Literature Survey: Entity and Relationship Extraction

Sagar Sontakke
IIT Bombay
sagarsbl@cse.iitb.ac.in

The field of entity extraction has got an im-
mense importance to process this kind of un-
structured data. Extracting information from such
data is a challenging task and it can be achieved
through entity extraction. The way how different
entities interact with each other is also an equally
imporatant factor to build the knowledge base.
The report explains and examines various meth-
ods to achieve this goal of extracting entities and
their relationships from the automobile warranty
data. It presents and evaluates a rule based system
to perform this task.

1 Rule Based Entity-Relationship
Extraction

A rule based system depends mainly on the rules
that are hand-code or automatically learn from the
data. A rule based system consists of two parts:
a collection of rules and a set of policies to fire
these rules. We need to consider sevaral apsects as
described in the following sections.

1.1 Form and Representation of Rules

A basic rule have a form like this: “Contextual
Pattern — Action”. A contextual pattern consists
of one or more labeled patterns capturing proper-
ties of the entities. A labeled pattern consists of
a pattern that is usually a regular expression. The
action part generally refers to the tagging actions
with entity tokens.

Features of Tokens

A token can have a number of features like:
e String representing the token

e Orthography type of the token. It includes
small or capital cases, mixed cases, special
symbols, numbers, punctuations, etc.

e Part of Speech tag of the token

o The domain dictionary in which the token ap-
pears. For example, dictionary of city names,
companies, people names, etc.

e Any annotations, or tags assigned by the pre-
processing steps.

Rules for Identifying Single Entities

These rules can have three parts(Sarawagi, 2007)
as below:

1. A pattern capturing the context before the en-
tity, it is optional

2. A pattern capturing the entity

3. A pattern capturing the context after the en-
tity, it is optional

Some example of rule formation are as below:

e A pattern for identifying the person names of
the form ”Dr. Abdul Kalam” which consists
of atitle ("Dr.”), a dot, two capitalized words.
The rule can be of the form:

({DictionaryLookeup=Titles} {String=".""}
{OrthographyType=
Capitalized word}{2}) — Person Name

e The rule for the entity year can be given as
below. Example sentence: ”Elections will
happen by 2015.”

({String = ”"by” | String =
”in”})({OrthographyType = Number}):y
— Year=:y

o Similarly, the rule for identifying a company
name like “The Google Corp.”, can be given
as:

({String = “The”}) ({OthographyType =
Capitalized Word})

({OrthographyType = Capitalized word, Dic-
tionaryType =

”Compnay end”}) — Company Name

Rules to Mark Entity Boundaries

Certain entities consists of multiple words. Such
type of entities need to mark start and end bound-
aries in order to do the extraction effectively. We
insert the < start > and < end > markers before
and after the entity.

Below is an example to illustrate this:

e The entity like book or journal names cosists
of multiple words. = Example sentence:
This concept is explained in The Design of
Algorithms book. The rule for such entities
can be given as follows:

({String = explained”} {String =
”’in”}):book _start

({OrthographyType = Capitalized word}{2-
5} —

insert < book_start > after:book _start.

1.2 Organizing Collection of Rules

A typical rule based system consists of a large
number of rules. These rules are fires in some
predspecified order. However, many of the rules
can have overlapping text regions and may result
in conflicting actions. Rules can be organized as
explained in the subsequent text.

1.3 Unordered rules with policies to resolve
conflicts

In this approach, all rules are treated as an un-
ordered list and each rule is fired independently.
A conflict may occur when the spans covered by
two different rules overlap. In such cases we can
do:

o Prefer the rule that marks larger span
e Merge the spans of text that overlap

1.4 Rules arranged as an ordered set

A complete priority is defined over rules which
defines the order in which the rules should
be fired. In learning based systems, the rules
priorities can be determined as a function of the

precicion or recall of the rule on the training data.

Defining ordering or priority over rules can be use-
ful for the later rules that can be benefited from
the previous rules. This is particularly useful for
fixing the errors of the unmatched tags. Below is
an example where the rule with lower pririty gets
benefited from the rule with higher priority.

e The rule < start_book > (rulel) has higher
priority than the rule < /end.-book >
(rule2). The rule for < /end_book > can
be fired if the rule < start_book is already
successful.

Rulel:

({String = explained”}
”’in”}):book _start
({OrthographyType = Capitalized word}{2-
5} —

insert < book_start > after:book _start.

{String =

Rule2:

tag = < start_book >) ({OrthographyType
= word }+):book_end

{String = “chapter”} —
< /book_end > after:< book_end >

insert

1.5 Rule Learning Algorithms

Rules can be prepared manuall by a domain expert
or can be learnt from the data. In this section
we look at the methods of learning the rules
automatically.

Primarily, there are two major methods of leaning
the rules:

1. Bottom-up Rule Fomation
2. Top-down Rule Fomation

Below are some terms used in these two algo-
rithms:

e Training data:
D = z,x9,...xy, set of N documents
where occurences of entities are marked cor-
recly.

e Rules
Ri, Ro,, Ry, set of k rules to be learnt from
training data.

e Coverage of a rule
The fraction of the text S(R) to which the
body of rule R matches.

e Precision of a rule
Out of the S(R) segments matched by rule
R, say S'(R) are correct. The fraction
S’(R)/S(R) is called as the precision of the
rule R.

In rule learning, our aim is to cover all segments
that are matched by one or more rules. The
precision of each rule must be high. Ultimately
the set of minimal rules that have better recall
and precicion over the training data is consid-
ered as the final answer. One measure to cover
every entity of the document (100%) recall and
correctly (100%) precision is to have all the rules
specific to the entities. But it does not guarantee
generalizability and minimal number of rules. So,
the goal is to find out a set of minimal number of
rules that can ensure a better recall with some loss
of precision.

Findig such a size optimal set of rules is in-
tractable. So, rule learning algorithms follow a
greedy hill climbing strategy for learning one rule
at a time under the following general framework:

Algorithm 1 General Algorithm for Rule Learn-
ing
Require: Entity tagged training data
1: Rset < set of rules, initially empty
2: while there exists an entity x € D and not
covered by rule in Rset do
Form a new rule around =
Add this rule to Rset
end while
: Post process rules to prune away redundant
rules

AN A

Below we look over the Bottom up rule learning
algorithm.

1.6 Bottom-up Rule Learning Method

In bottom-up rule learning method, the starting
rule is very specific. It has a minimal coverage
but 100% precision and it is guaranteed to be
non-redundant. This rule is gradually made more
general so that the coverage increases with some
possible loss of precision.

The outline of the algorithm is shown below:

Algorithm 2 Bottom-up Algorithm for Rule
Learning
Require: Entity tagged training data
1: Creation of seed rule from uncovered in-
stances
2: Generalization of seed rule
3: Removal of instances that are covered by new
rules

Creation of seed rule

e A seed rule is created from an instance x that
is not already covered by existing rules.

e A seed rule is a snippet of w tokens to the left
and right of T" in x fiving rise to very specific
rule of the form: x;_y..x;—1..¢;14,1 Where
T appears at position z;

e Example of the seed rule creation for a
person name for the sentence:

”According to Abdul Kalam, India will be
the most powerful country by 2020.”

Seed rule:

({String = “According”} {String =
”to”}):person_start

{String = ”Abdul”} {String = "Kalam”} —
insert < person > at:person_start

Generalizing seed rule

e The seed rule is generalized either by drop-
ping the tokens or by replacing the tokens
with the more general feature of the token.

e For example, consider the seed rule created
for the above sentence. It can be generalized
as below:

Generalized rule

({String = “According”} {String =
”’to”}):person _start

{OrthographicType = Capitalized word }
{OrthographicType = Capitalized word} —
insert < person > after:person_start

Pruning away redundant rules

e We need to get a minimal set of rules that
have almost 100% coverage and better pre-
cision

e Some of the rules might be repeated and are
redundant. Such rules need to be pruned
away.

1.7 Case Study: Rule Based System(Berland
and Charniak, 1999)

The work by Matthew Berland, Eugene Char-
niak(Berland and Charniak, 1999) is to find parts
in a very large corpora. This is one of the earlier
rule based system that focus to extract parts of an
object from whole.

According to this work, part is not necessary a
physical object, it can be a concept as well. For ex-
ample, “odometer” is a part of ’car” while “’plot”
is a part of a “novel”. The implemantation of this
system involves manual creation of the patterns for
the parts by some domain expert. To create such
patterns, they made use of the sentence structures.
Some of the sentences are as shown in figurel

... the basement of the building.
... the basement in question is

in a four-story apartment building ...
... the basement of the apartment building.
From the building’s basement ...
... the basement of a building ...
... the basements of buildings ...

Figure 1: Observed Sentences

The patterns are created in terms of the part
of speech tags. These are much like regular ex-
pressions. The example patterns are as shown in
figure2

A. whole NN[-PL] ’s POS part NN[-PL]
.+, building’s basement ...

B. part NN[-PL] of PREP {the|a} DET
mods [JJ|NN]* whole NN

... basement of a building ...

C. part NN in PREP {the|a} DET
mods [JJ|NN]* whole NN

...basement in a building ...

D. parts NN-PL of PREP wholes NN-PL
... basements of buildings ...

E. parts NN-PL in PREP wholes NN-PL
... basements in buildings ...

Figure 2: Patterns Based on PoS Tags

These patterns are then applied to the test data
and results are postprocessed. The postprocessing

of results involves filtering out words ending with

’ing”, "ness”, "ity”, since though these words are
nouns, they do not generally represent a part.

Problems Faced

e Idiomatic phrases could not be pruned
away.For example, some idioms like ”Son of
agun”.

e Part of Speech Tagger mistakes. Mistakes at
the PoS tagging level are percolated to further
steps. For example, “the re-enactment of the
car crash” — “re-enactment” will be a part if
“crash” is tagged as a verb.

Results

This system achieved an accuracy of about 55%.
The main reasons for the lower accuracy are be-
cause of the problems faced. If the mistakes occur
at PoS tagger level, they are cascaded to the next
level. Sometimes, the rules or patterns created are
too brittle to capture all kinds of entities.

2 Statistical Entity-Relationship
Extraction

In statistical approach(Wréblewska and Sydow,
2012), and (Roth and Yih, 2002) the main
goal is to design a decomposition of the un-
structured text and then labeling various parts of
the decomposition, either jointly or independently.

The decomposition can be performed in following
ways:

e Labeling tokens, word chunks, segments
o Grammar based methods

o Relationship Extraction with feature based
methods

2.1 Labeling tokens, word chunks, segments

The unstructured text is considered as the se-
quence of tokens and the extraction problem is to
assign the an entity label to every token.

Labeling Tokens
e We denote the sequence of tokens as x =

L1,yX2y eeey Ty

e At the time of extraction, each token z; from
the sentence has to be classified into one of a
set Z of labels.

e This gives rise to a tag sequence y =
Y1,Y925 -, Yn

e The set Z comprises of teh entity types ' and
a special label “other” for the tokens that do
not belong to any other entity types.

e The BCOE encoding style (Begin, Continue,
Other, End) can be adopted.

Segment Level Models

In this model, features are defined over segments
comprising of multiple tokens forming an entire
entity string. In this way features can capture joint
properties over all the tokens forming part of an
entity.

For segment S; = (Yj, L;, Uj, the feature is of the
form:
F(Y% Y}—lev LJ7 U])

Entity Level Featues
o Similarity to an entity in the database

For example, if we have a database of
company names, and a segment of our inputs
matches one of the entries entirely, then
this gives a strong clue to mark the segment
as a book name. In a sequence model, we
cannot enforce arbitrary segment of text to
take the same label. Thus, we can define a
segment-level feature of the form:

f(yu Yi—1,T, 37 5)
= [[x3, x4, x50pPEarsinalisto fbooksl]

= [[yi = book]]

In general, since unstructured data is noisy,
we define real-valued features that quantify
the similarity between them instead of
boolean features that measure exact match.
It is more useful to define.

For example, the feature below captures the
maximum TF-IDF similarity between the
text span xs3x4rs and an entry in a list of
book names.

f(yia Yi—-1,2, 37 5)

= mazx jepooks] FIDF similarity(xszizs, J)]]

= .[[yi = book]]

o Length of the Entity Segment

The length of a segment can be used as
a typical feature that captures the length
distributuons of the entities. Thus, we can
define a feature as a legth.

The length of a book title can be of 3 words.
It can be given as:

i, yi-1, 2, L, u) = [[u—l = 5]].[[y; = title]|

2.2 Grammar based methods

Some entity extraction systems require a better
interpretation of the structure of the source. A
grammar-based model uses a set of production
rules, like in CFG, to express the global structure
of the entity.

For example, to capture the style homogeneity
amongst author names in a citation we can define
a set of production rules as shown in figure[]

R: S — AuthorsLF | AuthorsFL

RO: AuthorsLF — NameLF_Separator AuthorsLF
R1: AuthorsFL. — NameFL_Separator AuthorsFL
R2: AuthorsFL. — NameFL

R3: AuthorsLF — NameLF

R4: NameL.F_Separator — NameL.LF Punctuation
R5: NameFL_Separator — NameFL Punctuation
R6: NameLF — LastName First_Middle

R7: NameFL — First_Middle LastName

Figure 3: Context Free Grammar Rules

Each production rule is of the form:
R — R1 R2

It is scored a follows:

S(R) = S(Rl)"‘S(RQ)"i‘ZU*f(R, Rla R27$7 lla 7/‘177Q2)

where

(l1,71) and (11 + 1,79) are text spans in x that
Ry and Rs cover, respectively

w is the weighting function (eg. proper name,
verb, etc.)

The score of a node depends on the production
used at the node and the text spans that its children

R1 and R2 cover. This method of scoring makes
it possible to find the highest scoring parse tree in
polynomial time. Here is an example with scoring.

Peter Haas, George John
One of the many possible parses of the string is:

Ry — R4R3
Ry — R6w3
R3s — Rg
R6 — T1X9
Rg — x4x5

The total score of this tree is:

w * f(R(), R4, R3, Z, 1, 3, 5)
+w * f(Ry4, Re, Punctuation, z,1,2,3)
+w * f(Rg, Rﬁ, Y, T, 1, 2, 2)
+w * f(Rg,x,1,2) +w* f(Rg,x,3,4)

2.3 Relationship Extraction: Feature based
methods

Two or more entities are related with each
other with some predefined relation like
“is_employee_of”” is a relationship between a
person entity and an organization entity. Rela-
tionships can be binary (between two entities) or
they can be multiway (between multiple entities).
Binary relations can be expressed as a triplet of
the form < subject, predicate, object >. Most
common types of resources that are useful for
relationship extractions are as below.

e Surface Tokens

— The tokens around and in-between the
two entities often hold strong clues for
relationship extraction

— For example, the relation situated_in,
for the following sentence:

[Company] Symantec [/Company]
is_located_in the [Location] Pune
[/Location]

e Parts of Speech tags

— Part of speech (POS) tags play a more
central role in relationship extraction
than in entity extraction.

— Verbs play a crucial role in the relation-
ship extraction.

— For example, the relation held._in,
following PoS tagged sentence:

The/DT University/NNP of/IN
Helsinki/NNP hosts/VBZ ICML/NNP
this/DT year/NN

e Syntactic Parse Tree Structure

— A parse tree groups words in a sen-
tence into prominent phrase types such
as noun phrases, prepositional phrases
and verb phrases

— It is more elaborative than PoS tags

e Dependency Parse Tree
Dependency graph structure(Choi and Choi,
2008) links each word in the sentence to
other words that depend on it. For example,
consider the sentence:

Haifa located 53 miles from Tel Aviv will
host ICML in 2010

The dependency graph for this sentence can
be given as shown in figure[]. The arrows
shows the dependency (binary relation) be-
tween the words that it connects.

o>
Haifa located 53 miles from Tel Aviv will host ICML in 2010

Figure 4: Dependency Graph for the example sen-
tence

Feature Based Methods for Relationship
Extraction

Many attempts are made to convert the fea-
tures that are in form of tree, graph, etc. to flat
structures which can then be utilized by classifiers.

Let x denotes sentence and x1, xo, ..., x, denote
words of the sentence at index 1,2,..n. Suppose
FE1 and E2 denote the segments in sentence = cor-
responding to the two entities for which we wish
to know the relationship. Each word z; is associ-
ated with a set of properties p1, po, ..., px. These
are the features like PoS tags, orthography type,
class of word in given ontology, entity type, etc.

The first set of features are obtained by taking all
possible conjunctions of the properties of the two

tokens representing the two entities £'1 and E2.
Examples of such features are given below:

e For “resides_in” relation, the feature can be
given as:

[[Entitylabelof E1 =
Person, Entitylabelof E2 = Location]]

e For “acquired_by” relation, the feature can
be given as:

[[Entitylabelof E1 =
Company, Entitylabelo f E2 =
Company||

2.4 Case Study: Joint entity and relation
extraction using card-pyramid parsing

This a work by Raymond J. Mooney and Rohit J.
Kate(Kate and Mooney, 2010). It follows a joint
approach for entity and relationship extraction.

Why Joint Approach?

The traditional way of entity and relationship
extraction follows a pipelined approach in which
first entities are extracted followed by extraction
of relations. If entities are incorrectly extracted,
these inaccuracies are percolated and it also
induces inaccuracies in the relationship extraction.

The joint approach to entity-relationship extrac-
tion avoids the drawback of pipelined approach,
so this approach is preferred.

For example, if “works_for” is a relation identi-
fied by a relation extraction, then it can enforce
identifying its arguments as Person and Organi-
zation, about which the entity extractor might not
have been confident.

Goal

This approach focus on joint extraction of entities
and relations to improve the accuracies. Use of
“card-pyramid” i.e. a graph that compactly en-
codes all possible entities and relations in a sen-
tence.

Approach

Card Pyramid Structure

It is a tree like graph with one root, internal nodes
and leaf nodes. If there are n leaves, there are

273 45 6 7 8 91011 12 13

Figure 5: A sentence shown with entities and rela-
tions

exactly n number of levels. There are decreasing
number of nodes from bottom to top. Leaves are
at lowest level (0) and root is at highest level
(n — 1). Every non-leaf node at position 7 in level
[is parent of exactly two nodes ¢ and (i + 1) at
level (I —1).

A typical card pyramid structure looks as shown
in figure6

Figure 6: A Typical Card Pyramid

The card pyramid strucure for the given sentence
is shown in figure7
Card Pyramid parsing

The process of jointly labeling the nodes of a
card-pyramid which has all the candidate entities
(i.e. entity boundaries) of the sentence as its
leaves. It requires grammar for card pyramid in
terms of entities and relations.

Entity Productions (leaf nodes):
Entity label — ce

Relation Productions (non-leaf nodes):

called
14

Orgarmi¥a

ABCInd.

15 1617

Level 4 Work_For

0

OrgBased_In

Level2 Live_In NR OrgBased_In

0 '\/z
Lovel 1 LA Lotated_In NR NR

0 2 3

Level 0 Pc([]'son Luc?tion Loc:zition Othgr Org‘;:nization
(0-0) (3-4) (6-6) (12-12) (15-16)

Figure 7: A Card Pyramid structure for given sen-
tence

Relation label — entityLabell entityLabel2

Examples:

work_for — person organization

NR — person other

OrgBasedin — Location Organization
Person — ce

Location — ce

Classifiers Used

Use of two classifiers to extract entities and to ex-
tract relations . Classifier for every entity pro-
duction which gives the probability of a candi-
date entity being of the type given in the produc-
tion’s LHS. A classifier for every relation produc-
tion gives the probability that its two RHS entities
are related by its LHS relation.

Beam Search

Parsing does a beam search and maintains a
beam at every node. The beam at each node is a
queue of items we call beam elements. At leaf
nodes, a beam element simply stores a possible
entity label with its corresponding probability.
At non-leaf nodes, a beam element contains a
possible joint assignment of labels to all the nodes
in the sub-card-pyramid rooted at that node with
its probability.

Relation productions for which left-most leaf of
the left child and right-most leaf of the right chil
are RHS non-terminals. For every such production
in the grammar, 2 the probability of the relation

is determined using the relation classifier. This
probability is then multiplied by the probabilities
of the children sub-card-pyramids. Finally, the
estimated most-probable labeling is obtained
from the top beam element of the root node. This
algorithm works in polynomial time.

A support vector machine (SVM) classifier for
each of the entity productions in the grammar. It
outputs the probability that the candidate entity is
of the respective entity type. Probabilities for the
SVM outputs are computed using the method by
Platt (use all possible word subsequences of the
candidate entity words as implicit features using a
word-subsequence kernel)(Mooney and Bunescu,
2005). In addition to it, PoS tags, actual entity
word, context words are used.

References

Matthew Berland and Eugene Charniak. 1999. Find-
ing parts in very large corpora. In Proceedings of the
37th annual meeting of the Association for Compu-
tational Linguistics on Computational Linguistics,
pages 57-64. Association for Computational Lin-
guistics.

D Choi and K Choi. 2008. Automatic relation
triple extraction by dependency parse tree travers-
ing. Poster and Demo, page 23.

Rohit J Kate and Raymond J Mooney. 2010. Joint en-
tity and relation extraction using card-pyramid pars-
ing. In Proceedings of the Fourteenth Conference on
Computational Natural Language Learning, pages
203-212. Association for Computational Linguis-
tics.

Raymond J Mooney and Razvan C Bunescu. 2005.
Subsequence kernels for relation extraction. In Ad-
vances in neural information processing systems,
pages 171-178.

Dan Roth and Wen-tau Yih. 2002. Probabilistic rea-
soning for entity & relation recognition. In Proceed-
ings of the 19th international conference on Compu-
tational linguistics-Volume 1, pages 1-7. Associa-
tion for Computational Linguistics.

Sunita Sarawagi. 2007. Information extraction survey.
Foundations and Trends in Databases, 1(3):261-
371.

Alina Wréblewska and Marcin Sydow. 2012.
Dependency-based extraction of entity-relationship
triples from polish open-domain texts.

