
NMT in Low Resource Scenario: A Case Study in Indian Languages

Karanveer Singh
Pushpak Bhattacharyya

CFILT, Indian Institute of Technology Bombay, India

{kvsaroya, pb}@cse.iitb.ac.in

Abstract

Neural Machine Translation is the current buz-
zword in the field of Machine Translation.
One of major requirements of Neural Machine
Translation is that of data. This requirement
makes it somewhat unsuitable for language
pairs from whom less number of corpus is
present. In this paper, we look at ways to
mitigate the effects of low resource data by
using techniques like word segmentation and
pivot languages. We first look at some fun-
damentals required for understanding Neural
Machine Translation and then study word seg-
mentation. Then we look at Pivot based NMT
and finally end with a look at SMT based
models involving both word segmentation and
pivot languages.

1 Introduction

Neural Machine Translation (NMT) is the current
favourite in Machine Translation circles. NMT is
the process by which we translate a source sen-
tence to target sentence by the help of Neural
architectures namely Recurrent Neural Networks
(RNNs). We look at all the work which is related
to our current work. We first look at some fun-
damentals required for Neural Machine Transla-
tion then delve deep into work done in areas like
Subword NMT, Pivot NMT and finally look at
the work done in Statistical Machine Translation
(SMT).

2 Neural Machine Translation

Neural Machine Translation (NMT) uses Neural
Translation Models (NTM) for actual translation.
Before looking at the models let us first look at
Neural Language Models which serve as the ba-
sis for the translation models. We look at Re-
current Neural Networks variants like Long Short
Term Memory (LSTM) and Gated Recurrent Unit
(GRU).

Figure 1: Recurrent Neural Network Language Model.
From source (Koehn, 2017)

2.1 Recurrent Neural Networks

Feed forward neural language models are able to
handle longer context than traditional statistical
back-off models but suffer from a very distinct
flaw. They use a fixed context i.e. the number
of words in the context are fixed, this poses a re-
striction on the amount of context that we can cap-
ture for a given word. Recurrent Neural Networks
(RNN) are a way around this problem and allow
context of variable lengths.

As can be seen in Figure 1 one of the major
features of an RNN is parameter sharing i.e. val-
ues of the hidden layer are copied from the previ-
ous layer to the current layer. This very parame-
ter sharing is what allows RNN’s to capture long
contexts as every new layer is aware of the con-
text from the previous layers. In this word 3 is
aware of all the words preceding it and not only
word 2 as would have been the case if a regular
feed forward network were used for prediction of
the next word. This essentially allows for arbi-
trary length contexts and allows for much better
prediction since the context window is not fixed.
Training is done through the BPTT or the back-
propagation through time procedure which un-
rolls the RNN to a certain number of steps and
hence the network is able to learn dependencies
over a long distance.



Figure 2: Long Short Term Memory Cell. From source
(Koehn, 2017)

2.2 Long Short Term Memory
We now look at certain variant of the RNN
specifically Long Short Term Memory (LSTM)
and Gated Recurrent Units (GRU). Let us tackle
LSTM first. Though RNN’s can theoretically can
learn dependencies over any arbitrary length sen-
tences, in practice this is not the case. Specifically
they suffer from problems like exploding gradi-
ents and vanishing gradients. While we will not
go deep into these problems they can be summa-
rized as the following:

• Exploding Gradient refers to a problem
where error gradients start to accumulate and
lead to an increasingly large network weight
update which in turn leads to the value of the
weights to overflow and become NaN.

• Vanishing Gradient problem is similar ex-
cept that the updates are very small hence
the overall change in the weights very small
hence the network does not learn over a long
sentence.

To tackle these problems we have architectures
like LSTM and GRU which prevent the above
mentioned problem in their ways. Let us now look
at the LSTM structure. As can be seen in Figure
2 LSTM contains gates which are nothing but real
numbered parameters whose values are learnt dur-
ing the training process.

• The input gate determines the influence of
the new input on the memory.

• The forget gate determines the extent to
which the previous memory state is retained.

• The output gate determines how much of the
current memory state is passed onto the next
layer.

The equations related to these can be summa-
rized as the following with the values of memory,

Figure 3: Gated Recurrent Unit (GRU). From source
(Koehn, 2017)

input, output at time step t:
memoryt = gateinput × inputt + gateforget ×memoryt−1

outputt = gateoutput ×memoryt

ht = f(outputt)
inputt = g(W xxt +W hht−1)

Here ht is the value of the hidden node which
has been obtained by applying an activation func-
tion to the output value at time t and g is an acti-
vation function applied on the input x at time t and
W x, W h are weight matrices.

2.3 Gated Recurrent Unit

Let us now look at Gated Recurrent Unit. One
of the problems with LSTM are that they use a
large amount of parameters which must be learnt
leading to longer training times. GRU’s have
been used as a simpler solution to tackle the exact
problems that LSTM’s tackle. Looking at Figure
4 we can see key differences between the LSTM’s
and GRU’s, the major being that there are only
two gates and no memory state. The equations
related to GRU’s can be summarized as follows:
updatet = g(Wupdateinput

t + Uupdatestate
t−1 + biasupdate)

resett = g(Wresetinput
t + Uresetstate

t−1 + biasreset)

2.4 Word Embeddings

We also look at the role of word embeddings in
Neural Machine Translation. If we use the one-
hot vector approach we run into the danger of
wasting a large amount of space if the vocabu-
lary is very large since the majority of the values
in this matrix would be 0 and only one value in
a particular row would be 1. This can countered
by using word embeddings which are nothing but
a compact way of representing words as vectors
in a sufficiently high dimensional space. One of
the properties of word embeddings is that they al-
low words which have similar contexts to be more
closer in the vector space than words which are not
related.



Figure 4: Sequence to Sequence Encoder Decoder
Model. From source (Koehn, 2017)

3 Neural Translation Models

Now all that remains is for us to look at the trans-
lation models that we use in NMT and how align-
ment happens in NMT. We take a look at the at-
tention mechanism also.

3.1 Encoder-Decoder Model
This is an extension of the RNN based language
model that we looked at in the previous section.
In this approach, we have two distinct phases En-
coder Phase and Decoder Phase. During the
training phase, we feed the concatenation off the
sentence pair to the model. Just as in RNN, where
it predicts the next word, here to the next word
is predicted until we end up at the sentence end
marker. Now the hidden layer at this point con-
tains input sentence embedding i.e. the hidden
layer represents the meaning of the input sentence.
This hidden layer is now fed to the rest of the sen-
tence which is in different language, the same pro-
cess happens and model learns a translation. This
constitutes our decoder phase. Though this model
is simple to understand but in practice it works
for only small sentences. These models can be
broadly classified into 3 categories:

1. Cho Model

2. Sutskever Model

3. GNMT Model

Let us look at these models in detail and figure
out what they are and how do they work in prac-
tice.

3.1.1 Sutskever Model
Deep Neural Networks(DNN) suffer from the fact
that they accept only a fixed dimension vector
as input and output a vector of fixed dimension.
However in sequence to sequence learning tasks
we do not have a fixed length of input sentences
nor on the output sentences hence there arises a
need to circumvent this problem. The Sutskever
model tackles this very problem. The model uses 2

LSTM’s one for mapping(encoding) the input se-
quence to a fixed length vector and other to decode
this vector into the final output. The second LSTM
is also conditioned on the input. This method is
also used in the Cho model with RNN’s replac-
ing the LSTM’s however this introduces the prob-
lem that the RNN has difficulty to learn long range
dependencies hence LSTM work far better in this
approach.

The LSTM learns the conditional distribution
p(y1, . . . , yT |x1, . . . , xT ′) i.e. which output se-
quence has the maximum probability given the
input sequence. Notice that the input sentence
and the output sentence can have different lengths
hence the use of T ′ and T. Once the entire input se-
quence has been fed to the LSTM , the hidden state
of the LSTM contains the sentence embedding or
the representation of the sentence. This is then fed
to the output LSTM with its initial hidden state
equal to v. Then using the standard LSTM-LM we
find the probability of the the sequence y1, . . . , yT .

p(y1, . . . , yT |x1, . . . , xT ′) =
T∏
t=1

p(yt|v, y1, . . . , yt−1)

(1)
The properties of this model are as follows:

1. Deep LSTM’s are used in this model i.e. an
LSTM with four layers is used.

2. The order of the input sentence is reversed as
it decreases the distance between the starting
of the input sentence and the target sentence
hence the model is able to establish a better
relation between the given sentences.

3.2 Alignment Model

We will now model our alignment model explic-
itly, we also call this alignment as attention.
Theencoder encodes the input sentence and pro-
vides us with the sentence embedding. We use a
bi-directional recurrent neural network i.e. we
run two neural networks, one from left to right on
the sentence and another from right to left. Since
we are considering both left-right and right-left
states hence we are predicting a word in the con-
text of the entire word. The decoder we use is
also a recurrent neural network. This takes as
input, a representation of the input sentence, sen-
tence embedding and previous prediction to give
us a new output prediction.



3.3 Attention
From our previous discussion we see that the en-
coder gives the sentence embedding at the end of
it’s process and the decoder must find the transla-
tion using this representation only. Hence it must
have every bit of information required for the de-
coder to do it’s job. Now if our sentence is of small
size then this is no problem, however as sentence
size increases, it becomes difficult to decode the
sentence form a single vector. This leads us to the
attention mechanism. The crux of this approach
is that in some cases it might not be the best to
look at the states immediately preceding the cur-
rent state, rather some different set of states have
to be looked at by the decoder. This is the princi-
ple of the attention, the decoder output for every
word depends on a weighted combination of all
input states rather than only the previous.

3.4 Bahdanau Attention
One of the main problems with the encoder-
decoder approach is that the encoder has to be able
to encode the sentence into a fixed length vector
causing problems with long sentences. In order
to tackle this problem, a model which learns to
simultaneously align and translate is used. Bah-
danau et al. (2014) proposes a different model than
the encoder-decoder model to tackle this problem.

This architecture contains a bidirectional RNN
as an encoder and a decoder which searches
through the source sentence while decoding. As
in the encoder-decoder model our goal is to maxi-
mize the conditional probability of the target sen-
tence given the source sentence. This is captured
in the new model through the following equation

p(yi|y1, . . . , yi−1, x) = g(yi−1, si, ci) (2)

where si is an RNN hidden state at time i and is
computed by

si = f(si−1, yi−1, ci) (3)

Notice that the v vector in the previous model
Sutskever et al. (2014) has been replaced by ci
which is the context vector. This also exhibits one
of the key differences between encoder-decoder
model and the current model i.e. the current model
does not try to condition the current input on the
whole of the vector rather only on the current con-
text vector. The context vector is computed by

ci =
Tx∑
j=1

αijhj (4)

Figure 5: An example of the proposed model, adopted
from Bahdanau et al. (2014)

αij is computed by the following formula

αij =
exp(eij)∑Tx

k=1 exp(eik)
(5)

where
eij = a(si−1, hj) (6)

is an alignment model which models how well
inputs around position j and output at position i
match. The weight αij reflects the importance or
the attention paid to the hj annotation with respect
to the previous hidden state si−1 while determin-
ing the state si and generating yi.

The alignment model a is modelled as a feedfor-
ward neural network and is trained along with the
other components of the system. Usually in tra-
ditional machine translation systems we see that
the alignment is not explicitly modelled however
in this model we explicitly model the alignment.

4 Minimum Description Length(MDL)
Principle

Before we discuss the what the MDL principle
is let us look at the problem of model selection.
Given a limited number of observations of data
we can have several models that explain the given
observations, so the question arises how do we
choose a model in such a scenario? This problem
of model selection is the problem that we can solve
by appealing to the MDL principle. The crux of



the principle is that data has regularities and any
such regularity can be leveraged to decrease the
size of the data literally. If we equate finding reg-
ularity to learning we can think of finding more
and more regularities as learning more and more
hence more learning leads to more compression of
the data.

One of the arguments made in the above para-
graph is that more the regularity more we can com-
press the data. Here compression is thought of as a
way of describing the data, hence we can say more
the regularity more succintly or shortly we can de-
scribe the given data. Of course this leads us to
the question of how do we describe the data i.e.
what does the description of the data entail. We
can look at a general purpose computer language
like C as a way to describe the data. A program
then which can print the required data is a valid
description and we want the program which is of
the shortest length since that exploits the most reg-
ularity out of the data.
0001000100010001 . . . 0001000100010001

The above let’s say 10000 bit string can be de-
scribed succinctly as a C program

for i = 1 to 2500 print ′0001′ ; (7)

As one can see the length of this description is
significantly smaller than the length of the acutal
string. Hopefully this gives an idea about how ex-
poiting regularity can lead to compression of data.
Of course if there were no discernable pattern or
regularity in the data then the length of the pro-
gram would be roughly equal to the length of the
actual string itself since we would have no way but
to print the entire string as it is. To formalize this
we define something called the Kolmogorov Com-
plexity. This is defined as the length of the shortest
program which can print the given sequence and
then halts. The lower the Kolmogorov complexity
of a sequence, the more regularity it has.

5 Subword NMT

One of the most common problems in NMT is
translation of rare words. NMT models usually
work with a fixed vocabulary which are usually
the most frequent occurring words in the training
corpus hence words which appear less or might
only appear in the test data never get added to
this vocabulary. In order to handle this problem
of rare/ out of vocabulary (oov) words Sennrich
et al. (2015) suggested using a modified Byte Pair

Figure 6: Pivot Based NMT from X to Y using Z. From
source (Saha et al., 2016)

Encoding (BPE) algorithm to break words into
smaller units called subwords. The motivation be-
hind this being that some words are transparent by
nature. These words usually belong to the follow-
ing categories :

• Named Entities.

• Cognates and Loan Words.

• Morphologically complex words.

5.1 Byte Pair Encoding Algorithm
Byte Pair Encoding (Phillip, 1994) is modified
where instead of the most pair of bytes being
merged, the most frequent pair of characters are
merged and replaced by a character not previously
used. This operation of replacing the most
frequent pair of characters and replacing it with
another is called a merge operation. The number
of merge operations to be performed on the corpus
is a hyper-parameter which needs to be trained.
The following example gives an idea of how this
algorithm works:

Let the original text be T0 = ABABABABCCCD
then the most frequent pair of characters is AB
which is replaced by character X. The new text
becomes T1 = XXXXCCCD. The pair which is se-
lected next is XX which is replaced by T and the
text now becomes T2 = TTCCCD. This process
continues until no merge operation can be further
done.

6 Pivot Based NMT

Let us take a look at the different models possible
for pivot based NMT.

6.1 Two Stage Encoder Decoder Model
One of the most intuitive ways to implement a
pivot based NMT model is to simply extend the



Figure 7: Correlation based Joint Encoder Decoder.
From source (Saha et al., 2016)

current models we have to a set-up which com-
prises of two independent models. Let us say that
our source language is A with the target language
C and the pivot language B, then we have two
distinct/independent models which translate from
A → B and from B → C. The models are inde-
pendently trained on AB and BC parallel corpus
respectively and the output from the first model
serves as the input to the second model which in
turn gives us our final output. The input can be
both a text or an image to this model but the output
is always natural text. The encoder depends on the
input, if the input is an image then the encoder is
a feed-forward neural network with features begin
selected by a convolutional neural network other-
wise it is a recurrent neural network. The decoder
is always a recurrent neural network with the out-
put being a sequence of words/characters. Figure
6 explains the set-up pictorially.

6.2 A correlation based joint
encoder-decoder

The above model starts to crumble when a higher
number of languages are involved. The model
proposed by (Saha et al., 2016) uses a correlated
encoder decoder approach to tackle this problem.
The parallel corpus AB is used to train both the en-
coder for A and the encoder for B and the parallel
corpus BC is used to train the decoder for C. The
encoders of A and B are correlated hence the en-
coder for B benefits from both the parallel corpus
available. During training time, the model simul-
taneously learns to compute correlated representa-
tions from ai and bi and learns to decode ci from
bi.

Figure 8: Google Neural Machine Translation Archi-
tecture. From source (Saha et al., 2016)

7 Multilingual NMT

In this section we cover the paper by Johnson et al.
(2017) for multilingual translation.

7.1 System Architecture
The architecture of the multilingual system by
Johnson et al. (2017) is exactly similar to the
model proposed by Wu et al. (2016) as shown in
the Figure 8 except with a very significant differ-
ence. To be able the use multilingual data within
a single system, a small modification to the data
is done, which is an artificial token is inserted to
the beginning of the input sentence to indicate the
required target language for this source sentence.
For example consider this sentence from En→ Es
pair of sentences:

Good morning -> Buenos das.

This will be changed to

<2es> Good morning -> Buenos das.

The token added signifies the target language
for the translation and in this case it is Spanish.
After the required modifications, the parallel cor-
pus is used to train the system.

7.2 Zero Shot Translation
Zero shot refers to ”Translation between pairs
never seen explicitly by the system before”. One
of the most common ways to achieve this transla-
tion is to use a bridging or pivot language. The
source sentences are first translated to the bridge
language and then the bridge language sentences
are converted to the target language sentences.
There are problems with this approach

• The translation time doubles since we have to
train two models instead of a single one.

• The translation quality has a potential to
dip while translating from/to the intermediate
language.



Figure 9: Google Neural Machine Translation Archi-
tecture. From source (Saha et al., 2016)

This model has an advantage of implicit bridg-
ing for a pair for which no parallel corpus has been
seen during the training time subject to the condi-
tion that the source and the target must have been
seen as source and target languages individually at
some some time during the training process. Fig-
ure 9 shows the results.

8 SMT Based Translation Systems

Up until now we have looked at the NMT based
systems related to our current work but there ex-
ist works in the SMT field which we aim to repli-
cate in NMT. We cover the Sata-Anuvadak sys-
tem Kunchukuttan et al. (2014) here in order to
throw some light on the work related to our cur-
rent work.Kunchukuttan et al. (2014) built phrase-
based SMT systems for 110 language pairs us-
ing the ILCI Corpus (Choudhary and Jha, 2014).
There were four SMT models that were built
namely:

• Baseline Phrase based System(S1): These
were simple Phrase Based SMT systems used
as a baseline.

• English-IL PBSMT with generic source
side reordering rules (S2): A special fea-
ture of this model was that the source sen-
tence were reordered in order to conform
with the target side language word-order. Ra-
manathan et al. (2008) rule-based reordering
system was used which is based on the the
following transformation principle:
SSmV VmOOmCm ↔ C

′
mS

′
mS

′
V

′
mO

′
mO

′

Here: S is the subject, O is the object, V is
the verb, Cm the clause modifier, X

′
is the

corresponding constituent in Hindi, X is S, O
or V, Xm is a modifier of X.

• English-IL PBSMT with Hindi-tuned
source side reordering rules (S3) : In this
model instead of the using Ramanathan

Figure 10: % BLEU Scores for systems S1, S2, S3.
From source (Kunchukuttan et al., 2014)

et al. (2008) rules for reordering, source side
reordering rules from Patel et al. (2016) were
used. These rules are a refinement of S2 with
additional rules discovered through analysis
of English-Hindi word order divergence.

• IL-IL PBSMT with post-editing using
transliteration (S4) : Many Indian lan-
guages often share some words sometimes
due to a common ancestor like Sanskrit or
because of sharing the areas where the lan-
guages are spoken. So, for such languages,
transliteration becomes useful while dealing
with named entities and untranslated words.
So the outputs from system S1 were were
transliterated in a post editing stage which
was automatic in nature and this forms our
last system.

8.1 Analysis and Results
8.1.1 Translation Accuracy vis-a-vis

Language Families
The paper when looking at the results based on
the Language Families involved witnessed a very
clear distinction between the Dravidian and the
Indo-Aryan language families. The Indo-Aryan
languages were the easiest to translate between
because of features like same word order, simi-
lar case marking schemes and being less inflec-
tional than Dravidian languages. Translation be-
tween English and Indo-Aryan languages suffered
due to the structural divergence between the En-
glish and Indo-Aryan languages specifically the
word-order. Translation between Dravidian lan-
guages was poor because of the rich morphologi-
cal nature of Dravidian languages which results in
several surface forms which cannot be completely
covered by the data.

8.1.2 Effect of corpus size
Figure 11 shows the relationship between the cor-
pus size and the %BLEU score. The effect of



Figure 11: Training set size vs % BLEU. From source
(Kunchukuttan et al., 2014)

increasing was best observed in the case of mor-
phologically poor languages like eng-hin and hin-
ben. Also quality of Indo-Aryan languages im-
proves significantly with the increase in corpus
size. However, other language pairs do not see the
same amount of increase.

8.1.3 Morphological Complexity
It was observed in the work that languages be-
longing to the Dravidian family were the most
difficult to translate between even thought they
shared characteristics like word order, morpho-
logical structure etc. So Translation Model En-
tropy was used as a measure to study the ef-
fect of morphological complexity on uncertainty
of translation. Entropy was observed to be high for
Dravidian language pairs and low for Indo-Aryan
pairs strengthening the hypothesis that translation
model entropy would be low for morphologically
poor systems and high for morphologically rich
pairs.

8.1.4 Source Side Reordering
The paper implemented two types of source re-
ordering rules. The Figure 10 shows both the sys-
tems S2 and S3 lead to an increase in the BLEU
score. The improvement of average BLEU score
over all language pairs for system S3 was 21.5%
compared to an increase of 15.1% for system S2.
Reordering was found to help Dravidian languages
more than the Indo-Aryan Languages.

8.1.5 Post Editing using Transliteration
The effects of using transliteration were evaluated
using the translation recall. Looking at Hindi,
Marathi and Konkani, there was a 1.72% increase
in recall due to the usage of transliteration. Recall

decreases for all language pairs with Devanagari
as the source side script and Punjabi as the tar-
get. The maximum increase in recall was observed
for language pairs spoken in geographically adja-
cent areas. A more complex transliteration system
which handles issues like schwa deletion, chillu
characters in Malayalam script etc.

9 Conclusion

In this paper, we presented the fundamentals re-
quired to understand NMT. We then dived deep
into word segmentation and MDL principle. We
then presented the survey on Pivot Based Neu-
ral Machine Translation. We also provided an
overview of the work currently done in the field
of Multilingual NMT. We then presented one of
the most important related works in the field of
SMT. We observed several different techniques to
implement Pivot based NMT and also looked at
Subword NMT. We also covered a predecessor of
the current work in the field of SMT.

References
Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural

machine translation by jointly learning to align and
translate. arXiv e-prints, abs/1409.0473.

Choudhary, N. and Jha, G. N. (2014). Creating mul-
tilingual parallel corpora in indian languages. In
Vetulani, Z. and Mariani, J., editors, Human Lan-
guage Technology Challenges for Computer Science
and Linguistics, pages 527–537, Cham. Springer In-
ternational Publishing.

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu,
Y., Chen, Z., Thorat, N., Viégas, F., Wattenberg, M.,
Corrado, G., et al. (2017). Googles multilingual
neural machine translation system: Enabling zero-
shot translation. Transactions of the Association for
Computational Linguistics, 5:339–351.

Koehn, P. (2017). Neural machine translation. CoRR,
abs/1709.07809.

Kunchukuttan, A., Mishra, A., Chatterjee, R., Shah,
R., and Bhattacharyya, P. (2014). Shata-anuvadak:
Tackling multiway translation of indian languages.
In Chair), N. C. C., Choukri, K., Declerck, T., Lofts-
son, H., Maegaard, B., Mariani, J., Moreno, A.,
Odijk, J., and Piperidis, S., editors, Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), Reykjavik,
Iceland. European Language Resources Association
(ELRA).

Patel, R. N., Gupta, R., Pimpale, P. B., and M, S.
(2016). Reordering rules for english-hindi SMT.
CoRR, abs/1610.07420.



Phillip, G. (1994). A new algorithm for data compres-
sion.

Ramanathan, A., Hegde, J., Shah, R. M., Bhat-
tacharyya, P., and M., S. (2008). Simple syntac-
tic and morphological processing can help English-
Hindi statistical machine translation. In Proceed-
ings of the Third International Joint Conference on
Natural Language Processing: Volume-I.

Saha, A., Khapra, M. M., Chandar, S., Rajendran, J.,
and Cho, K. (2016). A correlational encoder de-
coder architecture for pivot based sequence gener-
ation. CoRR, abs/1606.04754.

Sennrich, R., Haddow, B., and Birch, A. (2015). Neu-
ral machine translation of rare words with subword
units. CoRR, abs/1508.07909.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Se-
quence to sequence learning with neural networks.
In Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems -
Volume 2, NIPS’14, pages 3104–3112, Cambridge,
MA, USA. MIT Press.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi,
M., Macherey, W., Krikun, M., Cao, Y., Gao, Q.,
Macherey, K., Klingner, J., Shah, A., Johnson, M.,
Liu, X., Kaiser, L., Gouws, S., Kato, Y., Kudo,
T., Kazawa, H., Stevens, K., Kurian, G., Patil, N.,
Wang, W., Young, C., Smith, J., Riesa, J., Rudnick,
A., Vinyals, O., Corrado, G., Hughes, M., and Dean,
J. (2016). Google’s neural machine translation sys-
tem: Bridging the gap between human and machine
translation. CoRR, abs/1609.08144.


