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Abstract
Machine Transliteration is an important part of Natural Language Processing applications, mainly required for

transliterating Named Entity (NE) from one language to another. There are several transliteration systems available
for Global languages like English, German, French, Chinese, Korean, Arabic and Japanese but research for Indian
languages is still at an infant stage. In this survey, we review the various approaches introduced for few Indian languages
likes Hindi, Bengali, Tamil and Telugu languages.

I. Introduction
According to Google, India is expected to reach 400 Million active internet users in 2019 in its “Year in Search —

India” Annual report. The report also states that by 2021, every 9 out of 10 new internet users in the country will
likely be an Indian language speaker. Even though the topic of transliteration has been studied extensively for several
language pairs, most research has been restricted to Global languages like English, European, and Asian(Korean,
Chinese, Japanese and Arabic) languages. The demand for accessing the web in a regional language is now greater
than ever and as such, many educational and industrial research groups have started investing significant resources to
cater to these users.

In this survey, we first introduce key concepts behind machine transliteration in Section II and then discuss major
historic breakthroughs in Section III. In Section IV, we classify the transliteration into different approaches and then
we present the future prospects in the field in Section V.

II. Foundation
In this chapter, we describe the background necessary for understanding the source of sound and orthography of a

language, a probabilistic technique to map source OS to target OS, a method to focus on part of the word for next
OS prediction during inference phase and representing orthographic syllables in some latent space using FastText[9].

A. Phonology and Phonetics
Most Indian scripts have been derived from ancient Brahmi script and hence share a high degree of similarity and

the letters have a close similarity with the phonetics. The arrangement of letters in the alphabet is similar and based
upon phonetic features. If we depict the orthography(Figure 1), we can visualize the letters representing phonemes
with phonetic features. This builds a computational phonetic model of these scripts.

Singh [54] states that “Indic scripts (also called Brahmi origin scripts) has be termed as syllabary, alphasyllabary,
and abugida. Out of these, abugida is perhaps the best term as it takes into account the property of these scripts which
allows syllables to be formed systematically by combining consonants with vowel signs or maatraas, rather than having
unique symbols for syllables which give no indication of the phonetic similarity among them. However, it should be
noted that Brahmi scripts have properties that make their neat classification difficult. They have an alphabet, they
are syllabic, they have a way of forming syllables and they also have ‘featural’ properties in the sense that the position
of a letter in the alphabet determines its features.”

Akshar is a much ancient description of writing syllables and the difference between Akshar and Syllable is as follows:
• Syllable corresponds to phonology
• Akshar corresponds to orthography

B. Origin of Language Relatedness
1) Genetic Relatedness: A set of languages is said to be genetically related if they have descended from a common

ancestor language. Two languages in the group may have an ancestor-descendant relationship or they may share a
common ancestor. The relatedness between languages in the group can be viewed as a tree. Such a group of languages
is called a language family and the common ancestor of this family tree is called the proto-language.
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Figure 1: Phonetically arranged vowels in the alphabet. Source: [54]

Table I: Cognates in Indo-Aryan Languages(Source: [35])
Hindi Gujarati Marathi Bengali Meaning
रोटी(roTI) રોટલો(roTalo) चपाती(chapAtI) িরুট (ruTi) bread
मछली(maChlI) માછલી (mAChlI) मास(mAsa) মাছ (mACha) fish
भाषा(bhAShA) ભાષા (bhAShA) भाषा(bhAShA) ভাষা (bhAShA) language
दस(dasa) દસ (dasa) दहा(dahA) দশ (dasha) ten

The study of genetic relatedness is the subject matter of comparative linguistics. Comparative linguists have studied
a large number of the world’s languages, both extinct and extant, and have posited a number of language families 1.
Based on historically available records, comparative linguistics have proposed reconstructions of family trees that trace
the genetic relationships between languages. These reconstructions are based primarily on the comparative method,
which uses the principle of the regularity of sound change to posit relationships between words.

As a result of genetic relatedness, related languages share many features. One of the most important features is the
presence of cognates, which refers to words having a common etymological origin. Table I shows examples of a few
cognates in some Indo-Aryan languages.

2) Contact Relatedness: Contact among languages over a long period of time is another major source of language
relatedness. Interaction over a long period of time leads to the borrowing of vocabulary (loanwords) and adoption
of grammatical features from other languages. If such an exchange is sustained over a long period of time between
languages spoken in contiguous areas, it leads to the formation of linguistic areas. In linguistic areas, the languages
undergo convergence to a large degree in terms of their structural features. The languages need not belong to the same
language family. Indo-Aryan and Dravidian languages have borrowed vocabulary from each other. Table II shows some
examples of words borrowed into Dravidian languages from Sanskrit, an Indo-Aryan language.

C. Basic Unit of Phonology and Phonetics
Phonetics deals with the production, auditory and perception of sound. Phonetics is more concerned with individual

sound whereas phonology is concerned with study of sound and rules of langauge.
1) Phoneme: Smallest speech sound unit devoid of any meaning is Phoneme.

1https://en.wikipedia.org/wiki/List_of_language_families

Table II: Loanwords from Sanskrit(Source: [35])
Sanskrit Word Dravidian Language Word Dravidian Language Meaning
चकम्र्(cakram) சÝகரè(cakkaram) Tamil wheel
मत्स्यः(matsyaH) మతǢȘȰ(matsyalu) Telugu fish
अश्वः(ashvaH) ಅಶ (ashva) Kannada horse
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2) Grapheme: Basic unit of orthography which deals with writing system.
3) Syllable and Orthographic Syllable: Syllable: Syllable is formed according to Sonority Sequencing Principle where

the vowel cluster is considered the highest sonority peak and the either sides have diminishing sonoirty values. (See
Figure: 2).

Orthographic Syllable: Absence of coda from the syllable which becomes the part of the onset of next syllable is called
Orthographic(Open) Syllable. The algorithm for preparation of Orthographic syllable is shown in Algorithm: 1

Figure 2: Syllable vs. Orthographic Syllable

Algorithm 1 Orthographic Segmentation for Indian Languages
1: procedure Segment(word) ▷ split the word into multiple substrings (vs[ ]) based on the vowel boundaries
2: seg_word←””
3: for each character c in word do ▷ scan from left to right
4: if c is vowel then
5: seg_word← seg_word+ c+’ ’
6: else if c is consonant and c.next() is not vowel then
7: seg_word← seg_word+ c+’ ’
8: else if c.next() is (anusvar or chandrabindu or visarga) then
9: seg_word← seg_word+ c+’ ’

10: else
11: seg_word← seg_word+ c

12: vs[ ]← seg_word.split(’ ’)

4) Graphemic Perplexity: Graphemic perplexity reflects how many different phonemes in an average correspond to
a single grapheme. A purely graphemic system would have a perfect one-to-one relationship between graphemes and
phonemes (Figure 3a).

Graphemic Perplexity =
∑
j

Pr1(Gj) ∗ e−
∑

i Pr2(Pi)∗ln(Pr2(Pi)) (1)

In the above equation 1,
Pr1(Gi) = Probability of occurrence of grapheme Gi

Pr2(Pi) = Probability that grapheme Gj will correspond to phoneme Pi

5) Phonemic Perplexity: Phonemic Perplexity reflects how many graphemes correspond to a single phoneme. A
purely phonemic system would have a perfect one-to-one relationship between graphemes and phonemes (Figure: 3b).

For a given phoneme, say P1, if multiple graphemes (G1, G2, G3) can produce the same sound, then such confusion
is called ”Phonemic Perplexity”. For a phonemically consistent system, the perplexity value should be 1.

Phonemic perplexity is measured by computing average perplexity from phonemic space to graphemic space.

Phonemic Perplexity =
∑
j

Pr1(Pj) ∗ e−
∑

i Pr2(Gi)∗ln(Pr2(Gi)) (2)

In the above equation 2,
Pr1(Pj) = Probability of a phoneme j
Pr2(Gi) = Probability that Pj is produced from grapheme Gi
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(a) Graphemic Perplexity (b) Phonemic Perplexity

Figure 3: Perplexity Figures

Gujarati Sentence English Sentence
G: આજે હંુ વગ્ળૠમાં હાજરી આપીશ આજે→ Today
GT: Ājē huṁ vargōmāṁ hājarī āpīśa હંુ → I
GG: Today I classes will attend વગ્ળૠમાં → classes
E: Today I will attend classes હાજરી આપીશ → will attend

Table III: Gujarati-English Parallel Sentence where G and E are parallel Gujarati-English sentences, GT is the
transliteration of the Gujarati sentence, and GG the word-to-word English floss

6) Morphemic Consistency: A purely morphemic writing system would have a unique phonemic representation for
each morpheme as mentioned in Nicolai and Kondrak [45]. If the pronunciation of a morpheme does not change even
after appending or prepending any suffix or prefix to it, then we call it a morphemically consistent system. We see that
the English writing system has many examples where the same morpheme occurring in two different words, changes
its pronunciation.
For example, the stem morpheme of verb hear, in hearing and heard are spelled similarly but pronounced differently.
The morphemic splits of the words शब्दरिहत (shabdarahit, no sound) and शब्दहीन (shabdaheen, no sound) are शब्द#रिहत
and शब्द#हीन respectively. Phonemic representation of the morpheme शब्द is श् ऽ ब् द् ऽ. This phonemic representation
remains unchanged in all the inflected words. Hence, this morpheme does not add to the perplexity value. This measure
is defined as Morphemic Optimality.

Morphemic Consistency =

∑
i

(∑
j dist(BPRi, PRj)

J

)
No.ofMorphemes

(3)

Notations used in above formula 3:
J = Number of occurrences of ith morpheme in data set
BPRi = Base phonemic representation of ith morpheme
PRj = Phonemic representation of the jth occurrence of ith morpheme
dist = Edit distance between 2 phonemic representations, normalized by the length of BPRi

D. Alignment
E. Motivation for Alignment

The basic idea of Statistical Machine Translation or SMT is how to teach the machine to translate, through a large
number of examples of translation. The provided translation examples(parallel corpora) should include the following
basic information:

1) Translation of words: What the words map to; could be to more than one word on either side.
2) Movement of translated words to their correct position in the target sentence: called alignment
Table: III shows an Gujarati-English Parallel Sentence. The right column shows many-to-one mapping from Gujarati

to English(વગ્ળૠમાં → classes).

F. Expectation-Maximization Algorithm

1This section closely follows the mathematics explained in Bhattacharyya [6]
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1) Notations: S: Number of Sentence pairs (observations) in data D
VE: English word list VF: Foreign word list
sth sentence pair (Es, Fs): es1, es2, . . . , els ⇔ fs

1 , f
s
2 , . . . , fms where s ∈ S

ls: Number of words in the Es

ms: Number of words in the Fs

indexE(e
s
i ): index of ith word of sth sentence in VE

indexF (f
s
j ): index of jth word of sth sentence in VF

2) Hidden Variable(a; the alignment variable): Total number of alignment variables=
∑S

s=1 l
sms where each align-

ment variable
aspq =

{
1, esp is mapped to fs

q

0, otherwise
The alignment variable plays an important role in finding E-step and M-step and we will situate it in the following
probabilistic framework:

P (aspq|es, f s) =
P (aspq, f

s, es)

P (es, f s)

=
P (aspq, f

s, es)∑
x P (asxq, e

s, f s)

=
P (aspq, f

s|es)∑
x P (asxq, f

s|es)

=
PindexE(esp),indexF (fs

q )∑ls

x=1 PindexE(esx),indexF (fs
q )

(4)

3) Parameters(θ): The total number of parameters = |VE | × |VF |, where each parameter is the probability of fj
conditioned on ei for a given sentence pair s:

Pij P (f s
j |esi ) (5)

4) Data Likelihood:

L(D; θ) =
S∏

s=1

P (f s|es) (6)

5) Data likelihood L(D; θ), marginalized over A:

L(D; θ) =
∑
A

L(D,A; θ) (7)

6) Marginalized Data log-likelihood LL(D; θ):

L(D,A; θ) =
S∏

s=1

ms∏
q=1

ls∏
p=1

(
P (f s|es)

)aspq
(8)

LL(D,A; θ) =
S∑

s=1

ms∑
q=1

ls∑
p=1

(
aspq log

(
P (f s|es)

))
(9)

7) Expectation of Data Log-Likelihood E
(
LL(D; θ)

)
: We constraint the mapping direction from Foreign words to

English words, where the i value would vary from 1 to |VE |, i.e.:( |VE |∑
i=1

Pij = 1,∀i
)

(10)

We introduce Lagrangian for the constraint. Let the Lagrange multiplier corresponding to jth word’s constraint be λj .
The expectation equation will be:

E
(
LL(D,A; θ)

)
=

S∑
s=1

ms∑
q=1

ls∑
p=1

(
E(aspq) log

(
P (fs|es)

))
−

|VF∑
j=1

(
λj

( |VE |∑
i=1

(Pij − 1)
))

(11)
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Differentiating the above with respect to Pij :

∂E
(
LL(D,A; θ)

)
∂Pij

=

S∑
s=1

ms∑
q=1

ls∑
p=1

E(aspq)

P (fs
q |esp)

δindexE(esp),i
δindexF (fs

q ),j
− λj = 0 (12)

where δij is Kronecker delta defined as:
{
1, indexE(e

s
p) = i

0, otherwise

⇒ Pij =
1

λj

S∑
s=1

ms∑
q=1

ls∑
p=1

E(aspq)δindexE(esp),iδindexF (fs
q ),js (13)

Placing value of equation: 13 into equation: 10, we get:

λj =

|VE |∑
i=1

S∑
s=1

ms∑
q=1

ls∑
p=1

E(aspq)δindexE(esp),iδindexF (fs
q ),j (14)

∴ Pij =

∑S
s=1

∑ms

q=1

∑ls

p=1 E(aspq)δindexE(esp),iδindexF (fs
q ),j∑|VE |

i=1

∑S
s=1

∑ms

q=1

∑ls

p=1E(aspq)δindexE(esp),iδindexF (fs
q ),j

−→ M − Step (15)
Now, we compute the expectation of the alignment variable. By random variable definition:

E(aspq)= P (aspq|es, f s)

=
P (aspq, e

s, f s)

P (es, f s)

=
P (aspq, f

s|es)
P (f s|es)

=
P (aspq, f

s|es)∑
x P (asxq, f

s|es)

=
PindexE(esp),indexF (fs

q )∑ls

x=1 PindexE(esx),indexF (fs
q )

−→ E − step

(16)

Hence, the equation: 15 is M-step and equation: 16 the E-step of the EM procedure.

G. Embeddings
Machines understand numbers word embedding (Figure 4) is way of mapping where words with same meaning come

in similar context and hence have similar vectors.

H. Traditional Approach
One-Hot vector is a traditional approach where 1 indicates a presence of that word and 0 marks its absence. The

size of the vector is equal to size of the complete unique vocabulary.
One-Hot vectors fail to capture the underlying linguistic aspect of the sentence.

I. Skip-gram Approach
Skipgram (Figure 5a) approaches uses the target word as input and tries the predict the context around the word.

For example, ”drink orange juice”, the input is ”orange” and the output should be ”drink” and ”juice”. The network
contains one hidden dimension and at the output layer, softmax is applied. Skip-gram approach reduces the vector size
from vocabulary size to the hidden layer length an also describes the underlying relations between words.

2https://towardsdatascience.com/word-embedding-with-word2vec-and-fasttext-a209c1d3e12c
3https://towardsdatascience.com/word-embedding-with-word2vec-and-fasttext-a209c1d3e12c
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Figure 4: Visualize Word Vectors2

(a) SkipGram Model (b) CBOW Mode

Figure 5: Skipgram vs CBOW embedding technique 3

J. Continuous Bag of Words(CBOW)
CBOW (Figure 5a) approaches tries to predict the target word as output and given the context around the word.

For example, ”drink orange juice”, the output must be ”orange” when the input should be ”drink” and ”juice”. The
network contains one hidden dimension and at the output layer, softmax is applied. CBOW approach also reduces the
vector size from vocabulary size to the hidden layer length an also describes the underlying relations between words.

III. Literature Review
C-DAC (Centre for Development of Advanced Computing), CFILT (Center for Indian Language Technology), NCST

(National Centre for Software Technology) and Indictrans Team played a notable role in the advancement of machine
transliteration of Indian languages in India. In early 1980, C-DAC developed GIST (Graphics and Intelligence - Based
Script Technology) which was based on Indian Script Code for Indian Languages (ISCII) [7] which was a significant
breakthrough. years later, UTF-8 Unicode based coding for Indian languages was developed [59]. In the same year, Joshi
et al. [27] developed a scheme for processing Indian languages used for transliterating telephone directory in Hindi,
and voters’ list using phonemic codes. Telephone Bill, Bilingual Telephone Directories, Indian Railways Reservation
Systems are some of the other applications that have created their own localized solutions.
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1994 • Arbabi et al.
1998 • Knight and Graehl and

Stalls and Knight
2000 • Jung et al., Kang and Choi

and Kang and Kim
2001 • Fujii and Ishikawa
2002 • Al-Onaizan and Knight and

Oh and Choi
2003 • Abdul Jaleel and Larkey,

Lee and Chang, Och and Ney
and Virga and Khudanpur

2004 • Gao et al., Haizhou et al.,
and Min et al.

2005 • Oh and Choi
2006 • Ekbal et al., Klementiev and Roth,

Malik, Oh et al. and
Zelenko and Aone

2007 • Ekbal et al., Habash et al.,
Jiampojamarn et al.
and Sherif and Kondrak

2008 • Finch and Sumita
and Katragadda et al.

2009 • Deselaers et al., Jiampojamarn et al.,
and Rama and Gali

2011 • Deep and Goyal, Josan and Kaur,
Karimi et al. and Hanumanthappa

2013 • Bhalla et al.
2015 • Finch et al., Kunchukuttan et al.,

and Finch et al.
2016 • Finch et al., Rosca and Breuel,

and Shao and Nivre
2018 • Grundkiewicz and Heafield

and Kunchukuttan et al.
2019 • Le et al. and Ngo et al.

Table IV: Major contributions in Machine Transliteration

1) Historical Research: Table IV depicts notable work
of researchers in chronological order. Arbabi et al. [4] pro-
posed the very first transliteration system for Arabic to
English transliteration. Their model used an ensemble of
neural network and knowledge-based system to generate
spellings of Arabic names in English. In 1998, Knight and
Graehl proposed a statistical based approach that back
transliterates English to Japanese Katakana which was
later adopted for Arabic to English back transliteration
by Stalls and Knight [55].
In 2000, three independent research teams proposed
English-to-Korean transliteration models. Kang and
Choi [29] presented an automatic character alignment
method for English to Korean transliteration. The de-
cision tree method was trained in a supervised manner
with aligned data to induce rules for transliteration.
Jung et al. [28] extended a Markov window for statistical
tagging model to develop a generalized model that uses
alignment and syllabification for faster operations. Kang
and Kim [30] created chunks of phonemes of English NE
and then used those chunks to calculate the reliability
of each possible transliteration and then produce most
probable transliteration. In 2001, Fujii and Ishikawa [17]
developed an English to Japanese Cross-Language In-
formation Retrieval system that requires prior linguistic
knowledge. The next year, Oh and Choi [48] created an
English-Korean transliteration model that used pronun-
ciation and context rules to generate a phoneme-based
model. In the same year, another phoneme based work
was proposed by Al-Onaizan and Knight [2] which also
used spelling and phonetic mappings based on Finite
State Machines for Arabic to English language pair.
In 2003, Virga and Khudanpur [57] developed an English-
Chinese model that uses statistical machine translation
techniques to “translate” phonetic representation of En-
glish name to Chinese using a text-to-speech system.
An HMM-based English-Arabic transliteration scheme
was also demonstrated by Abdul Jaleel and Larkey [1]
which used GIZA++ for transliteration. In the same
year, Lee and Chang [39] developed a model for English-
Chinese transliteration which used the Expectation-
Maximization algorithm to estimate the model param-
eters and then used the Viterbi algorithm to find most
probable transliteration. Haizhou et al. [21] shortly after
proposed a new framework for exploiting the underlying
phonetic property of the task. He proposed a direct ortho-
graphic mapping to model the orthographic contextual
information. Gao et al. [18] also proposed along the lines
of phonetics and phonology. He used the Expectation-
Maximization algorithm to find the best alignment of the phonemes for English to Chinese transliteration task using
a weighted finite-state transducer.
In 2005, Oh and Choi [49] presented an ensemble of grapheme and phoneme models which reportedly showed a
minimum increase of 15% for English-Korean and English-Japanese transliteration. The following year, Zelenko and
Aone [60] proposed two discriminative methods that correspond to local and global modeling approaches in modeling
structured output spaces and was solely based on features computed from data rather than the alignment of names.
Klementiev and Roth [33] also developed a discriminative linear model to decide whether a word T is a transliteration
of a Named Entity S. Malik [41] proposed a transliteration system that uses character mappings and dependency rules
to transliterate Shahmukhi words into Gurmukhi. Similarly, Ekbal et al. [12] proposed a framework that allows direct
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orthogonal mappings between two languages of varying origin and alphabet sets. Ekbal et al. [13] published results
using statistical Hidden Markov Model that extends their previous work and reported an average precision of 78.67%
for Bengali to English and Bengali to English transliteration.In the same year, Sherif and Kondrak [53] demonstrated
a new approach substring-based transliteration that outperformed the then state-of-the-art letter based approaches by
a vast margin.
Surana and Singh [56] propose a transliteration system that uses two different ways of transliterating NEs based on
their origin. They classify a word as either Indian or foreign using n-gram characters for Telugu and Hindi datasets.
Rama and Gali [50] used Statistical Methods to tackle Out-Of-Vocabulary (OOV) words for transliteration from
English to Hindi using MOSES on NEWS 2009 Shared Task dataset. The same year, Deselaers et al. [11] build a
new transliteration technique using deep belief networks for Arabic-English transliteration but their technique didn’t
provide any notable improvement over previous results. Jiampojamarn et al. [24] around the same time proposed an
online discriminative sequence prediction model that used many-to-many alignment and was language independent.
Their technique provided a high-quality source and target alignment.
Deep and Goyal [10] developed a rule-based system using grapheme based method and reported an accuracy of 93.22%
for Punjabi to English. Josan and Kaur [26] also worked on Punjabi to English transliteration at the same time using
statistical methods and reported an accuracy of 87.72%. Along the same lines, Bhalla et al. [5] developed English to
Punjabi transliteration system through Statistical and rule-based techniques using MOSES and report an accuracy of
88.19%.
Nicolai et al. [44] published a method to re-rank transliterations by combining multiple (DirecTL+[24], SEQUITER[8]),
and SMT[46]) systems and leveraging transliterations from multiple languages.Their results show at-most 10% error
reduction over the best base system. Kunchukuttan et al. [37] developed a phrase-based system that learns mappings of
character sequences from source to target. Their system covered 13 Indo-Aryan and 3 Dravidian Languages. Finch et al.
[14] used neural networks with beam search algorithm for transliteration for various language pairs and have achieved
respectable scores. Shao and Nivre [52] presented a variant of the neural network model, character-based convolutional
neural networks that were applied for English-Chinese and Chinese-English transliteration tasks and showed comparable
results according to NEWS 2016. Rosca and Breuel [51] applied sequence-to-sequence neural network models for Arabic
to English transliteration dataset and obtained state-of-the-art or close results on existing datasets.Finch et al. [15].
Another neural network-based system in the same year was proposed by Finch et al. [15] for multiple language pairs.
They used Bi-directional LSTMs for good prefix and suffix generation and were able to surpass the state-of-the-art
results of previous systems on the same datasets. The last couple of years (post-2015) are largely dominated by neural
methods for transliteration. Grundkiewicz and Heafield [19] proposed a deep attentional RNN encoder-decoder model
that used drop-out regularization, model ensembling, and back transliteration and have performed better in NEWS
2018 Shared Task on Named Entity Transliteration. Ngo et al. [43] used Statistical approach for transliteration on
Vietnamese and Cantonese and augmented their model with phonetic features to beat the previous statistical baseline
system by 44.68%. Le et al. [38] proposed a new system that pre-aligns the input sequence and then applied an RNN
encoder-decoder network for French and Vietnamese and showed a large increase in BLEU scores.

IV. Generative Transliteration Approaches
The process of generating a transliteration from source language word to the target language is called Generative

Transliteration. Many different methods for generative transliteration have been proposed owing to the variations in
transliteration direction, datasets, and language scripts. There are two transliteration directions, forward and backward
transliteration. Forward transliteration means from one language to a foreign language. For example, राज़(raj, name)
from Hindi to English is Raja but its back-transliteration should conform to the rules of the language of origin and must
not be राजा(Raja, King). Karimi et al. [31] stated that ”Forward transliteration allows for the creativity of transliterator
whereas back-transliteration is strict and expects the same initial word to be generated”.

Antony and Soman [3] categorize Machine Transliteration into 4 basic approaches as shown in Figure 6.

A. Grapheme-based approach
Jeong et al. [23], Kang and Choi [29], Kang and Kim [30], Kunchukuttan et al. [36], Lee and Choi [40], Ngo et al. [43]

used transliteration as a process of mapping source graphemes directly to target graphemes. This approach is called
a direct method because it transforms the source language grapheme into target language grapheme directly without
phonetic knowledge of source language words. We can further categorize this model into (i)source channel model,
(ii)maximum entropy model, (iii)conditional random field model, (iv) decision tree model and (v)neural network(deep
learning) model.
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Machine	Transliteration

Grapheme-based Phoneme-based Hybrid Correspondence

Source	Channel
Model

Maximum
Entropy	Model

Decision	Tree
Model

CRF	Model

Neural	Network
Model

WFST	ModelEMW	Model

Figure 6: General Classification of Machine Transliteration

B. Phoneme-based approach
Fujii and Ishikawa [17], Jung et al. [28], Knight and Graehl [34] used transliteration as a phonetic process and used

Weighted Finite State Transducer(WFST) and Extended Markov Window(EMW). The process is usually two stepped
- (i) conversion of source graphemes to source phonemes and (ii)transformation of source phonemes to target graphemes.

C. Hybrid and Correspondence approaches
Bhalla et al. [5], Finch et al. [14], Kunchukuttan et al. [36, 37], Le et al. [38], Nicolai et al. [44], Yao and Zweig [58]

have used some combination of phoneme and grapheme based models. Oh and Choi [48] proposed the correspondence
model in 2002.

V. Conclusion
We present the foundation of Phonology and Phonetics in context of transliteration and describe the historical

research as well as more modern neural based techniques.
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