A Survey of Text Entailment until June 2012

Arindam Bhattacharya
June 26, 2012

Abstract

Recognizing Textual Entailment is a task that recognizes pairs of nat-
ural language expressions, such that a human who reads (and trusts) the
first element of a pair would most likely infer that the other element is also
true. Textual Entailment is useful in a wide range of natural language pro-
cessing applications, including question answering, summarization, text
generation, and machine translation. In this document we summarize the
key ideas and approaches from the area, current up to June 2012, also
pointing to prominent articles and resources.

1 Introduction

Textual Entailment (TF) is a directional relation between text fragments. The
relation holds whenever the truth of one text fragment follows from another
text. The entailing piece of text is termed text and the entailed piece is called
the hypothesis. As truly noted by [4], Textual entailment bears similarity with
the famous Turing Test. to determine whether a machine can have the ability
to think, as accessing knowledge sources and drawing inference are the primary
ingredient for an intelligent system. As instance of entailment is illustrated by
Example 1.1.

Example 1.1:

T: Vodafone is giving free 3G trial with its new GSM SIMs.
H: Vodafone provides GSM services.

1.1 Classification of Various Textual Entailment Algorithms

Textual Entailment algorithms are mainly classified based on the approach used
represent the text and the hypothesis, to make it suitable for consumption by the
algorithm. The preprocessing phase of the algorithm takes the natural language
text and hypothesis and produces suitable representations for them.

2 Textual Entailment Based on Lexical Methods

Several paraphrase recognition methods operate directly on the input surface
strings, possibly after applying some pre-processing, such as part-of-speech
(POS) tagging or named-entity recognition, but without computing more elab-
orate syntactic or semantic representations. They make the entailment decision
solely based on the lexical evidences [5].



Logical

Semantic Graphs

Syntactic Parsing

Lexical

L T

Raw Text Re-representation

Figure 1: Various Representations

2.1 Preprocessing

In lexical approaches, preprocessing step involves tokenization, stemming/lemmatization
and identifying the stop words. Stop words e.g. the, a etc., unlike content words,

does not contribute to recognition of entailment. This is because they occur too
frequently to imply any entailment. Certain systems also carry out some deeper
pre-processing tasks such as:

e Phrasal Verb Recognition: This step identifies all the phrasal verbs in
both text and hypothesis. Examples of phrasal verbs are take off, put on
etc.

e Idiom processing: Idiom is an expression, word, or phrase that has
a figurative meaning that is comprehended in regard to a common use
of that expression that is separate from the literal meaning or definition
of the words of which it is made. There are estimated to be at least
25,000 idiomatic expressions in the English language [2]. Examples of some
idioms are: A Bird In The Hand Is Worth Two In The Bush, A Picture
Paints a Thousand Words etc. Since they mean something different from
what they mean, lexical approach would fail. Therefore they are required
to be treated separately. In this step, known idioms are identified and are
replaced by actual meaning.

e Named Entity Recognition and Normalization: Named entities
such as name of person, company, etc., are represented in various forms.
This step identifies the named entities in text and hypothesis, and nor-
malizes them to some single notation.

e Date/Time arguments: This step is similar to Named Entity Recogni-
tion except that it identifies date and time elements.

An example:
Example 2.2:

T: Eying the huge market potential, currently led by Google, Yahoo took over
search company Overture Services Inc. last year.

H: Yahoo acquired Overture

In the example Overture Services Inc. and Overture are normalized by
named entity recognition and the phrasal verb took over is mapped to acquired.



2.2 Representation

After the preprocessing, the text T and the hypothesis H are re-represented, in
case of lexical approaches as one of the following:

e Bag-of-words: Both T and H are represented as a set of words.

e n-grams: Sequence of n tokens are grouped together. Bag of words is an
extreme case of n-gram, with n=1.

Example: The fized routine of a bedtime story before sleeping has a relaxing
effect.
e Bag-of words: The, fixed, routine, of, a, bedtime, story, before, sleeping,
has, relaxing, effect

e Bigram model (n-gram with n=2): The fixed, fixed routine, routine of, of
a, a bedtime, bedtime story, story before, before sleeping, sleeping has,
has a, a relaxing, relaxing effect

2.3 Control Strategy and Decision Making

The lexical approaches employ a single pass control strategy [1]. That means
unlike iterative methods, they reach the decision in a single iteration. Decision
making is done based on a certain threshold (decided experimentally) over the
similarity scores generated by the algorithms. The similarity scores are calcu-
lated based mainly on WordNet distances.

2.4 Example: Local Lexical Matching Algorithm

Here is an algorithm for textual entailment based on lexical approach (figure
2.1).

e In preprocessing step, the algorithm just removes the stop words.
e It uses a bag of words for representation of 7" and H.
e It uses Wordnet to find similarities between the text and the hypothesis.

e The LexicalCompare() (figure 2.2) procedure is used to find the similarity
score based on various Wordnet parameters.

e It uses a single pass. The various thresholds dfryp, darer, dprem are deter-
mined for Hypernym, Meronym and MemberOf distances.

e It finally returns the matching score. This score is again subjected to a
threshold for the final entailment decision.

The algorithm is overly simplistic and it is easy to find examples where it is not
going to work. For example:

e T: Regan attended a ceremony in Washington to commemorate the land-
ings in Normandy.

e H: Washington is located in Normandy.

would falsely be predicted as correct entailment by the system. But surprisingly,
its found to work well with respect to current evaluation measures (LLM has
the accuracy of 68.4% on RTE-3 data set).



INPUT: Text T and Hypothesis H.
OUTPUT: The matching score.
for all word in T and H do
if word in stopWordList then
remove word;
end if
if no words left in 7" or H then
return 0;
end if
end for
number Matched = 0;
for all word Wy in T do
Lemmar = Lemmatize(Wr);
for all word Wy in H do
Lemmapg = Lemmatize(Wp);
if LexicalCompare(Lemmag, Lemmar) then
number Matched + +;
end if
end for
end for

Figure 2: LLM Algorithm

if Lemmany == Lemmar then
return TRUE;

end if

if HypernymDistance(Wx , Wr) < dayp then
return TRUE;

end if

if MeronymDistance(Wx , Wr) < darer then
return TRUE;

end if

if MemberOfDistance(Wy , Wr) < dasem then
return TRUE;

end if

if SynonymOf(Wg , Wr) then
return TRUE;

end if

Figure 3: Lexical Compare Procedure

3 Methods Based on Syntactic Similarity

Bag-of-words or n-gram model representation can take us only so far. For deeper
understanding of the sentences we eventually would require to show how the
words in the sentence affects each other, i.e. how are the words dependent on
each other. These dependencies could be syntactic (e.g. which phrase does the
word belong) or semantic (e.g. what role does the word play). In this chapter,
we explorer different methods that harnessess syntactic dependencies.



3.1 Entailment Model

Haghighi et al. [8] suggests an entailment model over syntactic graphs derived
from Collins’ head propogation rules [7]. The model is as follows. For hypothesis
graph H, and text graph T', a matching M is a mapping from the vertices of H
to those of T'. For vertex v in H, M (v) denotes its match in T.

As is common in statistical machine translation, nodes in H are allowed to
map to fictitious NULL vertices in T if necessary.

Suppose the cost of matching M is Cost(M). If M is the set of such match-
ings, the cost of matching H to T is defined to be:

MatchCost(H,T) = min Cost(M) (1)
MeM

Let VertexSub(v, M(v)) be a model which gives us a cost in [0, 1], for
substituting vertex v in H for M (v) in T. Then,

VertexCost(M) = % Z w(v) * VertexSub(v, M (v)) (2)

veH,

where w(v) is relative importance of vertex v, and Z is the normalizer, ), w(v).
Now, consider an edge e = (v,v’') € Hg, and let ¢s(e) be the path from M (v)
to M(v') in T. Let PathSub(e,¢p(e)) be a model for assessing the cost of
substituting a direct relation e € Hpg for its counterpart, ¢as(e), under the
matching. This leads to formulation of RelationCost(M) in a similar fashion:

RelationCost(M) = % Z w(e) x PathSub(e, prr(e)) (3)

e€EHE

The total cost function could then be expressed as a convex combination of
the two cost functions as:

Cost(M) = a x VertexCost(M) + (1 — «) * RelationCost(M) 4)

3.2 Enhancements to Dependency Graphs

Using the above dependency graph as the base, various enhancements can be
applied to the graphs [11].

1. Collapse Collocations and Named-Entities: We collapse depen-
dency nodes which represent named entities (e.g. nodes [Arindam] and
[Bhattacharya] could be collapsed into [Arindam Bhattacharya]) and also
collocations listed in WordNet, including phrasal verbs (e.g., blow off in
He blew off his work).

2. Dependency Folding: It was found that it is useful to fold certain
dependencies (e.g. modifying prepositions such as in, under etc.) so that
modifiers became labels connecting the modifier’s governor and dependent
directly.

3. Semantic Role Labeling: Graph representation was augmented with
Probank-style semantic roles. Each predicate adds an arc labeled with
the appropriate semantic role to the head of the argument phrase. This



helps to create links between words which share a deep semantic rela-
tion not evident in the surface syntax. Additionally, modifying phrases
are labeled with their semantic types (e.g., Pakistan got independence in
[1947] remporai-), which should be useful in Question Answering tasks.

4. Co-reference links: Using a co-resolution tagger, coref links are added
throughout the graph. These links, connecting referring and referent en-
tities, are the only link between two sentences.

4 Approaches that Employ Machine Learning

At a certain level, entailment problem can be considered simply as a classifi-
cation problem. Precisely, it is a two class problem, YES class and NO class
(figure 4). Given the text T and the hypothesis H, we need to extract various
similarity features, forming a feature vector. This feature vector is given to a
classifier (e.g. SVM), which classifies it as true (YES) or false (NO) entailment.

TEXT Es

SIMILARITY
FEATURES

INPUT OuTPUT

HYPOTHESIS tea

FEATURE VECTOR

Figure 4: Textual Entailment as a Classification Task

4.1 Feature Space

In machine learning approaches, once we get a feature vector, classification task
is easy. So, the main concern is finding a suitable feature space.
The various possible feature spaces are:

e Distance Features Features of some distance between T and H.
e Entailment Triggers Features that triggers entailment (or non-entailment)

e Pair Feature Content of T-H pair

4.1.1 Distance Features

The distance features models the distance between the text and the hypothesis
in some way. These features can be of wide range, for example:

e Number of words in common
e Length of longest common subsequnce

e Longest common syntactic sub-tree



For example:
Example 4.3:

T: At the end of the year, all solid companies pay dividends.
H: At the end of the year, all solid insurance companies pay dividends.

The above example, possible (feature, value) pair could be (WordsInCommon, 11)
or (LongestSubsequence, 8).

4.1.2 Entailment Triggers

Another possible feature space is that of entailment triggers. Entailment triggers
are events that help us detect entailment [10]. The entailment trigger features
are:

Polarity Features: Presence or absence of negative polarity.

Example: Textual Entailment is very difficult. = Textual Entailment is
not hard.

Antonymy Features: Presence or absence of antonymous words in T and H.
Example: Spartans were brave soldiers. = Spartan soldiers were coward.
Adjunct Features: Dropping/adding of syntactic adjunct.

Example John goes fishing. = John goes fishing everyday.

4.1.3 Pair Features

In this feature space, we try to model the content of T" and H rather than
modeling the distance between them. While using this feature space, choosing
the right features is crucial. Following example illustrates why it could be bad
if we select wrong features. Given an example in training set,

Example 4.4:

T: At the end of the year, all solid companies pay dividends.
H: At the end of the year, all solid insurance companies pay dividends.

if we choose bag of words as pair features, we would end up learning some pretty
stupid rules such as

T = H as when T contains end.

This happens because there is no way to correlate the features of 7" and H.
Does that mean that pair features are totally irrelevant? Well, with the right
set of features, this space is found to give best performance [15].



4.1.4 Effectively using Pair Feature Space

Lets take an example to explain the effective use of pair feature space. Consider
Example 4.5:

T: At the end of the year, all solid companies pay dividends.
Hy: At the end of the year, all solid insurance companies pay dividends.
Hy: At the end of the year, all solid companies pay cash dividends.

If we would have taken distance feature, it would plot both (T, H; =) and
(T, H3) to be same point in feature space. What we need is something that can
model the content and the structure if the T and H.

4.1.5 The Kernel Trick

To solve the above problem, we use a syntactic pair feature space [3]. To do
this, instead of taking the features separately, we use kernels to represent the
distance between two example pairs.

Cross Pair Similarity:

K(<T' H > <T'" H>)=K(<T',T" >)+ K(< H,H" >)

We desire the definition of K (P;, P») to be such that it can exploit the rewrite
rules of the examples. For this, placeholders were introduced in the syntactic
tree. The cross pair similarity is based on the distance between syntactic trees
with co-indezxed leaves:

K(<T H > <T' H" >)=

max(Kr(¢(H', ¢), t(H", 1)) + Kr ((T", ¢), ¢(T", 1)) ()

where,
C is the set of all correspondences between anchors of (77,H’) and (T",H")
t(S, ¢) renames the anchors in the parse tree S with configuration c.
1 is the identity mapping
Krp(t1,t2) is a similarity measure between ¢; and to

How the rewrite rules are exploited is illustrated by following example. Con-
sider the the pair:
Example 4.6:

T: Chapman killed Lennon.
H: Lennon died.

Using the syntactic pair features and the kernel representation described above
we can learn useful rules (unlike those learned using bag of words) such as in
figure 5.



Figure 5: Exploiting rewrite rules

4.2 Classifier Algorithms

As discussed above, selection suitable features is the main problem in machine
learning based approaches. Once done, any off-the-shelf classifier can be used
for the classification tasks.

Using syntactic pair feature kernel and SVM, the accuracy of the system on
RTE 3 data set was 62.97%. Using the approach together with lexical distance
features, however, raises the accuracy up to 68.26 [15].

5 Logic Based Approach

One possibility is to map the language expressions to logical meaning represen-
tations, and then rely on logical entailment checks, possibly by invoking theorem
provers. Bos and Markert, 2005 [4] and Tatu and Moldovan, 2005 [14] utilized
theorem prover first order predicates. In the case of textual entailment, this
involves generating pairs of formulae < ¢(T),¢(H), for T and H, and then
checking if (¢(T)B) | ¢(H), where B contains meaning postulates and com-
mon sense knowledge. In practice, however, it may be very difficult to formulate
a reasonably complete B. A partial solution to this problem is to obtain com-
mon sense knowledge from resources like WordNet [12]. An example of element
in B could be:

VaVy assassinate(z,y) = kill(z,y) (6)

Additional axioms can be obtained from FrameNets frames [6], as discussed for
example by Tatu et al. [14], or similar resources. Roughly speaking, a frame
is the representation of a prototypical situation (e.g., a purchase), which also
identifies the situations main roles (e.g., the buyer, the entity bought), the types
of entities (e.g., person) that can play these roles, and possibly relations (e.g.,
causation, inheritance) to other prototypical situations (other frames). VerbNet
[13] also specifies, among other information, semantic frames for English verbs.
Online encyclopedias have also been used to obtain background knowledge by
extracting particular types of information (e.g., is-a relationships) from their
articles [9]. Another approach is to use no particular B (meaning postulates
and common sense knowledge), and measure how difficult it is to satisfy both
¢(T) and ¢(H), in the case of textual entailment recognition, compared to
satisfying ¢(T') on its own.



6 Summary

Textual entailment is currently a popular research topic. Although textual
entailment can be described in terms of logical entailment, they are usually
intended to capture human intuitions that may not be as strict as logical entail-
ment; and although logic-based methods have been developed, most methods
operate at the surface, syntactic, or shallow semantic level, with dependency
trees being a particularly popular representation. Recognition methods, which
classify input pairs of natural language expressions (or templates) as correct
or incorrect paraphrases or textual entailment pairs, often rely on supervised
machine learning to combine similarity measures possibly operating at different
representation levels (lexical, syntactic, semantic). More recently, approaches
that search for sequences of transformations that connect the two input ex-
pressions are also gaining popularity, and they exploit paraphrasing or textual
entailment rules extracted from large corpora. The RTE challenges provide a
significant thrust to recognition work, and they have helped establish bench-
marks and attract more researchers.

References

[1] Rod Adams, Gabriel Nicolae, Cristina Nicolae, and Sanda Harabagiu.
Textual entailment through extended lexical overlap and lexico-semantic
matching. Proceedings of the ACL-PASCAL Workshop on Textual Entail-
ment and Paraphrasing - RTE 07, (June):119, 2007.

[2] Stacey Bailey. Identifying linguistic knowledge for textual inference.
cllt.osu.edu, 2004.

[3] R. Bar-Haim, Ido Dagan, I. Greental, and E. Shnarch. Semantic inference
at the lexical-syntactic level. In PROCEEDINGS OF THE NATIONAL
CONFERENCE ON ARTIFICIAL INTELLIGENCE, volume 22, page
871. Menlo Park, CA; Cambridge, MA; London; AAAT Press; MIT Press;
1999, 2007.

[4] Johan Bos and Katja Markert. Recognising textual entailment with logical
inference. In Proceedings of the conference on Human Language Technology
and Empirical Methods in Natural Language Processing, number October,
pages 628—635, Morristown, NJ, USA, 2005. Association for Computational
Linguistics.

[5] S. Clinchant, Cyril Goutte, and Eric Gaussier. Lexical entailment for infor-
mation retrieval. Advances in Information Retrieval, pages 217-228, 2006.

[6] Kevin Bretonnel Cohen. Natural Language Processing for Online Applica-
tions: Text Retrieval, Extraction and Categorization (review). Language,
80(1):178-178, 2004.

[7] Micheal Collins. Head-driven statistical models for natural language pars-
ing. Ph.D. thesis, University of Pennsylvania., 1999.

[8] Aria D. Haghighi, Andrew Y. Ng, and Christopher D. Manning. Robust
textual inference via graph matching. Proceedings of the conference on

10



[10]

[11]

[13]

[14]

[15]

Human Language Technology and Empirical Methods in Natural Language
Processing - HLT ’05, pages 387-394, 2005.

Adrian Iftene. Textual entailment. PhD thesis, University of Tel Aviv,
20009.

Diana Inkpen, Darren Kipp, and Vivi Nastase. Machine learning exper-
iments for textual entailment. Proceedings of the second RTE Challenge,
Venice-Italy, 2006.

Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In
Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics - Volume 1, ACL ’03, pages 423-430, Stroudsburg, PA, USA,
2003. Association for Computational Linguistics.

George A. Miller. Wordnet: a lexical database for english. Commun. ACM,
38(11):39-41, November 1995.

Karin Kipper Schuler. VERBNET: A Broad-Coverage, Comprehensive
Verb Lezicon. PhD thesis, University of Pennsylvania.

Marta Tatu, Brandon Iles, John Slavick, Adrian Novischi, and Dan
Moldovan. Cogex at the second recognizing textual entailment challenge. In
Proceedings of the Second PASCAL Challenges Workshop on Recognising
Teztual Entailment, pages 104-109, 2006.

Fabio Massimo Zanzotto, Marco Pennacchiotti, and Alessandro Moschitti.
A machine learning approach to textual entailment recognition. Natural
Language Engineering, 15(04):551-583, September 2009.

11



