Literature Survey : Spoken Language Translation

Sanket Gandhare
Preethi Jyothi
Pushpak Bhattacharyya
IIT Bombay, India
sanketmonu @cse.iitb.ac.in

Abstract

Spoken language translation system has re-
ceived lot of attention in last decade or so. It
enables in translation of speech signals in a
source language A to text in target language
B. This problem mainly deals with Machine
translation (MT), Automatic Speech Recogni-
tion (ASR) and Machine Learning (ML). The
spoken utterances are first recognized and con-
verted to text and later this source language
text is translated to target language. In this
paper, we start with looking into the whole
flow of speech translation by going via Auto-
matic Speech Recognition and its techniques
and neural machine translation. We study the
coupling of speech recognition system and the
machine translation system by doing the hy-
pothesis selection and features for it by taking
the output of the ASR system and fetching it
to the MT system. We also look into the lat-
tice and Confusion Network Decoding.

1 Introduction

Spoken language translation is the process by
which conversational spoken phrases are con-
verted to second language. This enables the speak-
ers of different languages to communicate. The
speech translation system integrates two technolo-
gies : Automatic Speech Recognition, Machine
Translation. The speaker of language A speaks
and the speech recognizer recognizes the utter-
ance. The input is then converted into a string
of words, using dictionary and grammar of lan-
guage A, by using the massive corpus of text of
language A. The machine translation part takes
care of translating the text into another language.
In this paper, we will first look into the ASR ap-
proaches, NMT approaches and the coupling of
the systems.

——» Textin German

Text in English
ASR MT
Speech in English

Figure 1: Spoken Language Translation

2 Automatic Speech Recognition

Speech recognition is an inter-disciplinary field
of computational linguistics that develops method
for recognition and translation of spoken lan-
guage to text. Speech recognition applications
include voice user interfaces such as voice dial-
ing, call routing, simple data entry, preparation of
structured documents, speech-to-text processing.
Some Sr systems use “training” where individual
speaker reads text or isolated vocabulary into the
system. The system analyzes the person’s specific
voice and uses it to fine-tune the recognition of
that person’s speech, resulting in increased accu-
racy. Such SR systems that use the training are
called speaker dependent else it is called speaker
independent systems. The term speaker identi-
fication refers to identifying the speaker, rather
than what they are saying. The voice of any per-
son can be translated and stored as data on which
we can train person’s voice and it will be useful
for speaker identification, helpful for security pur-
poses

2.1 Approaches

ASR uses mainly two models acoustic model
and language model to recognize the speech.
Acoustic model gives a relationship between the
phonemes and the audio signals. Language model
gives idea of identifying correct words from the
data looking at the context as well. There are few
methods like HMM, Neural networks etc that are
used in speech recognition. Let us look into them
in brief :

mailto:sanketmonu@cse.iitb.ac.in

2.1.1 HMM

HMMs are mostly used in speaker recognition to-
day. We get the output sequence of symbols from
these models. HMMs are used in speech recog-
nition because the audio signal can be considered
piece wise stationary signal.

Modern general-purpose speech recogni-
tion systems are based on Hidden Markov Mod-
els. These are statistical models that output a se-
quence of symbols or quantities. HMMs are used
in speech recognition because a speech signal can
be viewed as a piece wise stationary signal or
a short-time stationary signal. In a short time-
scale (e.g., 10 milliseconds), speech can be ap-
proximated as a stationary process. Speech can be
thought of as a Markov model for many stochas-
tic purposes. HMMs can also be trained automat-
ically and are simple computationally. In ASR,
the HMM outputs real-valued vectors that consists
of cepstral coefficients that are obtained by tak-
ing the fourier transform of speech and taking the
most important coefficients. Each word, or more
particularly each phoneme has different probabil-
ity distribution and we combine lot of such HMMs
for different words to get the phoneme.

313 ___ Transition probabilities
--r:"""{{] o -7-1-"""-—-‘ -
X1 ap, | X2 st X3 States
— _ -
.‘:"'.""_-—-92,1,_7_7_ a4 1. L Ea
b1 byy _::-1;21 b3y __-"b32 Emission probabilities

Possible Observations

Figure 2: Example of parameters of HMM

The Context model is used to convert
the tri-phones into the mono-phones. The Pro-
nunciation model is used to combine the phones
to get the words. The words are combined using
n-gram language models to get the sentences. De-
coding of the speech is the terms used to get the
most likely word sequence when the system is pre-
sented with a new utterance. This uses Viterbi
algorithm to find the best path and it uses both
acoustic and language model information in the
form of Finite State transducers. Efficient algo-
rithms have been developed that gives good de-
coding results.

can we meet

Language Model(n-grams)

Pronunciation Model

Context Model
Triphone Sequence

! . - o 1
H — (1 —»A)—»@)i»
AN

KAEN WIY MIYT

Acoustic Model
HMM-Based triphone

by(x2) by(xs) by(x7)

o)

SpectrumObservation ... [|| || [| [|| || «es-
Sequence (MFCC)

X1 X X3 X Xs Xg. X7

— A

Figure 3: The full ASR steps

Speech Signal

2.1.2 Neural Networks

Neural Networks has come up as nice approach for
acoustic modelling in ASR since 1980s. In con-
tract to HMMSs, neural neftworks does not make
any assumptions regarding the statistical proper-
ties and have several qualities that make them
great model for speech recognition. Neural net-
works allow discriminative training in an efficient
manner. The input features for the neural networks
needs to be assumed. However, neural networks
give good results on short time units for individual
phones and isolated words, they are not useful in
continuous recognition tasks because of their lack
of ability to model temporal dependencies.

Recently, LSTM RNN (Recurrent Neural
Networks) have been developed which use the
temporal dependencies and use this information in
speech recognition. Due to the inability of feed
forward Neural Networks to model temporal de-
pendencies, another approach is to use neural net-
works as a pre - processor using feature transfor-
mation.

A deep neural network (DNN) is an artifi-
cial neural network with multiple hidden layers of
units between the input and output layers. DNN
can use complex non-linear functions and the extra
layers enable composition of features from lower
layers increasing the learning capacity.

2.1.3 End-to-End ASR

This is the latest hot topic of research in ASR. Tra-
ditional phonetic-based like HMM based model
approaches required separate components and
training for the pronunciation, acoustic and lan-
guage model. End-to-end models jointly learn all

the components of the speech recognizer. This
eases in the deployment of the product at a go.
Also the n-gram models take several gigabytes
of memory while deploying. One of the exam-
ple of end-to-end ASR system was Connectionist
Temporal Classification (CTC) and it was first
developed using RNN model. It takes care of
both pronunciation and acoustic model together.
An alternative approach to CTC-based models are
attention-based models.

2.2 Time Delay Neural Network

Recurrent Neural Networks have efficiently mod-
eled long time in comparison to feed forward neu-
ral networks due to it’s sequential nature. Dis-
cussed is the TDNN architecture to achieve this
task. It uses sub-sampling to reduce the training
time.(Povey et al., 2011)

2.2.1 TDNN Architecture

It is a feed forward neural network, where the ini-
tial transform layer captures the dependencies in
the narrow context and the deeper layers captures
for the more wider context. The hyper parame-
ters are to decide the input contexts for each layer.
(Povey et al., 2011)

2.2.2 Sub-sampling

The computing of the hidden units at all the
time stamps is considered as the expensive task.
With nearby layers sharing same temporal context,
computing all the activation units can be avoided
and only a certain number can be calculated. In the
figure below, the red units are calculated because
of sub-sampling. Image taken from !

-7, t+2

AT

3 i3 3

42 Layer 4

3 Layer 3
t-10 B u5

LI

1 17 Tt a2 a2 Layer2
tA1 68 15 12 b1 a7

RERE

(i

Figure 4: TDNN Architecture

3 Neural Machine Translation

Neural machine translation is end-to-end transla-
tion process for automated translation and is de-
signed to remove all the weaknesses that was be-
cause of the phrase based machine translation(Chu
et al.,, 2017). NMT is an asset as it has ability to
learn directly, as end-to-end sequence and map-
ping the input sequence to the output sequence.
NMT generally consists of two RNNs, with one
RNN taking input text sequence and the other one
giving the output sequence. NMT can be made ef-
ficient by making use of attention.

3.1 Encoder-Decoder Approach

This approach uses the Recurrent Neural Net-
works. RNNs can model the language as a se-
quential process. This model can predict the next
word. Below figure will explain the flow(Chu
etal., 2017) :

Figure 5: Encoder-Decoder Model

For training such a model, input and output sen-
tences are concatenated which similar to the lan-
guage model method. While decoding, input sen-
tence is fed, and then the words are predict till the
end of the sentence token is detected. Once end of
the input sentence is processed, the hidden states
encodes its meaning. The vector that holds the val-
ues of the nodes in its final hidden layer is called
the input sentence embedding.(Chu et al., 2017)
This is called as the encoder phase of the model.
The hidden state is used to produce the respective
translation in the decoder phase. Here, we notice
that the hidden layer needs to do lot of work like
storing the whole sentence from start to the end
of the sentence. Also, during the decoding it not
only has to find the next translated word in the se-
quence but also needs to take into account what
part of the sentence has been translated and what
needs to be covered yet. This model works well on
smaller sentences but struggle on bigger sentences
and hence we need to look into it in depth.(Chu

"http://speak.clsp.jhu.edu/uploads/publications/papers/1048_pét al., 2017)

3.1.1 Encoder

Encoder defines the representation of the input
sentence. The input sentence which is the se-
quence of words, is the embedding matrix. These
words are processed with recurrent neural net-
work. This gives hidden states which encodes
each word as its left context, with preceding
words. For getting the right context we encode
from right to left, or end of the sentence to the be-
ginning. Running two neural networks in different
directions is called a bidirectional recurrent neu-
ral network.(Chu et al., 2017) The encoder has
the embedding that maps to each input word z;,
gd this mapping is through two hidden states E
h;

hy = f(hjer, Exj) (1)

= f(h; 1, Ex)) 2)

2

S8

Image taken from :

L

Input Word
Embeddings

Left-to-Right
Recurrent NN

Right-to-Left
Recurrent NN

10

N

Figure 6: Input Encoder

3.1.2 Decoder

This is also an RNN. It takes some input con-
text and the previous hidden state, output predic-
tion and it generates new hidden and output state.
Mathematically, this can be defined as(Chu et al.,
2017) :

si = f(si—1, Ey,—1,¢) 3)

where s; is a sequence of hidden states, that are
calculated from the previous hidden state si — 1,
the embedding of the previous output word £, _;
and input context c;.

There are various choices for the function f that
joins the inputs to get the next hidden state, linear
function, LSTMs or GRUs. The choice for en-
coder and decoder is generally kept same. If en-
coder is LSTM, then the decoder should also be
LSTM.

Image taken from : 3

2https://arxiv.org/pdf/1709.07809.pdf
*https://arxiv.org/pdf/1709.07809.pdf

State

Word
Prediction

Selected
Word

Embedding

Figure 7: Output Decoder

The prediction vector t; is conditioned on de-
coder hidden state s;_;, embedding of previous
output word £, _1 and input context ¢;(Chu et al.,
2017).

t; = softmax(W(Usi—1+VE,,_14+Cc¢;)) (4)

The softmax function is used to convert the raw
vector in the probability distribution, that sums all
values to 1. The highest value among the vectors
gives us the output word. During the training the,
we know the correct output word y; so that the
training can continue with that output word. Our
objective of the training is to give as much prob-
ability mass to the correct word as possible. The
cost function hence is the negative log of the prob-
ability given to the correct word(Chu et al., 2017):

cost = —logti[y;] 5)

In the ideal scenario, we want the probability
to the correct word to get 1 and hence the nega-
tive log likelihood of O but its close to 0. The cost
function is tied to the individual words, for the sen-
tence the function is calculated as the sum for the
individual words.

3.1.3 Attention Mechanism

The need of attention mechanism is to find a way
to associate the decoder state and the every input
word. Based on this result we can find the input
words that how important are these to get the out-
put words or we can set the weights accordingly.
This is calculated as(Chu et al., 2017):

a(si—1, hj) = wTsi1 +uThj +b* (6)

where w, and u, are weights and 6° is bias value.
The output is a value which shows the importance
of input word j to get the output word 7. This at-
tention value is normalized by using softmax so
that all these values sum to 1.

- expla(si-1), hy)
YT eaplalsia), hy) @

This normalized attention value is used to get the

context vector ¢; by getting the input and multi-
plying it to the attention :

_ exp(a(si—1), hj)
>k exp(alsi-1), hu)

4

8)

%7
Image taken from :

1 o o o

| Encoder States

] Attention

Input Context
Hidden State

Output Words

Figure 8: Attention Mechanism

3.1.4 Training

The challenge with training is the number of steps
in the encoder and in the decoder varies as the
training set changes. Also, the sentence length
for every pair of the sentences change for each
training example, so we calculate the computa-
tion graph for each training example. This is
called unrolling technique the recurrent neural
network(Chu et al., 2017). The error that we are
computing is for the entire sentence which is cal-
culated as the sum of all the words. For predicting
the next word, correct word is used as context for
decoder hidden state and the word prediction. The
training objective depends on the probability mass
given to the correct word, given that the context is
perfect. For training of the NMT model requires
GPUs, which gives high level of parallelism to the
deep models. The speed can also be increased by
giving lot of sentence pairs at a go (say 50). The
GPUs ensure that the attention is used in a proper
way as the attention mechanism is passed to the
GPU with a matrix of encoder states s; 1 and in-
put encodings h;, resulting in values for the atten-
tion. Since the weights for each of these factors
are reused, the power of GPUs in parallism comes
into picture. Overall, training consists of, shuf-
fle the training corpus, break up corpus into mini
batches, process each of these mini-batches and
gather the gradients, apply gradients to update the

*https://arxiv.org/pdf/1709.07809.pdf

parameters. Generally, training takes 5-15 epochs
i.e. it passes through the whole training corpus.
The stopping criteria for the training is to verify
the progress on the validation set and it it stops in-

creasing we can stop training.
5

Image taken from :

Input Waord
Embeddings

I:I Left-to-Right
Recurrent MM
]

Rignt-to-Laft
Recurrent NN

Attention

Input Gontext

Higden State

Output Word
Predictions

Emror

Given
Qutput Words

Dutput Word
Embadding

Figure 9: Unrolling RNN for training

3.1.5 Beam Search

The translation via a neural translation models
happens with one word at a time. Every step the
output word is calculated as probability distribu-
tion is calculated over all words. The word which
is most likely is picked and the next word is se-
lected based on the context. When we predict the
first word of the output sentence, we keep track of
the n-best words which are the likely choices. This
is called the beam search.(Chu et al., 2017) All
the words that are selected in the beam can be used
to get the context for the next word. Hence we
get different word predictions for each word. The
score for the partial translation is multiplied with
the probabilities of the predictions of the word.
The score for the words which is maximum is se-
lected for the next word prediction. We get the
score for every such hypotheses. When we get the
final end of the token we consider that the transla-
tion is done for the sentence. When no hypothesis
is present in the beam we consider that the search
is terminated. For any sentence, search starts with
the start symbol <s>and ends with the <\s>. The
hypothesis for which the score is the highest and
which ends appropriately is considered as the ac-
tual output. The difference in the decoding of the

Shttps://arxiv.org/pdf/1709.07809.pdf

neural translation as compared to that of statisti-
cal translation is that we combine the hypothesis if
they share the context and hence this will be used
for predicting future translations. In the case of the
RNNs, we condition on the overall word sequence
from the start.(Chu et al., 2017)

L _
][]

Figure 10: Simple search graph for a beam search de-
coding in the neural models.

3.2 Improvements

Till now we have seen the basic neural machine
translation model. Though this performs fairly
well for most of the language pairs the scores can
be improved by few techniques.

3.2.1 Ensemble Decoding

This is the technique where we train lots of sys-
tems and combine them. This is called ensem-
ble systems(Chu et al., 2017) This is very com-
mon technique and has resulted in great results.
Few general ways can have different initialization
points or different stopping points. The advantage
of this technique is in a way that two systems can
do same mistake but when combined not neces-
sary that is repeated. There are two ways to do
ensemble encoding - by generating alternate sys-
tems and combining outputs.

Generating Alternate System - Generally NMT
is trained on a data until we reach a stopping crite-
ria i.e where there is no improvement in the val-
idation data accuracy. While the training is in
progress we have models after few iterations. We
take the best few models from this. This is called
as checkpoint ensembling(Chu et al., 2017) since
models are selected at different checkpoints while
training is taking place.

Combining Outputs - Here we try to combine
various system outputs. Any model first predicts
predicts the output probability distribution over
the output words and then these are averaged out
to get the output word.

3.2.2 Large Vocabularies

With the vocabulary increasing day by day newer
words come frequently and neural translation

model is not able to find these words in its dictio-
nary. To remove this words are converted to con-
tinuous vector space. But still it is not able to solve
the problem. Two approaches are used for these :

1. The most common approach is to divide the
words into sub-word units. This is done
to handle the compound words (website =
web + site) and morphology (doing = do +
ing)(Chu et al., 2017).

2. Another popular method is Byte Pair Encod-
ing. This works on parallel sentences. All the
words are first divided into characters. After
this the most frequent characters are joined.
This is continued and hence the vocabulary
size increases. After this we will have few
word tokens and few un-merged words.

3.2.3 Adaptation

Most of the data that we find is from different
domains. For example the texts that are used in
the chat rooms are different than those used in the
parliaments. The problem in the Neural machine
translation can be that it is trained on the data that
is not at relevant to the user and hence not getting
correct translations. This problem is called as Do-
main Adaptation.(Chu et al., 2017) We have one
set of the data that is called as the in-domain data
that is relevant to the usecase and also data that is
called as the out-domain data that is the general
data and is not relevant to the usecase. The train-
ing is such cases is simple and is done in two steps.
First we train the model on the all the data we have
till the results on the validation data converges.
Then we will run few more iterations on the in-
domain data till the validation set converges. This
is how the final model takes the benefit of both
the in-domain data as well as the whole data.(Chu
etal., 2017)

General Training data

l Initial Training
General System
In - Domain fraining data

Adaptation

Adapled System

Figure 11: Domain Adaptation method

3.2.4 Adding Linguistic Annotation

The advantages of the neural network is that it can
consider the rich context. In the neural networks
the present output word is predicted based on the
previously generated outputs and entire input sen-
tence. Even if we find that the input or the par-
tial output sequence is not observed the neural net-
work is able to generalize the training data to get
the output for the unseen word. So, we can add
more information to the conditioning context in
the neural network like part of speech tags, mor-
phological words and lemmas.

3.3 Challenges

While neural machine translation systems give
good results after the refinements, it still has few
challenges. How does it perform in the out of do-
main data and if the language resource is less are
two prominent challenges. Also, neural transla-
tion models are less interpretable. Lot of things
happens in numbers that we wont be able to un-
derstand what is happening. Let us look into few
such challenges in detail.

3.3.1 Domain Mismatch

One of the known challenges in the neural models
is that of domain mismatch that is if the model is
trained on one data and we are testing on data of
different domain, neural models can give output
that is not at all related to the actual output. SMT
in such cases doesn’t translate such words. Here is
the example of the sentence from the subtitles cor-
pus trained on various corparas. Image® clarifies
it. It can be clearly seen in the image that neural
translation model results are completely random
and don’t make any sense.

Source Schaue wm dich hersim,
Reference | Look around you.

All MNMT: Look ¢

SMT: Look around you.
Law NMT: Sughum gravecorn.

dich Schaue .
§ / 01-EN-Final Work progeamme for 2002

Medical

IT (MT: o pased.

SMT: To Schaue by itself . W5
Koran NMT: Take heed of your own souls,
SMT: And you see.

MNMT: Look argind you

SMT: Look around you .

Subtitles

Figure 12: Output of subtitle data example when mod-
els trained on different corpara

Shttps://arxiv.org/pdf/1709.07809.pdf

3.3.2 Amount of Training Data

One of the problem that has been observed with
the neural models is its dependence on the data.
The BLEU scores rises significantly from the
model that is trained on lesser words to the model
trained on huge number of words. The curve
is so steep that a particular point of time it also
crosses the curve of the statistical machine trans-
lation model.

3.3.3 Noisy Data

Neural translation models results deteriorate when
the data is noisy as compared to the statistical
models. The translation can be affected in vari-
ous ways - due to mis-aligned sentences, data in
wrong language, incorrect sentences. Statistical
machine translation models look into probability
distributions from lots of occurrences of words
and phrases, so the noise doesn’t affect it much.
The neural models perform poor because while
predicting it has to find proper balance between
language models and the input.(Chu et al., 2017)
When it finds input sentences with lots of distrac-
tions in the meanings the probability distribution
is set accordingly.

3.3.4 Beam Search

Decoding in neural models is done using beam
search and it finds the full sentence with highest
probability. In the neural models while predict-
ing the next output word, we will not only concen-
trate on the highest scoring words but also the few
best partial translations. We take the score of each
partial translation and the subsequent word predic-
tions and add these scores.(Chu et al., 2017) With
every output word the the number of translations
explode exponentially, hence we prune the beam
size to the few best translations. Increasing the
beam size doesn’t necessarily increase the transla-
tional quality as it decreases after a certain value.
So we need to find such optimal beam size for the
language pair.

4 Coupling of ASR and MT

Speech translation is conventionally carried out
by cascading an Automatic Speech Recognition
System and Machine Translation system. Gen-
erally the factors that are optimized are the lan-
guage models and the acoustic models alongwith
the word error rate for the ASR system and the
BLEU score for the MT system. The process of
spoken translation is a three step pipeline. Step

one involves transcribing the speech to the text for-
mat using ASR system. Step two ensures that the
output from the ASR is in the format in which the
MT system expects the input to be in. The third
step includes the MT part which translates the text
from source language to the target language. The
basic case will be to use the ASR 1-best output
that can be used as an input by the M T system. The
other output options from the ASR system that can
be fed to the MT system are N-best or lattices and
confusion networks. These can be useful for the
tuning and decoding in the MT system, however,
it increases the complexity because of the num-
ber of alternatives present are exponential(Kumar
et al., 2015)

4.1 Coarse-To-Fine Speech Translation

In this section, we describe the featurized model
for hypothesis selection that uses information
from the ASR and MT systems. We are assum-
ing that the ASR and MT systems are trained sepa-
rately. We are trying to find out a pipeline between
these two where we take the advantages from the
local gains we get from each of the systems. We
will try to introduce the formal machinery that can
be used for this.

Let > and 7 be alphabets of words and phrases
respectively in the source language(Kumar et al.,
2015). We will use these to define these state ma-
chines:

1. Word Lattice (L) : It is a finite state acceptor
which accepts word sequence in the source

language. It can be represented as(Kumar
etal., 2015) :

LY =Y ©)

This basically represents the ASR word lat-
tice output for us.

a:a b:b ﬁ
&
c:c

Figure 13: An unweighted Word Lattice

2. Phrase segmentation Transducer (S)
This finite state transducer that transduces
sequence of words to phrases. It can be

represented as(Kumar et al., 2015) :

S:Z*:—> T

We traverse path over here by taking words
and converting them into phrases.

(10)

Figure 14: A phrase segmentation transducer which
transduces words to phrases and has weights on its
paths

3. Weighted word lattice (Lasg) : The
weighted version of lattice and is represented
as(Kumar et al., 2015) :

IA/ASR:Z% Z/R+

4. Phrase Acceptor (WMT) : It is a finite state
acceptor that accepts the source phrases in
the SMT system’s phrase table. It can be
represented as(Kumar et al., 2015) :

an

Wy : 7 — 7°/RT (12)

5. Phrase lattice (P) : These are the compo-
sition of the word lattice with the phrase
segmentation transducer. It represents phrase
segmentation of all the ASR hypothesis in
the word lattice.

P = det(min(LoS)) (13)

The weighted version of P can be represented
as Pasr/yr where the ASR/MT parts de-
note the origin of the weights.

4.2 Maximum Spanning Phrases Model

In SMT phrase base translation, the translation is
produced for each possible span of input sentence
as allowed by the phrase table.(Kumar et al., 2015)
If the phrases are longer, it gives lesser options
and the translation is reliable as there may be suffi-
cient occurrences of the phrases in the model. So,
the longer the phrases, better the translation. We
want the ASR hypothesis that requires least num-
ber of hypothesis to cover. We use the phrase lat-
tice which is the composition of word lattice and

phrase segmentation transducer for achieving this.
The phrase lattice use the weights from the phrase
segmentation transducer and these weights are the
number of phrases used to cover the path. The
shortest path will give us the phrase we were look-
ing for. Thus, this feature of SMT of source path
length can be used for the phrase selection.

4.3 Featurized model for hypothesis selection

We will now try to build a model which does
the hypothesis selection using the features from
both the ASR and MT system. This gives us
the hypothesis from the unpruned ASR lattice
for which the MT system is supposed to give
good translations. Giving importance to the
weights of the ASR system also ensures that we
are considering those hypothesis which the ASR
system considers good. The phrase lattice for the
ASR system only will be(Kumar et al., 2015) :

PASR = det(min(ﬁASROS)) (14)

Next we will use the weighted phrase acceptor for
the SMT for using its features :

pASR,MT = det(min(PASROWMT)) (15)

The edge weights are considered to be in log
semiring. Hence, these edge weights can be repre-
sented as(Kumar et al., 2015):

w(p(ﬁ’Asa,MT)) - Z BjfiAsr + Z Ve Sk, M
7 k

(16)
where the p(P ASR,MT) represents the edge in the
phrase lattice. S and ~ are feature weights and
fasr and fyrr are the feature weights for the ASR
and the MT system respectively. We are consider-
ing the log linear space here. This model gives us
idea which hypothesis should be used as 1-Best,
N-Best and the lattice input for the SMT system
from PASR,MT-

4.4 Training and Feature selection

The training of the hypothesis selection is based
on the standard methods of log linear model on
the held-out set. For this we decode the N-Best
derived from the held out set. Our main objective
is to maximize the translation quality on the
basis on some sentence level scores. Each time
we get the translation, it can be compared to the
N-Best and whenever the weights are updated it
tells us how much importance needs to be given

to the ASR and MT. The following features can
be used for the model (Kumar et al., 2015):

1. ASR Scores : We combine the ASR acoustic
model and the language model scores as the
combined feature.

fasr = LM + aAM 17

where the AM and the LM are the negative
log probabilities and « is the acoustic scal-
ing factor choosen to minimize the word error
rate.

2. Source Phrase Count : This feature gives
the intuition that using the fewer number of
phrases for covering the input sentence will
give better result.

3. Length normalized phrase unigram prob-
ability : We can use a phrase Language
Model feature using the n-gram probabilities
normalized by the length.

Funi(f3) = count(f;) fentrH) (18)
YIS count ()
4. Phrase Translation Entropy : For each

of the source phrase p; there can be many
translations e; with different translation
probabilities (P(e;/f;)). A simple metric
to get the correct translation will be to use
the entropy measure to get the confidence of
which translation is the best for the SMT.

Hur(Elp) = = 3 pur(eil flog (pur(eil)
Z (19)

4.5 Decoding and related techniques

1. Decoding : If we replace the source side
phrase acceptor to the target side acceptor
we can get the output in the target lan-
guage.(Kumar et al., 2015) The issue with
this model is that it does not consider the re-
ordering issue, the decoder is good enough to
take decision on selecting the hypothesis that
gives better result for the translation.

2. Lattice Decoding : This method which is
broadly discussed in the next chapter gives
better idea about how lattice can used for the
decoding by the SMT system.

5 Spoken Translation using Word Lattice
Decoding

We know that the Statistical MT uses the noisy
channel model and translates the source language
to the target language. It takes the hypothesis f as
input and gives e as the output as per :

é = argmaxPr(e|f) (20)

When we try spoken translation where the input
from the ASR system is converted into text and
given as input to the MT system it may be the case
that the ASR system does not give much impor-
tance to the translation. Hence instead of look-
ing at the single best transcription f for getting
the translation it is advantageous to consider all
possibilities of the source sentence and hence that
gives rise to using the lattice for decoding.(Dyer
et al., 2008) The advantage also goes beyond the
spoken translation as few languages have various
issues that need to be taken care. Segmentation in
Chinese, decompounding in German, morpho-
logical analysis for Arabic and other ambiguities
in the input source sentence gives rise to multiple
possibilities for the source word sequence.(Dyer
et al., 2008)

5.1 Word Lattice and its representation

A word lattice G can be defined as :

G =(V.E)
where V are the vertices and E are the edges in the
lattice. The word lattice is the directed acyclic
graph that can be formally weighted finite state
automate (FSA). We have a start node as well as
the end node. There is no outgoing edge from the
end node. The lattice can also be defined as par-
tially ordered set of poset that follow the proper-
ties of reflexivity, transitivity and anti-symmetric
as we move in the forward direction in the lattice.
The word lattices are useful because it gives us set
of strings to be represented and allows sub strings
to be represented using a common structure where
multiple strings can have a common member. For
translation we will try to encode the graph in topo-
logical ordering and hence the numbering is in
increasing order. The representation is chart based
and is a triple of 2-dimensional matrices (F, p, R)
as(Dyer et al., 2008) :

e F; ; : Word label of 4 transition from node
7

e p; j : Transition cost or probability

Figure 15: Three examples of lattice a) sentence b)
Confusion network c) general word lattice

e R;; : The node number of the node on the
right side of j** transition from node i. R; ;
> foralli,j.

For the above 3 lattices, they can be represented
as:

0 1 2
a1 b 12 c 13
a 13 1 12 3
x 13 1 12 3

<eps>1/3 1
a 12 2 12 3
x 12 1 12 3

Figure 16: Topological ordered chart representation for
the three lattices

5.2 Decoding with phrase based models

We will look into the decoding of the word lat-
tice using the phrase based translation model.
Phrase based models translate a foreign sentence f
into the target sentence e by breaking the sentence
f into sequence of phrases f where each phases
can contain one or more contiguous words which
are translated to one or more words of the target
language which form the phrases in e and hence
combined into a sentence. Each phrase should be
translated to one phrase. To generalize this model
into the word lattice, we need to consider the paths
through the lattice with the phrase and the partition
of the sentence into sequence of phrases.(Dyer
et al., 2008) Altough we find that the number of
phrases in the word lattices are exponential in
the number of nodes, all possible translations are

tractable in the the lattice. We look into the Moses
decoder for decoding the word lattice. The un-
modified decoder builds a translation hypothesis
from left to right by selecting a range of untrans-
lated words and adding translations of this phrase
to the end of the hypothesis being extended. When
all the words are translated we consider that the
translation process is complete. The word lattice
decoder works in the same way where along with
taking into consideration the translation units, it
also keeps track of the nodes covered, given topo-
logical ordering of the nodes. For example, taking
into consideration the third lattice in the figure in
the input, if the edge « is translated, this will cover
two nodes [0,1], even though it is a single word.
A translation hypothesis is completed when all the
nodes in the input lattice are covered.

5.3 Problems

There are few problems with the lattice decoding.
Few of them we will look into.

5.3.1 Unreachable nodes

In the normal sentence decoder, any span of un-
translated words is an extension of the partial hy-
pothesis. In the non-linear lattice, another con-
straint needs to be added that there is always a path
from the starting node of the translation exten-
sion’s source to the node representing the nearest
right edge of the translated material as well as the
path from the ended node to the future translated
spans.(Dyer et al., 2008) Figure 18 illustrates this
problem. if [0,1] is translated the decoder must not
consider translating [2,3] nodes as the possible ex-
tension of the partial hypothesis as there is no path
that exists between [1,2] and hence this span will
never be covered. Hence there will be nodes that
will never be reached and we will have some un-
reachable nodes. This problem becomes huge in
big lattices where there can be lot of unreachable

Figure 17: The span [0,3] has a inconsistent covering
[0,1]+[2,3]

5.3.2 Distortion in non-linear lattice

In these word lattices, distortion is taken care
of. These models include distortion penalty, as
la; — bi—1 — 1| where a; is the starting position
of the source phrase f; and b; is the ending po-
sition of the phrase f;_;.(Dyer et al., 2008) The
logic behind using this is most of the translation is
monotonic the cost of skipping words while trans-
lating should be proportional to the number of
words that are skipped. A limit on the distortion
is also kept so that the search size does not grow
out of bounds. In the confusion networks that we
will look into the next chapter this problem of dis-
tortion is easy to resolve as we can easily define
the distortion penalty and the distortion limits.
This problem of distortion can be seen in the be-
low case: If we are assuming left to right decoder
as we had described above, if c is generated by the
first target word and ¢ comes after node 3, it is very
much possible that it might have come via path
with length 2 or length 3, depending upon which
path has been chosen by the lattice while decod-
ing. Though this problem looks small in this case,
this is more of an issue in larger lattices. The cost
of swapping of words in some case can be quite
large at times due to large size of the lattices and
is almost impossible to handle.

Figure 18: Distortion problem

6 Spoken Translation using Confusion
Network Decoding

Spoken translation is basically identifying the
words from the speech and later translating it into
target language. Given a vector o representing the
acoustic observations of the input utterance and let
F(o0) be the set of transcription hypothesis which
is computed by the ASR and represented by a
word-graph.(Zhou, 2013) The best translation e*
is found out from all the strings which follows this
property(Bertoldi and Federico, 2005) :

e* = argmax, Z Pr(e|f,o0)
7(0)

where f is the hidden variable which gives the
speech transcript. It is calculated by taking the

21

summation of all possible transcription hypothe-
sis. The Spoken Language Translation assumes
two things :

1. We can get the correct hypothesis in the word
graph itself.

2. The quality of the translation is proportional
to the transcription.

6.1 Confusion Network Decoding

Decoding can be done using Confusion Networks.

6.1.1 Confusion Network

A confusion network (CN) G is a type of a word
lattice or a weighted directed graph that has a
start node, a end node and word labels over its
edges.(Bertoldi et al., 2008) The CN can have var-
ious words between two nodes and hence more
than one edge. It covers all the other nodes while
going from start node to end node. Hence we can
represent a CN as a matrix which has words with
each column having different number of words.
Let us consider there are m columns and each col-
umn has d; words. Each word can be represented
as wyj forall j = 1...m and k = 1....d; and
it is in j;; column and the k;, word in that col-
umn. Each word wy, ; has the posterior probability
of p; of having the word at the particular posi-
tion in the row and column. The probability at a
particular position is defined over all words in the
column of G.(Bertoldi et al., 2008)

Astring f = f;, ..., fm is a realization of G where
fi is any word in the column j = 1...m. Any
choice of word from the column represents the
string. The set of all such realizations of G is
F(G). Any such realization f = f;, ..., f, can
be represented by probability Pr(f|o) which can
be factorized to represent as(Bertoldi et al., 2008)

m
Pr(flo) = 1] Pr(filo,J) (22)
j=1
The output of the ASR system can be converted to
CN where few columns can have words as € which
means the empty words. Though these are similar
to the other words we will consider these as differ-
ent words as that may improve the quality of the
translation and the decoding efficiency.

6.1.2 Generative Translation Process

Let us now look into the translation of the input
f = fi....fi which is composed of [phrases. The

phrases of the input are basically the combination
of words. the generative process gives idea about
the process of how to build the specific translation
of G in the incremental way in [steps.(Bertoldi
et al., 2008)

At each step 1..1 do the following :

1. A set 7; of some yet not covered and contigu-
ous columns are covered. The set 7; is called
the tablet and ¢; is called fertility.

2. One word from each column is chosen. the
set of the positions of these phrases is repre-
sented as w;

3. A target phase e = ej...e, is chosen of
length k from the translation options of f; and
this gets added to the actual translation.

He completed his work quite early

He completed his work quite early
usne apna kaam kafi jaldi khatam kiya
usne apna kaap kaaki jalmi kham kiya
08 1 0.1 0.05 04 0.01 1
usme kaam kaali Jaldi khatam
0.1 0.7 0.05 06 0.99
usko kaal kafi
0.1 0.1 L1+ O I
kaan
0.1
ASR output

Figure 19: Generative translation process. The words
alongwith their posterior probabilities are shown. The
translation is produces using a phrase based decoder.

The generative process induces a ordered seg-
mentation which is a permutation of the segmen-
tation of the tablets and we identify a path from
it w; which finally gives us a realization of f and
finally gives the translation.The order in which the
translation takes place can be in any order and
hence it gives rise to local reordering.

6.1.3 CN Based log linear Model

If we use the maximum entropy as metric, the
conditional probability can be a function of a real
values feature function A, (e, f, 0), and real param-
eters A\, for r between 1...R and this expression

in parametric form can be represented as(Bertoldi
et al., 2008):

1 R
Pr(e, flo) =) epo)\rhT(e, f,0) (23)
r=1

Z(
where Z(0) is the normalization term.

Advantage - The biggest advantage of using the
log linear model is that various kind of feature
functions can be used, which can be considered
as important for translation. The better perfor-
mances can be found out if we use phrases instead
of the words, where we search for the best phrase
from the string of phrases form the vocabulary of
phrases.(Bertoldi et al., 2008)

Feature Functions - The feature functions can be
like :

1. Ay @ word based n-gram language model.

2. hgst @ negative exponential distortion model
which takes into consideration the relative
movement of the phrases.

3. hjer : Lexicon models that assign probability
to the source phrase given the target phrase
by taking the count of the phrases and the
words into consideration.

These functions can be decomposed using the pre-
viously used translation process. We give some
weight to these feature functions and the cost
of generating the translation is the sum of all
the feature function steps. Few of these func-
tions can be dependent on the previous term as is
(him, hgst) and some of them are not dependent
like hye,..(Bertoldi et al., 2008)

6.1.4 Decoding Algorithm

the optimal solution can be found out though an
iterative process by getting the scores for the par-
tial theories and also recombination of these
theories. The below algorithm gives idea about
the decoding in the case of normal sentence as
it can be also considered as the confusion net-
work.(Bertoldi et al., 2008)

The algorithm can be described as follows :

1. Initially the theory th is empty and the possi-
ble translation theory th' is found out for it.

2. The GetTablet, GetPath and GetTrans
loops are the three steps of the generative
translation process. The GetTablet gives the
proper ordering of the input phrases as it is
free to use any phrase order.

3. BuildTheory generates the output phrase for
the input phrase theory.

4. Each of the expanded theory has a a score to it
added to it the untranslated theory translation
score.

5. Theories which are indistinguishable are re-
combined with the initial theory.

6. The best translation is selected from the set
of translations computed.

th = setEmptyTheory ()
Recombine (Theories[0],th)
for 3 = 0 to m-1
while (th = Theories[7j])
while (t in getTablet (th))
while (o in getPath (t))
while (e in getTrans (t,o0))

th’” = BuildTheory (th,t,o,e)

Score (th,th’)
Recombine
th+ = getBestTrans (Theories[m])

The order in which the source phrases are trans-
lated is assumed to be absolutely free. This adds
additional level of complexity as we need to con-
sider lot of theories during the translation. Hence
we try to set some reordering constraint.

6.2 Improvements in the Decoding

The CN decoding algorithm is good but it adds
another level of complexity by adding the paths or
the choice of words within the column. Hence, we
need to find few ways to improve this.

6.2.1 Early Recombination

Analysis shows that their are pairs of tablets and
paths that represent the same source and hence
give the same translated output phrase. This
may be because of the presence of the ¢ transi-
tions.(Bertoldi et al., 2008) It is also possible that
two different phrases of the same tablet have the
same translation. If there are differences in these
paths, it will effect only the expansion independent
features. Hence, we can keep only those transla-
tions that are distinct in the tablet and apply early
recombination. This improves the complexity in
much better way.

6.2.2 Prefetching of Translation Options

The generation of the translation for a particular
tablet can found out by enumerating the source
phrases and merging the translations. The num-
ber of source phrases in a tablet can be exponen-
tial in the length of the tablet and hence this ap-
proach should be fine only for the small CN. The

(Theories[j+It]],th")

better way to increase the efficiency will be by us-
ing the prefix tree representation and look only
at the prefix in the phrase table while consider-
ing phrases incrementally in the tablet length. So
while looking in the tablet [j1, jo|, the algorithm
will look at only the its prefixes [j1,jo — 1]. If the
word sequence in the CN also occur in the phrase
table, this approach enumerates exponential num-
ber of phrases. Hence, the worst case complexity
will still be exponential.

6.2.3 Improved Decoding Algorithm

The algorithm defined above can be modified as
follows(Bertoldi et al., 2008) :
Ateach step, 7 = 1...m,

1. a set of the tablet and the path yet which are
not covered and the contiguous ones are cov-
ered.

2. anew phrase e = ey...e, of length k; is cho-
sen and appended to the actual translation.

The improved algorithm can be defined as :

th = setEmptyTheory ()

Recombine (Theories[0],th)

for 3 = 0 to m-1
while (th = Theories[3j])

while (t in getTablet (th)

while (e in getTrans (t)

th’” = BuildTheory (th,t
Score (th,th’)
Recombine (Theories[j+|t]]

= getBestTrans (Theories[m])

)
)
rr€)

th*

Conclusion

In this paper, we presented the survey on the Au-
tomatic Speech Recognition approaches, Neural
Machine Translation and its improvements and
work on the integration of speech recognition and
machine translation. We did it using N-Best, word
lattice and confusion networks decodings. We also
looked into the decoding algorithm for the con-
fusion networks and also how it can be improved
using various ways. We observed various advan-
tages and the disadvantages of using these cou-
pling techniques. Spoken Language Translation
research has flourished significantly in the past
few years, necessitating a look-back at the over-
all picture that these individual works have led to.
Based on the survey, we find that lot of research
has been done on the ASR side, NMT side and
their coupling and hence these three can be com-
bined to form a complete spoken translation sys-
tem.

,th’

)

References

Nicola Bertoldi and Marcello Federico. 2005. A new
decoder for spoken language translation based on
confusion networks. In Automatic Speech Recog-
nition and Understanding, 2005 IEEE Workshop on,
pages 86-91. IEEE.

Nicola Bertoldi, Richard Zens, Marcello Federico,
and Wade Shen. 2008. Efficient speech translation
through confusion network decoding. IEEE Trans-
actions on Audio, Speech, and Language Process-
ing, 16(8):1696-1705.

Pushpak Bhattacharyya. 2015. Machine translation.
CRC Press.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of simple domain adapta-
tion methods for neural machine translation. arXiv
preprint arXiv:1701.03214.

Christopher Dyer, Smaranda Muresan, and Philip
Resnik. 2008. Generalizing word lattice trans-
lation. Technical report, MARYLAND UNIV
COLLEGE PARK INST FOR ADVANCED COM-
PUTER STUDIES.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
linguistics, 27(2):153—-198.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On us-
ing monolingual corpora in neural machine transla-
tion. arXiv preprint arXiv:1503.03535.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Process-
ing Magazine, 29(6):82-97.

Dan Jurafsky. 2000. Speech & language processing.
Pearson Education India.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Proc. ACL.

Philipp Koehn. 2009. Statistical machine translation.
Cambridge University Press.

Philipp Koehn. 2017. Neural machine translation.
arXiv preprint arXiv:1709.07809.

Gaurav Kumar, Graeme Blackwood, Jan Trmal, Daniel
Povey, and Sanjeev Khudanpur. 2015. A coarse-
grained model for optimal coupling of asr and smt
systems for speech translation. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1902-1907.

Minh-Thang Luong and Christopher D Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In Proceedings of the In-
ternational Workshop on Spoken Language Transla-
tion.

Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khu-
danpur. 2015. A time delay neural network archi-
tecture for efficient modeling of long temporal con-
texts. In Sixteenth Annual Conference of the Inter-
national Speech Communication Association.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, Jan Silovsky, Georg Stemmer, and Karel
Vesely. 2011. The kaldi speech recognition toolkit.
In IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. IEEE Signal Pro-
cessing Society. IEEE Catalog No.: CFP11SRW-
USB.

Anthony Rousseau, Paul Deléglise, and Yannick
Estéve. 2014. Enhancing the ted-lium corpus with
selected data for language modeling and more ted
talks. In LREC, pages 3935-3939.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Hassan S Shavarani, Maryam Siahbani, Rantim M
Seraj, and Anoop Sarkar. 2015. Learning segmen-
tations that balance latency versus quality in spoken
language translation. In Proceedings of the Eleventh
International Workshop on Spoken Language Trans-
lation (IWSLT 2015), Da Nang, Vietnam.

Bowen Zhou. 2013. Statistical machine translation for
speech: A perspective on structures, learning, and
decoding. Proceedings of the IEEE, 101(5):1180—
1202.

