Literature Survey: Neural Machine Translation in Low Resource Setting

Aditya Jain, Aakash Banerjee, Pushpak Bhattacharyya
Department of Computer Science and Engineering
Indian Institute of Technology Bombay
Mumbai, India
{adityajainiitb, abanerjee, pb}Qcse.iitb.ac.in

Abstract

Neural Machine Translation(NMT) is the dom-
inant paradigm in the field of Machine Trans-
lation(MT) now. It has significantly improved
the performance of MT models compared to
previous approaches like Statistical or rule-
based MT. One problem with Neural models
is that they require lot of clean parallel data
to perform well which makes it unsuitable for
low resource language pairs. In this paper we
first look at the basics and recent developments
in the field of NMT and then move on to ap-
proaches which help mitigate the problem of
low resourceness. We look at RNNs and its
various types, transformer model, byte pair en-
coding, backtranslation, pivoting, multilingual
models, phrase table injection and cmbined
corpus.

1 Introduction

Machine Translation has existed for a long time
and has become more relevant in recent times due
to proliferation of the web. Machine Translation
became very important during the Cold War in the
1960s when Alan Turing was working on Enigma
to decipher secret code of war messages. In recent
times with the internet becoming a big thing auto-
matic translation tools is in big demand and soft-
ware giants like Google, Microsoft are constantly
working to build better models. Rule-based MT is
the first paradigm where the translation rules were
manually developed. In 1980s Example-based MT
was introduced which relied more on data. Finally
Statistical MT was introduced and it became the
ruling paradigm for a long time. Now Neural MT is
the big thing with neural architectures being used.
With automatic means of translation in demand
and with a lot of work to be still done Machine
translation is a very exciting field.

2 Neural Machine Translation (NMT)

In NMT, we make use of a neural network model
to learn a statistical model for machine translation.
One of the key advantages of NMT over SMT is
that in NMT, a single system can be trained di-
rectly on source as well as target text thereby re-
moving the dependency on a pipeline of specialized
systems as that in SMT. Various MT models that
makes use the RNN or the LSTM architecture falls
into this category. Also the Attention mechanism,
which is used in most of the encoder-decoder based
models, is a part of this paradigm of MT.

2.1 LSTMs

The concept of LSTMs was first introduced in the
work by (Hochreiter and Schmidhuber, 1997). Tra-
ditional Neural Networks fail to deal with sequence-
to-sequence model problems like MT, ASR, etc. In
order to overcome this issue, Recurrent Neural Net-
works (RNNs) were introduced. In simple terms,
RNNSs is exactly same or an extension of the tradi-
tional Neural Network, with an extra loop in them.

2.1.1 Issues with RNN

The RNNs are capable of restoring the past
information, as a result, these models can be
assumed to have memory, unlike traditional Neural
Networks.This capability of memory restoration
has proved to be a huge success of RNNs is as
this enables them to connect or align previous
information while processing the current task in
hand.

Example: Say, you are trying to predict the next
word in the sentence: ~The color of the sky is mostly
Blue”, which means, the word Blue looks very

*ImagesSource : jalammar.github.io/illustrated—
transformer/

probable. But, when teh sequence-to-sequence
tasks involve a long term dependency of any of
the current task on previous set of inputs, such
tasks cannot be handled with the traditional Neural
Network as well as the RNNs. Such sequence-to-
sequence tasks involving long-temr dependencies
can be handled by making use of the memorization
concept of LSTMs. For example in "My birthplace
is Gujarat..... I am fluent in speaking Gujarati’. In
this case, the dots represents one or more missing
sentences or phrases.

While dealing with such long-term dependen-
cies of a current and the previous phrases and their
context, experimentally RNNs are found to fail of-
ten and this paves the need to have a mechanism
that handles this shortcoming of RNNS, and hence,
LSTM or Long Short Term Memory comes into

play.

2.2 NMT using BiRNN and Attention
Mechanism

There has been a gradual progress in the field of
translation, progressing from community gather-
ings and scheduling meetings, to hotel accommo-
dation and flight reservations. However, still there
is great need to further expand the supported fields
to include a wide range of day-to-day conversations
and official business meetings. This paves the need
to have Sequence-to-Sequence Translation Models
to cater to such situations.

In a high level view, a Sequence-to-Sequence
model usually consists of three main components

1. Encoder: the encoder encodes the source sen-
tence into a fixed-length vector.

2. Decoder: the decoder generates the transla-
tion word by word.

3. Attention module: as the per the decoder’s
need, it selectively retrieves the source side
information.

We will look at each of these components in
detail in the upcoming subsections.

2.2.1 Introduction to Attention

The paper (Bahdanau et al., 2016) introduced
the concept of the Attention Mechanism. This pa-
per states that there is a need to have a Neural
Machine Translation model that can be used to im-
prove the translation performance, which cannot be
achieved using the Statistical MT approach. More-
over, such Neural MT based models usually belong

to the category of encoder-decoder models that per-
forms translation using a fixed-length vector space,
which proves to be a bottleneck in improving the
translation performance of such models. As a re-
sult, there is a great need to have a mechanism
which is not restricted to a fixed-length vectors and
can automatically determine the parts of the source
sentence that are more relevant in predicting the
target word.

2.2.2 Description of the Model

The model consists of two major components
namely Encoder and the Decoder, the detailed func-
tionalities provided by them are as follows:
Encoder in detail: The proposed model expects the
annotation of each word to summarize the preced-
ing as well as the succeeding words. To achieve
this, it makes use of a Bi-directional Recurrent
Neural Network (BiRNN).

As the name suggests, a BIRNN consists of two
RNNSs, the forward and the backward RNN. The
forward RNN is used to traverse and read the in-
put sequence in the forward direction whereas the
backward RNN is used to traverse and read the in-
put sequence in the backward or reverse direction,
starting from the last word and moving towards the
first, thereby producing two different sets of hidden
states represented as (h1, ..., h—T:) and (7171, ey %)
respectively.

Finally, these two sets of hidden states are com-
bined or concatenated to form the required annota-
tion h;, that focuses on the words around ;.

Decoder in detail: The proposed model calcu-
lates the the conditional probability as follows:

pWily1, s yio1,®) = g(yi-1, si,¢) (1)

where, s; : RNN hidden state for time ¢ which is
computed as follows:

si = f(si—1,Yi-1,¢i) 2

It can be noted that as compared to previous models,
in this model, the probability is conditioned on
distinct context vector ¢; each time and not on fixed
length context vector.

The context vector ¢; is calculated as weighted
sum of annotations h; :

Ty
¢ = Z a;ihj 3)
j=1
The weight o;; is evaluated as follows:

exp(eij)

4
Shey exple) @

Olij =

where,
eij = a(si—1, hj))

is an alignment model which scores how well the
inputs around position j and the output at position i
match.

The probability o, or its associated energy e;;,
reflects the importance of the annotation h; with
respect to the previous hidden states s;; in deciding
the next states s; and generating y;.This Attention
mechanism then decides the parts of the source
sentence to be focused on.

The architecture of the model described in the
paper cite paper here can be seen below:

The upcoming subsection introduces the con-
cept of the Transformer Model that makes use
the above proposed Attention Mechanism along
with the Encoder-Decoder pairs to efficiently train
the end-to-end speech-to-text models.

2.3 The Transformer Model

The transformer consists of two major components,
the first being the stack of encoders and the second
is the stack of decoders, both of which are of same
numbers.

2.3.1 Encoder

The sequence of tokens, provided as input to
the Transformer model is first converted into an
embedding space of vectors of dimension d,,ode;-
Positional Encoding As the position of the words
in the input sentence effects the context in which it
is used, there is a need to provide some information
about the relative or absolute position of the tokens
in the sequence. This is achieved by the Positional
Encoding mechanism, which is applied to the
input embedding before it enters the Encoder and
the Decoder stacks. This positional encoding has
the same dimension as that of the embedding space.

In the paper (Rabiner, 1989), Positional Encod-
ing concept is implemented by making use of sine
and cosine functions of different frequencies as
shown below:

PE(pOS, 21) = sin(pos/l()OOOQi/dmodel) (6)

PE(pos, 2i+1) = cos(pos/10000%/dmedet) (7)

In the proposed model, the Encoder is composed
of a stack of N = 6 identical layers. Each layer

has two sub-layers. The first is a multi-head self-
attention mechanism, and the second is a position-
wise fully connected feed-forward neural network.
The abstract view of the Encoder is given below:

t t t

{ Feed Forward }
(Self-Attention }

t t t

Figure 1: Architecture of an Encoder in Transformer
Model.

Here, the self-attention layer maps an input em-
bedding = = (x1, ..., x,) to a sequence of contin-
uous representations z = (21, ..., 2,), which are
then passed through the feed-forward layer to form
the final representation which is then provided as
input to the decoder.

2.3.2 Decoder

The decoder is also composed of a stack of 6 iden-
tical layers. In addition to the two layers present
within the encoder, the decoder consists of an extra
layer, which is a multi-head attention layer. The var-
ious types or variants of the attention mechanism
used within the Transformer model are discussed
below.

2.3.3 Attention

The various variants of the Attention mechanism
used within the Transformer model are listed be-
low:

1. Encoder-Decoder Attention: This variant
of Attention is only used within the Decoder
and not the Encoder. It is placed in between
the Self-Attention and the Neural Network
Layer within the Decoder. The key function-
ality provided by this variant is to help the
decoder focus on appropriate places in the se-
quence provided by the Self-Attention layer
below it. The Encoder-Decoder Attention is
already discussed in the above subsections.

http://jalammar.github.io/
illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/

The

2. Self-Attention: Self-attention, also referred

to as intra-attention, is a variant of the at-
tention mechanism relating different positions
of a single sequence in order to compute a
representation of the same sequence.

For example, consider the input sequence to
be

The big red dog.

The below image shows the weight or the im-
portance given to each of the word of the input
sentence while computing the self-attention of
each of the words with reference to the input
sentence itself.

Focus

big red dog
big — The ’ red d6g

red — The big fé@ dog
dog — The big red ’

Figure 2: Example of Self-Attention.

In the above example, the Self-attention mech-
anism enables the model to learn the co-
relation between the current words and the
remaining part of the sentence. On the basis
this mechanism, a Attention matrix is gener-
ated which denotes the importance given to
each word with reference to the word under
consideration.

. Scaled Dot-Product Attention: The two
forms of most commonly used Attention func-
tions are the Dot-Product or Multiplicative
attention function and the Additive atten-
tion function. Among these, Dot-Product
attention is more time and space efficient
as compared to the Additive attention, as
it can be implemented by making use of
highly optimized matrix multiplication codes
whereas, Additive attention is implemented
by making use of a Feed-Forward Neural Net-
work architecture.

In this variant of Attention, the input consists
of Keys and Queries vectors of dimension dj,

‘https://www.youtube.com/watch?v=
TQOQ1ZhbC5ps

Attention v

[0.71

[0.01

[0.09

[0.03

and Values vector of dimension d,. The dot
product is then computed between the Query
(Q) and all the Key (K) vectors, the result of
which is scaled down by dividing it by a factor
of \/dj,. Finally, a Softmax function is applied
to obtain the weights on the Values (V). The
pictorial representation of these series of steps
is shown below

MatMul

Mask (opt.)

0.04

0.84

0.05
0.03

Figure 3: Scaled Dot-Product Attention.

The output matrix provided by the Self-
attention layer is computed as follows

Attention (Q, K, V) = softmax (QTIg)V
8)

The attention function is computed on a set of
queries simultaneously, packed together into
a Query matrix Q. The keys and values are
also packed together into matrices K and V
respectively.

. Multi-Head Attention: In simple terms, a
Multi-head attention is a combination of at-
tention heads, each having different weight
vectors. The pictorial representation of the
multi-head attention mechanism can be seen
below: This variant of the attention mecha-
nism, expands the model’s ability to focus on
different positions. The basic idea behind this
is to compute the attention heads again and
again by changing the value of the weight vec-
tor, each time, to come up with a set of atten-
tion heads. These multiple attention heads are
then concatenated to compute the multi-head
attention.

https://www.youtube.com/watch?v=TQQlZhbC5ps
https://www.youtube.com/watch?v=TQQlZhbC5ps

Concat

i
Scaled Dot-Product JZ o
Attention A

| | |

i
[Linear M Linear P Linear

T~ 7 7

V K Q

Figure 4: Multi-Head Attention.

3 Byte Pair Encoding

Byte Pair Encoding(BPE) is a technique which was
introduced in the paper (Sennrich et al., 2016b)
for word segmentation in Neural Machine Trans-
lation(NMT). Byte Pair Encoding was previously
used as a data compression technique which com-
bined the most frequent pair of bytes. In NMT it is
used for merging characters or character sequences.
We know that Machine Translation is an open vo-
cabulary task whereas NMT models operate on a
fixed size vocabulary. To address this issue, BPE
is used which encodes rare and out of vocabu-
lary(OOV) words as sequences of subword units.
Previously the translation of out-of-vocabulary
words was achieved by backing off to a dictionary.
The two main contributions of BPE can be summa-
rized as:

* Open-vocabulary neural machine translation
is possible by encoding (rare) words via sub-
word units. This technique is much more ef-
fective than large vocabularies or backoff dic-
tionaries

* As BPE is a compression technique, it allows
for a compact representation of an open vo-
cabulary through a a fixed-size vocabulary of
variable-length character sequences.

3.1 Subword Translation

The main motivation behind the paper is that trans-
lation of some words is transparent. This means

that even a translator who has never seen that word
can translate it based on translation of known sub-
word units like morphemes or phonemes. Word
Categories whose translation is transparent include:

* Named Entities: For translation be-
tween languages that share common alpha-
bets, named entities can directly be copied or
else Transliteration comes into picture when
languages do not share alphabets.

* Cognates and Loanwords: Cognates and
loanwords with a common origin can differ
in regular ways between languages, so that
character-level translation rules are sufficient

¢ Morphologically Complex Words: Words
containing multiple morphemes, for instance
formed via compounding, agglutination, or
inflection, may be translatable by translating
the morphemes separately.

3.2 How BPE works?

As mentioned earlier BPE is a compression tech-
nique which iteratively merges the most frequent
character/character sequence. The number of
merge operation to use is a hyperparameter which
is different for different languages and corpora size.
The main difference with other compression tech-
niques(like Huffman Encoding) is that the symbol
sequences are still interpretable as subword units.
The main steps of BPE algorithm can be summa-
rized as below:

* Initialize the symbol vocabulary with the char-
acter vocabulary

* Each word is represented as a sequence of
characters with an additional symbol (/w) at
the end representing end of word

* In each iteration, the two most frequent pair
say (‘A’, ‘B’) is replaced with a new symbol
‘AB’ and vocabulary size increases by one
after each merge operation

* The number of merge operations is the only
hyperparameter

4 Dealing with Low Resource languages

4.1 Phrase Table Injection

(Sen et al., 2018) and (Dewangan et al., 2021) used
this technique, shown in Figure 5, to combine both
SMT and NMT. We know that the phrase table,
generated during training of a SMT model, plays

a key role in the SMT translation process. It con-
tains a probabilistic mapping of phrases from the
source language to the target language. The phrases
present in the phrase table are combined with the
available parallel corpora; thereby increasing the
data available to train the NMT model. This also
helps the model to learn translation of short correct
phrases along with long sentences.

Training SMT model

using Moses toolkit
En-Mr
corpus

Figure 5: Phrase Table Injection

rase pairs

Training a NMT model
) [JEIENNY
MT System

Combining

4.2 Backtranslation

Neural Machine Translation has achieved state-
of-the-art results for many languages pairs while
only using parallel data for training. In Statisti-
cal Machine Translation target side monolingual
data plays a pivotal role. The two main reasons for
target side monolingual data importance in SMT
are:

e It is used to train a Language Model which
is used in a log-linear combination with other
components which helps a lot in increasing
Fluency.

* The amount of available monolingual data in
the target language typically far exceeds the
amount of parallel data,

Target side monolingual data has been previously
used in NMT by incorporating external Language
Models but they have not been very effective and
they also needed a change in model architecture.
The concept of Backtranslation introduced in the
paper (Sennrich et al., 2016a) which uses target
side monolingual data in the same model and
gives much better results compared to previous
approaches. The main contributions of this paper
are:

* The machine translation quality of NMT sys-
tems can be improved by mixing monolingual
target sentences into the training set.

* Two different methods are investigated to fill
the source side of monolingual training: using
a dummy source sentence, and using a source
sentence obtained via backtranslation.

4.2.1 NMT Training with Monolingual Data

In Machine Translation, more monolingual data
serves to improve the estimate of the prior prob-
ability of the target sentences(by using Language
Models in SMT). This paper does not use separate
models on the monolingual data but exploits the
fact that encoder-decoder neural networks already
condition the probability distribution of the next
target word on the previous target words.

To ensure that the output layer remains sensitive to
the source context, and that good parameters are
not unlearned from monolingual data, the mono-
lingual training instances are paired with synthetic
source sentences from which a context vector can
be approximated. The synthetic source side sen-
tences are obtained via back-translation, i.e. an
automatic translation of the monolingual target text
into the source language. This is generally achieved
by training a target to source side model using the
same parallel corpus and using it for backtranslat-
ing.

During training the synthetic parallel text is mixed
into the original text with no distinction among
them. Only the source side of these additional
training examples is synthetic, and the target side
comes from the monolingual corpus. The synthetic
and original data is used in a 1:1 ratio (randomly
shuffled). We cannot arbitrarily increase the ratio
of monolingual training instances because different
output layer parameters are optimal for the two
tasks, and the network ‘unlearns’ its conditioning
on the source context if the ratio of monolingual
training instances is too high.

4.3 Combined Corpus

In this technique the knowledge from similar lan-
guages on the target side is exploited. As shown
in Figure 6, at first a NMT model is trained us-
ing combined corpora from English-Marathi and
English-Hindi (EnglishEnglish-HindiMarathi) lan-
guage pairs. This model is then fine-tuned with the
English-Marathi parallel corpora only, using the
same vocabulary as that used while training. The in-
tuition is that a model which at the start of training
knows how to translate mixed languages is better
than a model initialized with random weights.
This technique will be more effective if the lan-
guages at the target side are similar as this will
potentially lead to a partial overlap in the target
side vocabulary. Here Hindi and Marathi are the
target languages which are similar as both belong

Combining corpora o
‘ TN COPOR o [EnEn-HiMr
v Corpus
ﬂl‘raining NMT model
Trained NMT
Model

Figure 6: Combined Corpus

Final En-Mr
MT System

Fine-tune with
En-Mr corpus

to the same language family (Indo-Aryan) and have
an overlap in their alphabet set

4.4 Pivoting

Both Statistical MT and Neural MT rely on large
quantities of parallel corpora to produce transla-
tions of relatively higher quality. Unfortunately,
large quantities of parallel data are not readily avail-
able for some languages pairs, therefore limiting
the potential use of current MT systems. To solve
this problem some researchers use a third language
called pivot language for which there exist large
source-pivot and pivot-target bilingual corpora.

4.4.1 Pivot Methods for Phrase-based SMT

The paper (Wu and Wang, 2009) talks about three
different approaches to Pivot based MT in context
of SMT systems.

The three approaches are briefly described be-
low:

* Triangulation Method: Here, the source-
pivot and pivot-target translation models are
first trained using the source-pivot and pivot-
target corpora. Based on these models a
source-target model is built in which two im-
portant elements need to be induced: phrase
translation probability and lexical weight.
These parameters are calculated by making
independence assumptions and estimating the
the co-occurring frequencies of word pairs
directly from the induced phrase pairs.

* Transfer Method: This is a very simple tech-
nique in which the system first translates from
the source language to the pivot language us-
ing a source-pivot model, and then from the
pivot language to the target language using a
pivot-target model. The problem here is that
the errors get propagated through two models
and add up to reduce performance of overall
system.

* Synthetic Method: A source-target corpus
can be built in two ways from the source-pivot

and pivot-target corpora. One way is to obtain
translations of source sentences in the source-
pivot corpus. This can be achieved by translat-
ing the pivot sentences of source-pivot corpus
using the pivot to target model. Similarly the
pivot sentences of the pivot-target corpus can
be translated by using a pivot to source model.
We can combine these two source-target cor-
pora to produced a final synthetic corpus.

4.4.2 Pivot Methods for NMT

The paper (Saha et al., 2016) used a correlation
based joint encoder-decoder model instead of a two
stage model. We see a two stage model in Figure
7 where X is the source language Y is the pivot
language and Z is the target language. This model
takes double time during decoding and errors also
get accumulated over 2 independent models.

z Y

Figure 7: Two stage encoder-decoder model. Dashed
lines denote how the model is used during training time
and solid line denotes the test time usage. The two en-
coder and decoders are trained independently but used
jointly during testing. ((Saha et al., 2016))

To overcome the issues with two stage model, a new
model is proposed. Figure 8 shows the setup. Here
the training corpora between X and Z(source and
pivot) is used to train the two encoders marked X
and Z in the diagram. They are trained such that the
correlation between the source and pivot sentences
is maximized. Before maximizing correlation the
the hidden representation of X and Z is normal-
ized(zero mean and unit variance) which helps in
calculating correlation. Simultaneously the parallel
corpora between Z and Y is used to train the Z-Y
encoder decoder model to minimize the cross en-
tropy loss. While training mini batches are picked
from the X-Z and Z-Y corpora and correlation is
maximized and cross-entropy loss is minimized
simultaneously.

Another approach to use of pivot language in NMT
is through Transfer Learning((Kim et al., 2019)).

Figure 8: Correlated encoder-decoder model. Dashed
lines denote how the model is used during training time
and solid line denotes the test time usage. During train-
ing, both the encoders are trained to produce correlated
representations and the decoder for Y is trained based
on encoder Z. During test time only encoder for X and
decoder for Y are used. ((Saha et al., 2016))

This can be used when no source-target parallel
corpus is available as well as when insufficient
source-target parallel corpus is available. The core
steps of the transfer can be summarized as:

* Pre-train a source-;pivot model with a source-
pivot parallel corpus and a pivot-;target model
with a pivot-target parallel corpus.

* Initialize the source-;target model with the
source encoder from the pre-trained source-
,pivot model and the target decoder from the
pre-trained pivot—target model.

* Continue the training with a source-target
parallel corpus.

If the last step is skipped, when no source-target
corpus is available then it corresponds to zero-shot
translation. Figure 9 shows us this setup visually.

Pre-train Final Model Pre-train

Pivot
Decoder

Target | | Copy | | Target
Decoder Parameters Decoder

Pivot
Encoder

Source
Encoder

Copy
Parameters | |

-/

Source
Encoder

Figure 9: Pivot based Transfer Learning ((Kim et al.,
2019))

4.5 Multi-lingual models

(Dabre et al., 2020) provides a very detailed sur-
vey of multilingual NMT and touches upon all as-
pects of multilingual NMT. Figure 10 shows us

an overview of MNMT for low-resource language
pairs.

4.5.1 Training

This section falls under transfer learning paradigm.
The simplest approach is jointly training for both
language pairs but the final model may not be opti-
mally tuned for the child language pair. In case of
multiple languages on the target side of the model
a language flag is appended at the start of every
source language sentence. Section 4.1.2 has talked
about another fine-tuning approach. Meta-learning
can be another approach where the parent model
parameters are amenable to fast adaptation.

4.5.2 Lexical Transfer

These approaches tries to bridge the lexical di-
vergence gap between parent and child languages.
One way can be to map the pre-trained word em-
beddings of the parent and child languages to a
common space, that is, using cross-lingual embed-
dings. This mapping is learned via the orthogonal
Procrustes method using a bilingual dictionaries
between the sources and the target language. A
variation of this approach can be where the par-
ent model is first trained and monolingual word-
embeddings of the child source are mapped to the
parent source’s embeddings prior to fine-tuning.

4.5.3 Syntactic Transfer

Syntactic transfer tries to deal with the difference
in syntax between the parent and child languages
as they may not belong to the same language fam-
ily always. Thus fine-tuning the child model from
parent blindly may not always work. Not much
work has been done on this area. One approach
has been to reduce the word order divergence be-
tween source languages by pre-ordering the parent
sentences to watch child word order is beneficial
in extremely low-resource scenarios. Another ap-
proach has been to train the parent encoder with
noisy data (insertion/deletion of words, changing
word order etc) which ensures that the encoder is
not over-optimized for the parent source language
syntax.

4.54 Language Relatedness

A related parent language benefits the child lan-
guage more than an unrelated parent. How to uti-
lize language relatedness for improving accuracy
is an important question. Language relatedness
is typically exploited by using shared Byte Pair
Encoding(BPE) vocabulary and BPE embeddings

Language Pairs

‘ MNMT for Low-resource ‘

Trainin Lexical
ining | Transfer

1. Joint Training
2. Fine-tuning

1. Random initialization
2. Bilingual embeddings

 syntactic | ——e
Transfer Language

) N g Relatedness |

\)

1. Pre-ordering ‘

3. Meta-learning
4. Challenges in target-side
transfer

2. Noise injection
3. Mixture of experts |

1

1. Related languages are better parents
2. Subword representation

3. Similar language regularization

4. Selecting parent examples based on
language similarity

Figure 10: From left to right: single pair, semi-supervised, multilingual, and transfer learning strategies ((Dabre

et al., 2020))

between the parent and child languages. We have
seen BPE in detail in section 3.1. Other approaches
could be by using a unified transliteration scheme
at the character level, using “similar language regu-
larization” to prevent overfitting and so on which
gives significant gains.

5 Conclusion

In this literature survey paper we looked at Neural
Machine Translation and how it can produce good
results in low resource scenarios. We looked at
word embeddings, LSTM, GRU’s and the Trans-
former model which is state of the art now. We
also looked at attention and its various types which
gives a significant boost to any NMT model per-
formance. We also looked at subword tokenization
techniques with a focus on Byte Pair Encoding. Fi-
nally we looked at some of the methods which help
us deal with low resource language pairs like back-
translation, pivoting, multilingual models, phrase
table injection and combined corpus. We also got a
peek into statistical machine translation in PTI and
pivoting techniques.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. Neural machine translation by jointly
learning to align and translate.

Raj Dabre, Chenhui Chu, and Anoop Kunchukuttan.

2020. A comprehensive survey of multilingual neu-
ral machine translation. CoRR, abs/2001.01115.

Shubham Dewangan, Shreya Alva, Nitish Joshi, and
Pushpak Bhattacharyya. 2021. Experience of neural
machine translation between indian languages. Ma-
chine Translation, pages 1-29.

1997.
Neural Computation,

Sepp Hochreiter and Jiirgen Schmidhuber.
Long short-term memory.
9(8):1735-1780.

Yunsu Kim, Petre Petrov, Pavel Petrushkov, Shahram
Khadivi, and Hermann Ney. 2019. Pivot-
based transfer learning for neural machine trans-
lation between non-english languages. CoRR,
abs/1909.09524.

Lawrence R Rabiner. 1989. A tutorial on hidden
markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257—-
286.

Amrita Saha, Mitesh M. Khapra, Sarath Chandar, Ja-
narthanan Rajendran, and Kyunghyun Cho. 2016. A
correlational encoder decoder architecture for pivot
based sequence generation. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
109-118, Osaka, Japan. The COLING 2016 Orga-
nizing Committee.

Sukanta Sen, Mohammed Hasanuzzaman, Asif Ekbal,
Pushpak Bhattacharyya, and Andy Way. 2018. Neu-
ral machine translation of low-resource languages
using smt phrase pair injection. Natural Language
Engineering, pages 1-22.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/2001.01115
http://arxiv.org/abs/2001.01115
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1909.09524
http://arxiv.org/abs/1909.09524
http://arxiv.org/abs/1909.09524
https://www.aclweb.org/anthology/C16-1011
https://www.aclweb.org/anthology/C16-1011
https://www.aclweb.org/anthology/C16-1011

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86-96, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715—
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Hua Wu and Haifeng Wang. 2009. Revisiting pivot
language approach for machine translation. In Pro-
ceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP, pages 154-162, Suntec, Singapore. Associ-
ation for Computational Linguistics.

https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://www.aclweb.org/anthology/P09-1018
https://www.aclweb.org/anthology/P09-1018

