formally similar except that every occur-
rence of the dot product function is replaced by a general kernel function which
can be non-linear but still has to be an inner product. This allows the algorithm
to fit the maximum-margin hyperplane in a transformed feature space which can
possibly be high-dimensional. Though the classifier in the transformed space is a
hyperplane, in the original input space it maybe non-linear. Using this, non-linear
decision boundaries as shown in Figure 3.4 can be generated.

3.4.4 The Kernel function

There can be many kernel functions each leading to different results. For example,
the Gaussian radial bias function is used as kernel, then the transformed feature
space is of infinite dimensions. Some common kernel functions are listed below.

• Polynomial (homogeneous): k(xi, xj) = (xi.xj)d

• Polynomial (inhomogeneous): k(xi, xj) = (xi.xj + 1)d

• Gaussian radial bias function: k(xi, xj) = exp(−γ||xi − xj ||2) where γ =
1

2σ2 .

With that we finish SVMs and we move on to look at a couple of probabilistic
frameworks which are based on heuristics. The first is genetic algorithms.

3.5 Genetic Algorithms

Genetic algorithms were inspired by the mechanism of natural selection. They
represent a stochastic, discrete-event and nonlinear process. The obtained optimum
is an end product containing the best elements of previous generations where the
attributes of a stronger individual tend to be carried forward. The rule of the game
is survival of the fittest. The basics of the framework are described below. [?]

34

Figure 3.4: An example transformation of input space using kernel functions and
the corresponding decision boundaries in the two spaces.

3.5.1 Model

A potential solution for a problem is an individual who can be represented via a
set of parameters. These parameters are regarded as the genes of a chromosome;
they can be structured by a string of values in binary form. A positive value called
the fitness value, is used to reflect the degree of goodness of the chromosome for
solving the problem, and this value is closely related to its objective value. A fitter
chromosome has the tendency to yield good-quality offspring. A population pool
of chromosomes has to be installed and they can be randomly set initially. The size
of this population varies from one problem to the other.

In each cycle of the genetic process, the subsequent generation is created from
the chromosomes of a set of parents in current generation called the mating pool
who are selected via a selection routine. There can be multiple selection routines.
A popular one called the Roulette wheel selection is presented next.

The cycle of evolution is repeated until a desired termination criterion is reached.
This criterion can also be set by the number of evolutional cycles, the amount of
variation of individuals between generations, or a predefined value of fitness.

3.5.2 Mating Pool Selection

One of the most popular routines to select the parents for the mating pool is pre-
sented below.

Roulette Wheel parent selection:

• Sum the fitness of all the population members and call it total fitness (N).

• Choose a random number n between 0 and total fitness (N).

• Return the first population member whose fitness added to the fitness of the
preceding population members is greater than n.

35

Next we look at genetic operators. These operators act on chromosomes and give
rise to the next pool of chromosomes (or offspring). These operators result in a
change in the fitness value of the chromosomes in the pool and hence are ultimately
responsible for finding the optimal chromosome.

3.5.3 Genetic Operators

The framework consists of two fundamental operators, namely, crossover and mu-
tation. Crossover is responsible for the creation of new offspring whose chromo-
some is a mix of the chromosomes of its parents. Mutation is a unary operator
which when applied on a chromosome probabilistically changes its structure.

The Crossover Operation: Given two parents from the mating pool, the crossover
operator partitions the chromosome length into partitions of random sizes and prob-
abilistically exchanges the subchromosomes within a partition between the parents.
The new chromosome generated at the end of the crossover operation is called the
child chromosome. An example of a single-point crossover (the chromosomes are
split into two partitions only) is shown in Figure 3.5.

Figure 3.5: A depiction of the crossover operator. Here only a single-point
crossover is shown.

The Mutation Operation: The mutation operation changes each bit in the
chromosome with some probability. If each bit is allowed to take on values from a
set of size more than 2, then the mutation operator might end up exchanging two
bits in the chromosome, replacing a bit by another at a different position, creating
a new bit with no relation to existing bits et cetera. However, since we are only
concerned with chromosomes whose bits take binary values, for our purposes the

36

mutation operator does the following. It flips each bit of the chromosome with a
certain probability. An example of mutation is shown in Figure 3.6. Although, in
the figure only a single bit is shown to be flipped, in practice multiple bits can get
flipped via a single mutation operation.

Figure 3.6: A depiction of the mutation operator. Here only a single bit is shown
to be mutated.

Choosing the probability parameters for both the operators can be a complex,
non-linear optimization problem. This selection issue continues to remain largely
open but some guidelines exist as to how to choose the parameters given the popu-
lation size.

Both the operators do not necessarily always improve the population. The im-
provement is enforced by the parent selection and the survivor selection routines.
However, the apparently random nature of the operations is what offers genetic al-
gorithms to overcome a serious limitation of many other optimization frameworks.
They do not get trapped at local optima in contrast to some gradient descent al-
gorithms. Even when a local optima is achieved a genetic algorithm will produce
some offspring which explores other possibilities for the optima beyond the current
local optima.

3.5.4 The Algorithm

Given the above two operators, and the corresponding parameters this is how the
algorithm proceeds. It first generates an initial population of chromosomes of size
N via some method. The fitness of this population is evaluated and stored. Now,
until the termination criterion is met, the algorithm repeatedly does the following:

• Select the mating pool from the parent population.

• Recombine the genes of the parents in the mating pool using crossover to
generate a new child population.

• Perturb the genes of the child population via the mutation operator.

• Evaluate the fitness of the child population.

• Select the chromosomes with the bestN fitness values among the parent and
child populations as survivors for the next generation.

37

The pseudocode for the algorithm is given below.

Pseudocode:

Standard Genetic Algorithm()
{
//start with an initial value
t = 0;
initpopulation P(t);
evaluate_fitness P(t);
//test for termination criterion (time, fitness etc)
while(not done)
{
t = t+1;
P’ = selectparents P(t);
//recombine the genes of the parents using crossover
recombine P’(t);
//stochastically mutate (perturb) the mated population
mutate P’(t);
evaluate_fitness P’(t);
//select the survivors (best N fitness values)
P = survive P, P’(t);
}
}

3.5.5 The building block hypothesis

To understand why genetic algorithms work, the building block hypothesis was
proposed.

Definition 8. The Building Block Hypothesis: A genetic algorithm seeks near-
optimal performance through the juxtaposition of short, low -order, high perfor-
mance schemata, called the building block. (short sub-sequences of binary bits)

The genetic operators, crossover and mutation have the ability to generate,
promote, and juxtapose(side by side) building blocks to form the optimal strings.
Crossover tends to conserve the genetic information present in the strings. Thus,
when the strings for crossover are similar, its capacity to generate new building
blocks diminishes. Mutation, however, is not a conservative operator but capable
of generating new building blocks radically.

In addition, parent selection is an important procedure to be devised. It tends to
bias toward building blocks with higher fitness values, and at the end ensures their
representation from generation to generation.

38

3.5.6 Limitations

Genetic algorithms have their share of limitations. The first among them was al-
ready touched upon. The question of what parameters to choose for the operations
of crossover and mutation does not have a satisfactory answer and it appears that
getting to the answer is complex and might be inefficient too. The second major
concern is that of efficiency of the algorithm. Genetic algorithms might perform
well on the average but in the worst case they can take large amounts of time to
improve the solution.

In the next section, we look at another probabilistic heuristic for optimization
which was inspired from a metallurgical process.

3.6 Simulated Annealing

Simulated annealing (SA) [7] is a probabilistic method proposed by Kirkpatrick,
Gelatt and Vecchi and Cerny in the 1980s for finding the global minimum of a cost
function that may possess several local minima. It works by emulating the physical
process whereby a solid is slowly cooled so that eventually when its structure is
frozen; this happens at a minimum energy configuration. For our purposes, energy
would mean the objective function we are trying to optimize.

3.6.1 The Elements of Annealing

The basic elements of simulated annealing are the following:

1. A finite set S.

2. A real valued cost function J defined on S. Let S ⊂ S be the set of global
minima of J , assumed to be a proper subset of S.

3. For each i ∈ S, a set S(i) ⊂ S − {i} called the set of neighbours of i.

4. For every i, a collection of positive coefficients qij , j ∈ S(i), such that∑
j∈S(i) qij = 1. It is assumed that the neighbourhood relation is symmetric.

That is, if i is a neighbour of j, then j is a neighbour of i.

5. A non-increasing function T : N → (0,∞) called the cooling schedule.
Here T (t) is the temperature at time t.

6. An initial state x(0) ∈ S.

This is a complete and abstract description of the model which can be applied to
problems beyond thermodynamics too, in particular to optimization problems in
computer science. Next, we look at the heuristic of simulated annealing and how
it solves the energy minimization problem.

39

3.6.2 The Method

Given the above elements, the SA algorithm consists of a discrete-time inhomoge-
neous Markov chain x(t), which evolves as follows.

1. If the current state x(t) is equal to i, choose a neighbour j of i at random.
The probability that a particular j will be chosen is qij .

2. Once j is chosen, the next state is determined as follows.

• If J(j) ≤ J(i) then x(t+ 1) = j

• Otherwise, x(t+1) = j with probability exp(J(i)−J(j)
T (t)) and x(t+1) =

i with the remaining probability.

Hence, the SA algorithm can be viewed as a local search algorithm in which there
are occasional ’upward’ moves that lead to a cost increase. These moves help the
algorithm escape from local minima. This is shown pictorially in Figure 3.7. The
function T (t) called the cooling schedule is crucial in deciding the performance of
SA for a problem. From the probability expression above, we can see that lower
temperatures imply smaller chance of perturbation. Hence as we near our optima,
the temperature should fall down so that we converge at that state.

Figure 3.7: A depiction of the process of simulated annealing. Perturbations at
local minima help it escape them to reach a global minima.

3.6.3 Performance

SA has gained popularity among researchers mainly due to its speed of conver-
gence. Despite the lack of a rigorous theoretical justification for the convergence
speed, SA has grown in popularity and widely used in image processing. In a

40

comprehensive study of SA, Johnson et al. (1990, 1991, 1992) present the perfor-
mance of SA in combinatorial optimization problems. In general, its performance
was mixed. In some problems such as the traveling salesman problem, SA outper-
formed the best known heuristics. In other cases, such as the graph partitioning
problem, specialized heuristics performed better. In the case of the graph coloring
problem there was no significant difference between the solutions given by SA and
specialized heuristics.

We now conclude this chapter. We have looked at various classical techniques
used for search and optimization, all the time having the main motive of developing
quantum techniques in the back of the mind. This broad exploration of classical
techniques was essential because it is these techniques that we would like to im-
prove using the power of quantum mechanics and quantum computing.

We next go on to look at the development of quantum computing ideas in liter-
ature by studying some popular and landmark quantum computing algorithms.

41

