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Abstract

The size and quality of the parallel corpus used for training, greatly impacts the quality

of translation of an SMT system. But, there are very few sources of parallel corpora

for many language pairs. This is a major hurdle in the development of good SMT

systems. To alleviate this problem, comparable or non-parallel corpora, which are

largely available, can be exploited to extract parallel data. We study the recent work

done in this area, and explore various approaches for extraction of parallel sentences,

parallel fragments of sentences and bilingual lexicons from comparable corpora.
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Chapter 1

Introduction

Machine Translation (MT) is the task of automatically converting one natural language

text into another while preserving the meaning of the input text, and producing fluent

text in the output language. There are various approaches to MT:

∙ Rule Based MT: A rule-base for translation between source and target lan-

guages is created and the target sentences are generated according to these rules.

This rule-base consists of rules of grammar for both languages and a dictionary

for word translations.

∙ Interlingua Based: Translation is done by using an intermediate representation

of the text (interlingua) between source and target languages.

∙ Transfer Based: The types of transfer based approaches are — syntactic trans-

fer and semantic transfer. In the transfer approach, a syntactic (or semantic)

structure of the source sentence is built and it is transformed into a syntactic (or

semantic) structure of the target sentence. The target sentence is generated from

this structure. Semantic methods use a richer semantic representation than parse

trees.

∙ Statistical MT: Statistical MT learns the statistics over parallel corpora and

estimates parameters of a probabilistic model for translation.

The Vauquois’ Triangle in Figure 1.1 shows the various strategies of machine translation.

As we go up in this triangle, understanding of the source and target language required
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Figure 1.1: Vauquois’ Triangle

for the translation, increases (Manning and Schütze, 1999).

1.1 Statistical Machine Translation

Language is so rich and diverse that it can never be fully analyzed and written into

a set of rules, which can be encoded in a computer program (Koehn, 2010). Hence,

the statistical approach to MT gained momentum. In SMT, the goal is to develop

a machine that discovers the rules of translation automatically from a large corpus

of bilingual text. Thus, the rules of translation are learned by the system from the

statistics over the data.

Translation is done according to the probability distribution p(f|e) over the docu-

ments. There are various approaches for modeling this probability distribution. Ini-

tially, the statistical translation models were word-based i.e., a word was the fundamen-

tal unit of translation. Such systems used IBM models 1 to 5 that are based on the IBM

Hidden Markov Model (Vogel et al., 1996) and model 6 (Och and Ney, 2003). Later,
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phrase-based models came into being . There has also been work on syntax-based and

hierarchical phrase-based machine translation (Chiang, 2005).

1.1.1 Importance of large amounts parallel corpora for SMT

A machine translation system that is based on the probabilistic translation models

(Brown et al., 1993), are generally trained using parallel corpora. A parallel corpus is

a sentence aligned pair of documents in which each pair of aligned sentences are trans-

lations of each other. During training, the translation model of the SMT system learns

the statistics over the training data provided to it and estimates its parameters ac-

cordingly. The translations that are produced are very much dependent on the parallel

corpus used for training. Larger the size of the training corpus, better is the parameter

estimation and thus, better is the translation quality.

But, one of the major challenges faced by SMT is that of scarce availability of

parallel corpora. There are some language pairs like English-French or English-Spanish,

for which huge set of parallel corpora are readily available. But for many other language

pairs, there is scarcity of parallel corpora.

Creation of a large parallel corpus manually, can be very costly in terms of efforts

and man hours. So, we need some ways to automatically and efficiently create parallel

corpora. Comparable corpora and non-parallel corpora are largely available for all

language pairs. The next section introduces comparable corpora and its various sources.

1.2 Comparable Corpora

A noisy parallel or comparable corpus consists of bilingual documents that are not

sentence aligned, but are rough translations of each other. In fact, in a noisy paral-

lel corpus, the documents can possibly contain many parallel sentences in a roughly

same order (Smith et al., 2010). But, in a comparable corpus, the sentences are not
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really translations of each other but convey almost the same information, and hence,

may contain some parallel sentences. Such comparable corpora can be exploited to

find parallel sentences or parallel phrases. Examples of such comparable corpora are

multilingual news feeds provided by news agencies like Agence France Presse, Xinhua

News, Reuters, CNN, BBC, etc (Munteanu and Marcu, 2005). Also, comparable cor-

pora could contain documents that are not even rough translations of each other but

are only topic-aligned.

Figure 1.2: Example of Comparable Corpus

Consider the set of sentences shown in Figure 1.2. It is a small example of a comparable

corpus. These are sentences from the newspaper articles reporting the same incident

8



on BBC India website English 1 and Hindi 2. The arrows point to the corresponding

comparable sentence that provides the same information. As can be observed, alignment

of parallel sentences such as these is clearly, a non-trivial task, as there may be many

lexical and structural differences in the two sentences, inspite of them giving the same

information.

1.2.1 Wikipedia

Wikipedia is a huge collection of articles on a large variety of topics and various lan-

guages. So, it is rich in information from various domains and that too, in many

different languages.

Interwiki Links

Articles on the same topic in different languages in Wikipedia are connected through

interwiki links. These links are annotated by users. Thus, document alignment for mul-

tilingual documents on similar topics is already provided in Wikipedia. These aligned

documents, can be directly given to the sentence extraction step.

Markup

Wikipedia’s markup can be very useful in providing numerous cues for parallel sentence

extraction. For example, text in a typical Wikipedia article contains hyperlinks that

point to other articles. If the hyperlinks in a bilingual sentence pair match, then that

sentence pair can be said to be parallel. Hyperlinks match if the articles they point to,

are connected by interwiki links.

1http://www.bbc.co.uk/news/world-asia-india-22093997
2http://www.bbc.co.uk/hindi/india/2013/04/130410 tytler re-investigation fma.shtml
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Image Captions

Images in Wikipedia are stored centrally across all articles in all languages. So, if the

same image occurs in an aligned pair of articles, then its caption in both those articles

can be used as parallel sentences.

Lists and Section Headings

Lists and section headings can be useful in finding similar content in the articles.

Thus, there are many sources of useful information in Wikipedia which can be

exploited for our purpose. But, the aligned article pairs of Wikipedia may be of three

types. First, they may be translations of each other, in which case, these are almost

parallel. Second, they may be translations but edited independently. So, they can

be called noisy parallel. And third is that, the articles may be written by different

authors. So, inspite of being topic aligned, they may contain no parallel sentences.

Hence, Wikipedia ranges from being a collection of noisy parallel to comparable article

pairs (Smith et al., 2010).

1.2.2 Quasi-Comparable Corpora

A quasi-comparable corpus (Fung and Cheung, 2004b) contains non-parallel and non-

aligned bilingual documents. These documents may be on the same topic or may be of

very different topics. A good example of quasi-comparable corpus is the TDT3 Corpus,

which consists of transcriptions of radio broadcasts and TV news reports. In such a

corpus, a small number of the bilingual sentences are translations of each other, while

some others are bilingual paraphrases.

10



1.2.3 The Internet Archive

The Internet Archive (Resnik and Smith, 2003) is a non-profit organization that is

attempting to archive the entire Web. It preserves content in web pages and makes

them freely and publicly available through a Wayback Machine Web Interface 3. The

data of the Archive is freely accessible by signing up for an account on their cluster.

The data are stored on disk drives of more than 300 machines, each running on UNIX.

Properties of the Archive

In 2003, it contained around 120TB of data (a conservative estimate) and grows at the

rate of 8TB per month.

1. Architecture of the Archive:

∙ There are many aspects of the architecture of the Archive that make it very

feasible to rapidly develop tools for processing it.

∙ All data are stored in the form of compressed files rather than in a database.

∙ The data relevant for our extraction purposes are organized as archive files

(arcfiles) containing the stored page, the index files containing tuples of the

form <URL, timestamp, arcfile, offset,...>

∙ There are a number of tools available to process the Archive and extract

individual pages from the archive files.

∙ The Archive is divided on a cluster of computers. So, it facilitates the use of

cluster computing and makes it easy to write small UNIX scripts for parallel

processing across the machines.

∙ Parallel processing makes the extraction process remarkably fast.

3www.archive.org/
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2. Challenges in mining the Archive:

∙ The Archive is a temporal database but, it is not stored in temporal order.

So, a document and its translation may be kept on different machines and a

global merge is required to find them.

∙ All data is stored in compressed format. So, extracting some text even for the

purpose of inspection is a very expensive task involving text decompression.

∙ The Archive is so big in size that, all the processing that we do on the data

must be done using algorithms of least computational complexity.

1.3 Summary

In this introduction chapter, we discussed the various approaches of Machine Transla-

tion (MT), and saw the importance of parallel corpora for Statistical Machine Trans-

lation (SMT). We discussed some huge, and freely available sources of comparable

corpora, and their features that help us find topic aligned documents in them.

1.4 Outline of the Report

Chapter 2 gives a general architecture of a parallel corpora extraction system. Chapter

3 discusses approaches for document alignment. In Chapter 4, the existing work in

extracting parallel sentences from non-parallel or comparable corpora using various

approaches has been discussed. In Chapter 5, we discuss some approaches for extraction

of parallel fragments from comparable corpora. In chapter 6, we survey approaches for

bilingual lexicon extraction from comparable corpora.
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Chapter 2

Parallel Corpora Extraction System:

General Architecture

The extraction system or the pipeline is made up various stages as shown in Figure 2.1.

Firstly, potential sources of texts that could yield parallel sentences must be looked for.

These could be any known noisy parallel, comparable, or quasi-comparable corpora

that were seen in Chapter 1. We can also extract parallel data from web sources, as

has been discussed.

A parallel corpora extraction system generally consists of the following:

1. Resources

∙ Comparable or non-parallel corpus: This is the source for parallel sentence

extraction. It consists of documents in the source and target language.

∙ Bilingual Lexicon: Used in the Document Alignment and the Sentence Se-

lection stages.

∙ Seed Parallel Corpus: A small parallel corpus used to train the Sentence

Selection module.

2. Document Alignment Module

After identifying the potential source, the next step is to find similar document

pairs by document alignment (topic alignment). This is an important step because
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of the “find-topic-extract-sentence” principle (Fung and Cheung, 2004a). It says

that parallel sentences are most likely to be found in documents on similar topics.

3. Sentence Selection Module

After document alignment, parallel sentences within the similar document pairs

are extracted. This is done using various Maximum Entropy based models that

make use of feature functions (Munteanu and Marcu, 2005).

4. Bootstrapping

Another principle - “find-one-get-more”, states that, if one parallel sentence pair

is found in a document pair, then it must contain more parallel sentence pairs

(Fung and Cheung, 2004a). To take advantage of such phenomena, bootstrapping

(not shown in 2.1) can be employed.

Each of these stages has been discussed in detail in the following chapters.

Figure 2.1: General Architecture of Parallel Sentence Extraction System
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Summary

The general architecture of a parallel sentence extraction system was seen. The subse-

quent chapters discuss various techniques for implementing each of the steps mentioned

in this chapter.
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Chapter 3

Document Alignment Techniques

A comparable or non-parallel corpus is likely to be huge. It is not possible to examine

every sentence pair in the entire corpus. So, we focus our attention on only those sen-

tence pairs that belong to documents having similar or overlapping content. Hence, we

need to find comparable or similar documents from the set of all documents. Following

are some of the techniques that can be employed.

∙ TFIDF Retrieval

∙ Cosine Similarity

∙ Topic Alignment

∙ Content Based Alignment

We will discuss each of these in detail.

3.1 TFIDF Retrival

In this method (Munteanu and Marcu, 2005), for each foreign lanuage document, we

try to select a list of English documents that are likely to contain sentences which are

parallel to those in the given foreign document.

If we find the best matching English document for a foreign language document,

then the number of candidate sentence pairs to be given for classification is too small,

and we may miss out on a large number of good candidates. So, we try to find a set of
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matching English documents instead of finding a single best-match, since this delegates

the load of the extraction pipeline towards the next step - of actual sentence alignment

and extraction, which is more robust and reliable.

TF-IDF = Term frequency * Inverse Document Frequency

This is a metric to show how important the given word is to a document. TFIDF

of a document increases if a word in more frequent in that document, but reduces if

the words also appears frequently in the entire corpus. Thus, it helps to ignore words

that are inherently common, as they do not contribute much towards the content of

the document.

TFIDF is used to compute a ranking function to rank documents according to their

relevance to a given query of words. Many IR and text mining tools make use of a

scoring or ranking functions based on TFIDF and its variations. In this technique, we

can make use of any such IR toolkit. We will also make use of a probabilistic bilingual

dictionary. Following are the steps of document matching:

∙ Index all English documents in a database based on the words it contains.

∙ For a given foreign language document, we take the top 5 translations of each of

its words according to the dictionary and construct an English language query.

∙ This query is used to run a TF-IDF retrieval of English documents against the

database.

∙ Upto 20 matching English documents may be paired for the given foreign language

document.

∙ This process is followed for each foreign document.
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3.2 Cosine Similarity

Cosine similarity is a measure of similarity in two documents. The documents should

be represented as a vector of the words they contain. Then the cosine similarity is

nothing but the cos of the angle between the representative vectors i.e. Dot product of

the vectors.

Alternattely, TFIDF and cosine similarity can be combined to give improved results

by representing each document by a TFIDF vector. Thus, factors like length of the

document will not affect the similarity score, giving more accurate results.

3.3 Topic Alignment

In noisy-parallel or comparable corpora, the documents are mostly on same or relevant

topics. Thus, these are said to be topic-aligned. Many recent works are based on the

find-topic-extract-sentence principle (Fung and Cheung, 2004a) which says that parallel

sentences exist in document pairs with high similarity.

But, in highly non-parallel corpora, documents may or may not be on the same

topic. Thus, generally, they are not topic-aligned. Hence, we need to find similar i.e.

in-topic documents using methods like word overlaps, similarity scores, TFIDF, and

cosine similarity.

3.4 Content Based Alignment

This method uses a translational similarity score based on a word-to-word translation

lexicon (Resnik and Smith, 2003).

Link: It is defined as a pair (x,y) where x is a word in foreign language and y is a

word in English language. Either x or y, but not both can be NULL, indicating that
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the translation on the opposite side is not known.

We use a generative, symmetric model based on a bilingual dictionary that gives a

probability distribution ’p’ over all possible link types in the corpus. This model does

not take word order into account.

Let us consider two documents X (in foreign language) and Y (in English). We,

need to find the most probable link sequence(unordered) that can account for both

these documents according to our model.

ΨPr(link-sequence) = Π𝑙 Pr(x,y)

where, l = (x,y)

So, finding the best set of links over X and Y is a problem of finding the Max-

imum Weighted Bipartite Matching(MWBM). In our case, the weights of the links

are the log of Pr(x,y). So, maximum sum of the weights gives most probable link

sequence(unordered).

Tsim: this is defined to be a cross-language similarity score between two documents

based on the model defined earlier. This similarity score should be high when many of

link tokens in the best link sequence do not have NULL on any side. Also, it should be

normalized for text length.

Tsim =
Σ(log Pr (two-word links in best matching))

Σ(log Pr (all links in best matching))

A drawback of this score is that a lot of probability mass in the distribution ’p’

tends to go to frequent words, which are relatively uninformative for the problem of

finding whether two documents contain content translations of each other.

So, we can assume an equiprobability model. Here, all links have equal probability.

Thus, the MWBM problem is reduced to a Maximum Cardinality Bipartite Matching

(MCBM) problem under the equiprobability assumption. So, best link sequence is the

one having maximum number of link tokens. Then,
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Tsim =
number two-word links in best matching

number of links in best matching

The document pairs with highest Tsim score can be considered as relevant or similar

documents.

We can combine multiple sources of word-level translation information in the model

like dictionaries, word-to-word translation model as described above and cognates.

Summary

In this chapter, we saw various techniques of document alignment like TFIDF Retrieval,

Cosine Similarity, Topic Alignment and Content Based Alignment. The next chapter

discusses sentence alignment techniques.
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Chapter 4

Extraction of Parallel Sentences

Extracting parallel sentences from comparable corpora is a vast area of research in

itself. It has continued to remain a challenging task even after more than a decade.

Some standard and most commonly used techniques are explained in this section.

Most of the techniques are implemented on a set of bilingual document pairs that are

topic-aligned, i.e., each pair of documents have content about roughly similar topics, so

that they tend to convey a lot of overlapping information. This improves our chances

of finding good parallel sentences while reducing the search space, too.

Wikipedia is a good example of comparable corpus that readily provides such topic-

aligned pair of documents through its ”interwiki” links. But when we do not have

such a paired set of documents, techniques discussed in the previous chapter can be

used to align documents. Such pairs of documents, then, can be used to find parallel

sentences. But, we need a reliable way of finding parallel sentence pairs such document

pairs. Following are some techniques that can be used for classifying parallel sentence

pairs from all sentence the pairs in the aligned set of documents.

4.1 Classification

A Maximum Entropy classifier was used for parallel sentence extraction by Munteanu

and Marcu (2005). The model is a log linear combination of various feature functions:

P(ci|sp) = 1
𝑍(𝑠𝑝)

·
𝑘∏︀

𝑗=1

𝜆
𝑓𝑖𝑗(𝑐,𝑠𝑝)
𝑗
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where 𝑐𝑖 is the class, 𝑐0 = parallel and 𝑐1 = non-parallel

Z(sp) is the normalization factor

𝑓𝑖𝑗 are the feature functions.

Since, there are only two classes - parallel and non-parallel, this is a binary classifier.

It takes as input a candidate sentence pair and according to the model, classifies it as

either parallel or non-parallel with some probabilistic score (confidence). We can further

improve precision by taking only those pairs which are classified as parallel with a high

probability (say 0.7 or greater).

The training set for this classifier can be a small parallel corpus of about 5K sen-

tences. Then, all possible sentence pairs (Cartesian product) are generated. So, 50002

training instances will be generated out of which, 5000 are parallel and remaining are

not parallel. In any given training data set of ’n’ sentence pairs, there are usually O(n)

positive (parallel) examples and O(𝑛2) negative (non-parallel) examples. A binary clas-

sifier trained on such a training instance suffers from a class imbalance problem. As a

result, it tends to predict the majority class i.e., classifies most pairs as non-parallel.

One heuristic solution to this problem is to downsample i.e., randomly remove

negative instances from the training set to achieve balance. Also, we can first pass all

the generated pairs through the word overlap filter, and use for training, only those

pairs that are not discarded by the filter. This can reduce class imbalance since the

pairs that will be discarded are least likely to be parallel.

4.2 Maximum Entropy Based Ranking Model

To avoid the class imbalance problems of a binary classifier, a Maximum Entropy based

Ranking Model was used by Smith et al. (2010). The ME model and training set used

are same as those of the classifier described above but the formulation of the problem

is different.
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4.2.1 Formulation

For each source language sentence, we select a sentence in the target language that is

the most parallel to it. This is selected based on the probability score of the ME model

used. Thus, highest probability sentence from target is chosen as parallel to the given

source sentence. If no such target sentence is found, then the source sentence is aligned

to NULL.

This formulation of the problem reduces the class imbalance problem of the binary

classifier.

4.3 Sentence Similarity

Fung and Cheung (2004a) use sentence similarity technique, where, each sentence is

represented as a word vector. Then, pairwise sentence similarity is calculated for all

possible sentence pairs in the aligned document pairs. A minimum threshold is set and

sentence pairs yielding a similarity score beyond this threshold are considered to be

parallel. Similarity score may be computed using TF-IDF (in this case, document is a

sentence) and cosine similarity.

4.4 Conditional Random Fields

Smith et al. (2010) used a first order linear chain Conditional Random Field (CRF) for

aligning parallel sentences within a pair of aligned documents. This model corresponds

to the discriminative CRF-based word alignment model described by Blunsom and

Cohn (2006). This alignment model is applied for aligning sentences within aligned

documents instead of words within parallel sentences.
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4.4.1 Discriminative Word Alignment with Conditional Ran-

dom Fields

Blunsom and Cohn (2006) describe a CRF Sequence model estimated on a small super-

vised training set of word aligned parallel sentences. This model allows for a globally

optimal training and decoding and uses a graphical structure similar to the directed

hidden Markov model (HMM) from GIZA++ (Och and Ney, 2003). It models many-

to-one alignments where each source word is aligned with zero or one target word, so

each target word can be aligned to multiple source words. Many-to-many alignments

are obtained by superimposing the predicted alignments in both translation directions.

1. Formulation:

Each source word is labeled with the index of the target word to which it is

aligned, or ‘null’. The joint probability density of alignment, conditioned on the

source and target sides is

𝑝∧(𝑎|𝑒, 𝑓) =
𝑒𝑥𝑝

∑︀
𝑡

∑︀
𝑘 𝜆𝑘ℎ𝑘(𝑡, 𝑎(𝑡− 1), 𝑎𝑡, 𝑒, 𝑓)

𝑍∧(𝑒, 𝑓)
(4.1)

where a = alignment vector containing target indexes,

e = source sentence,

f = target sentence,

t ranges over target side indexes,

k ranges over model features

∧ = 𝜆𝑘 the model parameters (weights for their corresponding features)

ℎ𝑘 = real valued feature functions over source and target sentences

𝑍∧ =
∑︁
𝑎

𝑒𝑥𝑝
∑︁
𝑡

∑︁
𝑘

𝜆𝑘ℎ𝑘(𝑡, 𝑎(𝑡− 1), 𝑎𝑡, 𝑒, 𝑓) (4.2)

𝑍∧ = partition function to normalize the distribution in equation 4.1
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2. Feature Set:

The feature set includes two main types of feature functions: features defined

on a candidate aligned word pair, and Markov features defined on the alignment

sequence predicted by the model.

4.4.2 CRF Based Parallel Sentence Extraction

The parallel sentence extractor based on the CRF model described above uses a subset

of the rich set of features, described in the next section.

4.5 Features Functions

The classification based approach, as well as CRF based approach uses a lot of feature

functions that they help to distinguish between parallel and non-parallel sentence pairs.

For this purpose features based on word alignments, translation probability, distortion,

context similarity, etc are used (Munteanu and Marcu, 2005).

4.5.1 General Features

1. Sentence Length

The length of the candidate sentences should be roughly the same because sen-

tences that are translations of each other have similar lengths. This is measured

in terms of the length of the sentences, ratio of the lengths, and difference in the

lengths.

2. Word Overlap

We find out the percentage of words in each sentence that have a translation

in the corresponding sentence on the other side. This translation is considered
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according to the dictionary (lexicon), and words are weighted by their inverse

frequency in the document. So, less frequent words add more value to the score.

3. Relative position in document

We consider the difference in the relative position of the sentences in their re-

spective documents. This is based on the observation that aligned articles have

a similar topic progression. So, if a sentence is in the middle of the document in

source language, its translation can be found roughly in the same region in the

corresponding target language document.

4.5.2 Word Alignment based Features

Many aspects of word alignments computed between a pair of sentences can be useful

in deciding whether they are translations of each other. These can be used as features

for our classification process.

1. Number of aligned words

The percentage of the number of words that are aligned in the sentence pair is a

good indicator of parallelism. It a large percentage of words is unaligned, then

the sentences are not likely to be parallel.

2. Length of contiguous connected spans

A contiguous connected span is a long sequence of words in the sentence which

are all aligned to a sequence of words in the corresponding sentence on the other

side. This feature is also indicative of parallelism. Longer the length of such a

contiguous connected span, greater are the chances that the two sentences are

parallel to each other.

3. Top three largest fertilities
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In the alignment computed between a sentence pair, it a single word in one sen-

tence has an alignment of large fertility, it can indicate non-parallelism. This is

because, in sentences which are translations of each other, words usually have

low fertility and the number of words with high fertility is also less. So, we can

find the top three largest fertilities in the alignment between the sentence pair to

decide whether they are parallel.

4. Length of contiguous unconnected spans

An unconnected span is similar to the above-mentioned connected span. The only

difference is that it has a long sequence of unaligned (unconnected) words. If the

length of the longest unconnected span in a sentence is very large ( more than

say, 1/3rd of the sentence length), then it indicates non-parallelism.

4.5.3 Distortion Features

As we use distortion model in a word or a phrase-based translation model for a sentence,

we can also consider a distortion of sentences in a document. That is, we consider the

difference between the positions of the previous and the current pair of aligned sentences.

4.6 LEXACC (Lucene Based Parallel Sentence Ex-

traction from Comparable Corpora)

The LEXACC system (Stefănescu et al., 2012), uses Cross Language Information Re-

trieval in order to reduce the search space for finding parallel sentences in comparable

corpora. First, target sentences are considered as documents, and are indexed.Then, for

each source sentence, the content words are translated into the target language accord-

ing to a dictionary. The translations are used to form a Boolean query which is then

fed to the search engine and the top hits are considered to be translation candidates.
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These candidates are then compared to the source sentence using a similarity measure

(described later), to finally say whether or not they are parallel.

4.6.1 Indexing, Searching and Filtering

The target sentences are first transformed such that only stemmed non-functional words

are present in them. Then, the transformed target sentences are indexed as documents

using Lucene. Additional searchable fields are also employed, namely, short (if sentence

length is short), long (if sentence is long), and an optional term document (the document

to which the sentence belongs in the comparable corpus).

The searching step involves the use of a GIZA++ constructed dictionary for con-

structing the query. Each non-functional word is translated using the dictionary and

added to the query as a disjunctive query term (SHOULD occur). Two other disjunc-

tive terms added to the query are short and long, according to what is applicable to

the source sentence. If the optional term document is known, then it is added as a

conjunctive term (MUST occur) to the query.

Filtering of each candidate pair is done to further reduce the search space. A viability

score is computed and a threshold is used to filter the candidate sentence pairs.

𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 = 𝛼 · 𝛽 · 𝑠𝑒 · 𝑠𝑖𝑚

𝛼 = 1− 𝑎𝑏𝑠(|𝑠| − |𝑡|)
𝑚𝑎𝑥(|𝑠|, |𝑡|)

(4.3)

𝛽 =
𝑚𝑖𝑛(|𝑠|, |𝑡|)

𝜆
(4.4)

where se is a score returned by the search engine. —s— and —t— are lengths of s and

t. 𝜆 is the threshold for considering sentences as long.

𝑠𝑖𝑚 =
2 · 𝑡𝑒𝐹𝑜𝑢𝑛𝑑 · 𝑡𝑒

|𝑠|+ |𝑡|
· 1√

𝑐𝑜ℎ
(4.5)

where teFound is the total number of words in s for which we found translation equiv-

alents in t, coh is the cohesion score computed as the average distance between the
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sorted positions of the translation equivalents found in t (the lower the better)5 and te

is calculated as:

𝑡𝑒(𝑠, 𝑡) =
∑︁
𝑤𝑠𝜖𝑡

max
𝑤𝑡𝜖𝑡

𝑑𝑖𝑐𝑆𝑐𝑜𝑟𝑒(𝑤𝑠, 𝑤𝑡) (4.6)

where dicScore is the translation probability from dictionary.

4.6.2 Translation Similarity Measure

The translation similarity measure is a weighted sum of feature functions that indicate

if s is translated by t :

𝑃 (𝑠, 𝑡) =
∑︁
𝑖

𝜃𝑖𝑓𝑖(𝑠, 𝑡) ; such that
∑︁
𝑖

𝜃𝑖 = 1

Features

1. Content words translation strength: Find the best 1:1 alignment using a

Giza++ lexicon, and find the ratio of addition of translation probabilities of the

translated words and length of sentence. This is specifically for content words

only.

2. Functional words translation strength: Finding the same score, but for

function words.

3. Alignment Obliqueness: It is a discounted correlation measure because lan-

guages naturally have different word orderings, hence, crossings of alignment links.

4. Strong Translation Sentinels: If sentences are parallel, there are content word

translations near the beginning and end of the sentences.

5. End with same punctuation: Parallel sentences end with the same type of

punctuation.
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Learning Optimal Weights

A standard logistic regression classifier was trained to obtain a set of optimal weights

on positive and negative examples.

Summary

In this chapter, we looked at methods based on classification, ranking, similarity, dis-

criminative modeling, etc. for finding parallel sentences from comparable documents.

Most of these techniques make use of word alignment based features or similarity scores

to distinguish parallel sentences from non-parallel. In the next chapter, we will discuss

methods of parallel phrases or parallel fragments extraction.
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Chapter 5

Extraction of Parallel Sub-Sentential

Fragments

When the degree of parallelism of the comparable corpus is quite low, looking for

absolutely parallel sentences may not yield good results. This is because, such parallel

sentence pairs may not be present in the corpus, at all. But, if we go down to a finer

granularity of phrases or segments of sentences, there is a higher possibility of finding

good translations even in very non-parallel corpora, than at the sentence level.

Identifying such sub-sentential parallel fragments is a difficult task since it involves

recognizing an overlap in sentence pairs that may express very different content. This

section presents the existing work on finding parallel segments in comparable corpora.

5.1 Log-Likelihood Ratio

The approach based on Log-Likelihood Ratio is described by Munteanu and Marcu

(2006). The input to this technique is a set of candidate sentence pairs that can be

obtained by filtering those sentence pairs that have a high word overlap from all possible

sentence pairs in the corpus. This is done using a lexicon obtained by running GIZA++

on an initial parallel corpus. This step does not need to be very precise, but needs a

higher recall.

The next step focuses on finding fragments of the source sentence that have a trans-

lation on the target side. In this step, the lexicon obtained by GIZA++ is not very
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useful because such a lexicon contains entries for even unrelated word pairs. These in-

correct correspondences can adversely affect the results that we obtain from this step.

So, precision is of utmost importance here. Hence, we also need a measure of two words

not being translations of each other. The Log-Likelihood Ratio (LLR) statistic is used

for obtaining such a cleaner lexicon that does not contain any incorrect correspondences.

5.1.1 LLR to Estimate Word Translation Probabilities:

LLR gives the measure of the likelihood that two samples are not independent. This

measure is used to find the independence of all pairs of co-ocurring words in the initial

parallel corpus. If source word f and target word e are independent, then p(e|f ) =

p(e|∼f ) = p(e). So, if the words are independent, i.e., these distributions are very

similar, the LLR score of this word pair is low. If the words are strongly associated,

then the LLR score is high.

But, a high LLR score implies either positive correspondence (p(e|f ) > p(e|∼f ))

or a negative correspondence (p(e|f ) < p(e|∼f )) between the words. So, the set of co-

occurring word pairs in the parallel corpus, is split into two sets: positively associated

and negatively associated word pairs. Note that, here, co-occurring words are those

that are linked together in the word-aligned parallel corpus. Thus, the LLR score is

enhanced by this notion of co-occurrence using the knowledge of word alignment in a

parallel corpus.

LLR(e,f) is computed for each of the linked word pairs and then, two conditional

probability distributions are computed:

∙ 𝑃+(e|f ) is probability that source word f gets translated to target word e

∙ 𝑃−(e|f ) is probability that source word f does not get translated to target word

e

Similarly, the probability distribution in the reverse direction is also computed.
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5.1.2 Detecting Parallel Fragments:

The target sentence is considered as a numeric signal. The translated words give positive

signals ( from 𝑃+ distribution) and untranslated words give negative signals (from 𝑃−)

distribution. So, only that part which is positive, is retained as the parallel fragment of

the sentence. For each linked target word, the value of the signal is the probability of

its alignment link 𝑃+(e|f ). All the remaining unaligned target words have signal value

𝑃−(e|f ). This forms the initial signal.

Then, a filtering signal is obtained by averaging the signal values of nearby points.

The number of points to be used for averaging is decided empirically. Then, the “pos-

itive signal fragment” of the sentence is retained. This approach tends to produce

very short fragments. So, fragments less than 3 words in length can be discarded. The

procedure can be repeated in the opposite direction and the results can be symmetrized.

5.2 Sentence Splitting for Phrase Alignment

Vogel (2005) describes an algorithm PESA for phrase alignment in parallel sentences by

posing it as a problem of sentence splitting, and has derived a maximum likelihood es-

timation expression for it. Hewavitharana and Vogel (2011) used the same technique to

extract parallel phrases from comparable corpora. This section describes this technique

in detail and then we describe our experiments and evaluation of this technique.

The standard method of finding phrase translations in a parallel corpus is to find

the word alignments in both directions (source to target and target to source) and then

combine them using various heuristics. This kind of phrase alignment is essentially a

post-processing step to word alignment. In this method of sentence splitting, we do not

search for all possible phrase alignments in a sentence pair. Instead, a simpler problem

is formulated.

Suppose f = 𝑓1, 𝑓2, ...𝑓𝑙 is a source phrase. We should find a sequence of words i.e.,
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a target phrase e = 𝑒1, 𝑒2, ...𝑒𝑘 in the target sentence such that the phrase pair e and f

are translations of each other.

5.2.1 Constrained IBM Model 1

The PESA algorithm identifies the boundaries of the target phrase for a given source

phrase. The words inside the source phrase are aligned to words inside the target

phrase, and the words outside the source phrase are aligned to words outside the target

phrase.

The position alignment probability for a sentence is 1/𝐼, where 𝐼 = length of target

sentence and 𝐽 is the length of the source sentence. This is changed to be 1/𝑘 inside

the source phrase and 1/(𝐼 − 𝑘) outside the source phrase, where 𝑘 = length of target

phrase.

The alignment probability is given by:

𝑝(𝑠 | 𝑡) = (

𝑗1−1∏︁
𝑗=1

∑︁
𝑖/∈(𝑖1...𝑖2)

1

𝐼 − 𝑘
𝑝(𝑠𝑗 | 𝑡𝑖))× (

𝑗2∏︁
𝑗=𝑗1

𝑖2∑︁
𝑖=𝑖1

1

𝑘
𝑝(𝑠𝑗 | 𝑡𝑖))

×(
𝐽∏︁

𝑗=𝑗2+1

∑︁
𝑖/∈(𝑖1...𝑖2)

1

𝐼 − 𝑘
𝑝(𝑠𝑗 | 𝑡𝑖)) (5.1)

For symmetrization, 𝑝(𝑡 | 𝑠) is similarly calculated in the reverse direction as:

𝑝(𝑡 | 𝑠) = (

𝑖1−1∏︁
𝑖=1

∑︁
𝑗 /∈(𝑗1...𝑗2)

1

𝐽 − 𝑙
𝑝(𝑡𝑖 | 𝑠𝑗))× (

𝑖2∏︁
𝑖=𝑖1

∑︁
𝑗=𝑗1)𝑗2

1

𝑙
𝑝(𝑡𝑖 | 𝑠𝑗))

×(
𝐼∏︁

𝑖=𝑖2+1

∑︁
𝑗 /∈(𝑗1...𝑗2)

1

𝐽 − 𝑙
𝑝(𝑡𝑖 | 𝑠𝑗)) (5.2)

where 𝑙 is the length of the source phrase.

The optimal target boundaries are found by interpolating the probabilities given

by equations 5.1 and 5.2. The MLE expression selects the boundary (𝑖1, 𝑖2) which
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maximizes the interpolated probability.

(𝑖1, 𝑖2) = argmax
𝑖1,𝑖2

(1− 𝜆) · 𝑙𝑜𝑔(𝑝(𝑠 | 𝑡)) + 𝜆 · 𝑙𝑜𝑔(𝑝(𝑡 | 𝑠)) (5.3)

The value of 𝜆 can be tuned from a set of held-out data. This algorithm uses a seed

lexicon for finding the translation probabilities in the computation.

5.3 Chunking Based Approach

Extracting parallel fragments of text using chunking, is one of the most recent advances

that have been made in this area by Gupta et al. (2013). In this approach, a document-

aligned comparable corpus is used, and all possible sentence pairs within each aligned

document pair are examined to look for parallel segments of sentences. The sentences

were broken into fragments and then, we check which of the fragments have a translation

on the target side.

But, instead of segmenting the source sentence into N-grams, chunking is used to

obtain linguistic phrases from the source sentences. According to linguistic theory, the

tokens within a chunk do not contribute towards long distance reordering, when trans-

lated. That means, the entire chunk’s position can be changed within the translated

sentence, but the words within a chunk remain within the chunk. But, ad-hoc N-gram

segments may not be linguistic phrases, and are always of constant length. Chunks are

are variable length and chunks can be merged to form larger chunks or even sentences.

5.3.1 Chunking Source Sentences and Merging Chunks

A CRF-based chunking algorithm is used to chunk the source side sentences. These

chunks are further merged into bigger chunks, because sometimes, even merged bigger

chunks can have a translation on the target side. In such a case, we can get a bigger

parallel chunk. So, merging is done in two ways:
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∙ Strict Merging: Merge two consecutive chunks only if they together form a

bigger chunk of length <= ’V’ words. ’V’ can be an empirically decided value.

∙ Window Merging: In this type of merging, not just two, but as many smaller

chunks are merged together, as possible, unless the number of tokens in the merged

chunk does not exceed ’V’. Then, an imaginary window is slided over to the next

chunk and the process is repeated.

5.3.2 Finding Parallel Chunks

To find parallel chunks, the source side chunks from the previous step are first

translated to the target language using the baseline SMT system. Then, each

of these translated chunks is compared with all the target side chunks of that

document pair. The overlap between two target side chunks (one translated from

source side chunk and the other is a chunk from the target side document) is

found out. Here, the notion of overlap is:

𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑇1, 𝑇2) = Number of tokens in 𝑇1 which are aligned in 𝑇2

The overlap of chunk is found both ways symmetrically, i.e., translated chunk to

target side chunk and vice versa. If at least 70% overlap is found both ways, then

the source side chunk corresponding to the translated chunk and the target side

chunk are considered as parallel. Comparison of tokens for finding the overlap

of two chunks is based on orthographic similarities like Levenshtein distance,

longest common subsequence ratio and length of the two strings. Threshold for

this matching is set empirically.
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5.3.3 Refining the Extracted Parallel Chunks

From the extracted chunks, it is often observed that ordering of tokens in the

source side is different to that of target side. Also, there could be some unaligned

tokens on either side. So, the parallel chunk pairs are refined by reordering source

side chunks according to its corresponding target side chunk and the unaligned

tokens from either side are discarded.

Summary

This chapter introduced techniques based on Log-Likelihood Ratio, and chunking for

parallel phrase extraction from comparable corpora. The next chapter discusses tech-

niques for bilingual lexicon extraction from comparable corpora.

37



Chapter 6

Bilingual Lexicon Extraction

Extracting bilingual lexicons is one of the oldest ways of exploiting comparable corpora.

There have been many different approaches for extracting lexicons, named entities,

terminologies, etc. from comparable and non-parallel corpora. Some of them have been

discussed in this chapter.

6.1 Bootstrapping

The technique of extracting a bilingual lexicon from comparable to very non parallel

corpora is described by Fung and Cheung (2004a). They first extract parallel sentences

from similar documents using the cosine similarity measure. Then, the IBM Model 4

EM learning is applied on these extracted set of parallel sentences to find unknown

word translations.

GIZA++ is used for this purpose. But this method is used on the results of parallel

sentence extraction. So, the set of aligned sentence pairs may also contain many pairs

that might not really be parallel. The alignment scores that are computed by GIZA++

on extracted parallel sentences do not necessarily correspond to the actual similarity

of the sentence pair, because, EM estimation is weak when applied to a small set of

bilingual sentences. One solution to this problem is to initialize the EM estimation

using a corpus of truly parallel data.

Thus, this step is used to enhance the existing lexicon, which in turn, is used to

extract more parallel sentences. Bootstrapping is done in this way until no new sentence
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pairs are obtained.

6.2 EM based Hybrid Model

Bilingual terminology extraction using an unsupervised hybrid model incorporating

many features in an EM-based framework is described by Lee et al. (2010). The moti-

vation for this work is that most of the dictionaries and lexicons contain many words,

but very few terminologies. The given set of comparable corpora is noisy and has a

variety of domains and topics, so first, document alignment is performed. Documents

are associated based on common words and numbers and identical strings in the title,

content and also, their distribution in time.

After obtaining aligned pairs of documents, they are tokenized to find out the promi-

nent noun terms. Thus, we have a set of aligned document pairs and a set of noun terms

for each document in the corpus. In comparable corpora, there is a lot of noise and

also, significant differences in the structure of sentences. So, features are obtained from

corpus-driven as well as non-corpus-driven information, and these features are used to

initialize the score of each term pair candidate.

6.2.1 The EM Algorithm

The state-of-the-art IBM Model 1 EM algorithm is used to compute alignment between

terms of a document pair. In the reformulation of the algorithm, comparable document

pairs take the place of parallel sentences, and are initialized with the document align-

ment score. So, this non-uniform initialization compensates for the corpus not being

parallel. Also, the feature set explained below, is also used for initialization of term

alignment.

EM of IBM Model 1 works well for parallel sentences, but not for comparable doc-

uments, because it converges to a global maximum and comparable data is too noisy.
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So, to avoid overfitting, only 10 iterations were run in both directions (f to e and e to

f ). After each iteration, weak alignments are filtered out using a high threshold of 0.8.

6.2.2 Similarity Features

Following feature function scores are used for candidate alignment initialization:

1. Document Alignment Score (D): This score indicates the confidence level of doc-

ument alignment, normalized to the range of [0,1].

2. Lexical Similarity (L): If a candidate pair of terms occurs with each other more

than 50% of the times, than any other word, then this pair is given a score of

𝐿𝑂, and 1 otherwise. 𝐿𝑂 > 1 is a configurable weight that can be given to lexical

similarity.

3. Named Entity Similarity (N): We can have a predefined set of categories to which

a named entity can belong to, like, person, place, organization, etc. Then, N is

the likelihood of that the two terms in a candidate pair belong to the same named

entity category. If they match, then the score is 𝑁𝑂 >1 and 1 otherwise.

4. Context Similarity (C): Terms with similar context are likely to have similar

meanings. So, we find the context similarity of the term pair using ‘k’ nearest

content words within the sentence boundary and finding the cosine similarity

between their context frequency vectors.

5. Temporal Similarity (T): This is a useful feature if the comparable corpus is from

newspaper domain and alike. Terms occurring in such corpora are usually syn-

chronous in time, if they truly correspond to each other. ‘T’ is calculated by first

finding its frequency spectrum in discrete time. Then, the power spectrum (the

magnitude square of the spectrum) of two terms is used to find temporal similar-
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ity between them, by means of cosine similarity. Power spectrum is sensitive to

relative spacing in time but not to shifting in time.

6. Related Term Similarity (R): Related terms correlate statistically in the same

documents. They can be found using t-test or mutual information in a monolin-

gual corpus. This is a measure of related term likelihood. Truly aligned terms

have similar related terms.

The EM algorithm, modified to use all the above mentioned feature functions, converges

to give an aligned set of terms from the comparable corpus. It is shown to work

well on comparable corpora, but this framework works better on a parallel corpus.

The performance of this technique is dependent on the degree of parallelism of the

comparable corpus to a large extent.

6.3 Pivot Language and Word Alignment

There are many languages like Hindi, French, Chinese, etc. which are very less known

as a language pair, but have considerable usage with a common language like English.

Kwon et al. (2013) describe a technique for extracting a bilingual lexicon for such a rare

language pair by using a pivot language combined with information retrieval techniques

and word alignment.

6.3.1 Approach

Instead of comparable corpora, two parallel corpora are used. Let 𝐿1 and 𝐿2 be the

two languages for which we desire a bilingual lexicon and 𝐿𝑃 be the pivot language.

So, we use a 𝐿1 − 𝐿𝑃 parallel corpus and a 𝐿𝑃 − 𝐿2 parallel corpus. For example,

let 𝐿1 be Korean, 𝐿2 be Spanish, and 𝐿𝑃 be English. So, we need a Korean-English

parallel corpus and an English-Spanish parallel corpus. Following steps are performed
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for building the Korean-Spanish lexicon:

1. Align words in the Korean-English corpus and the English-Spanish corpus. All

words in Korean and Spanish now have a vector of corresponding English words

with their associated alignment scores.

2. For each Korean word, similarity of its English word vector with the English

word vectors of each Spanish words is computed by means of cosine similarity,

dice coefficient or Jacquard’s Similarity.

3. A list of top ‘k’ word pairs is obtained as the lexicon for Korean-Spanish.

This technique does not use any resources of the 𝐿1 and 𝐿2 language pair. Instead, it

needs a parallel corpus of these languages with a pivot language like English.

6.4 Canonical Correlation Analysis and EM

An EM based approach that employs Canonical Correlation Analysis is described by

Haghighi et al. (2008) for bilingual lexicon extraction from monolingual corpora.

6.4.1 Generative model for Bilingual Lexicon Induction

The input to this approach is are source and target monolingual corpora S and T. Let s

= (𝑠1, ..., 𝑠𝑛𝑠) words in S and t = (𝑡1, ..., 𝑡𝑛𝑡) words in T. The goal is to find a matching

m between s and t. The matching m is represented as a set of integer pairs such that

(i, j) 𝜖 m if 𝑠𝑖 is matched with 𝑡𝑗. For each matched pair of words (i, j) 𝜖 m, observed

feature vectors of source and target words: 𝑓𝑆(𝑠𝑖) and 𝑓𝑇 (𝑡𝑗), are generated from the

corresponding monolingual corpus. These features summarize the word’s monolingual

characteristics.

If (i, j) 𝜖 m, then 𝑠𝑖 and 𝑡𝑗 are considered to be translations of each other. So,

we can expect that their feature vectors will be similar and somehow connected by
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the generative process. Let them be related through the vector 𝑧𝑖,𝑗 that represents the

shared, language independent concept.

To generate the feature vectors, first, a random concept 𝑧𝑖,𝑗 ∼ 𝒩 (0, 𝐼𝑑), where 𝐼𝑑

is the 𝑑 × 𝑑 identity matrix. Then, the source feature vector 𝑓𝑆(𝑠𝑖) is drawn from a

multivariate Gaussian with mean𝑊𝑆𝑍𝑖,𝑗 and covariance Ψ𝑆. 𝑊𝑆 is a 𝑑𝑆×𝑑matrix which

transforms the language independent concept 𝑍𝑖,𝑗 into a language dependent vector

𝑓𝑆(𝑠𝑖) in the source space. The target 𝑓𝑇 (𝑡𝑗) is generated analogously and conditionally

independent of the source given 𝑧𝑖, 𝑗, using 𝑊𝑇 and Ψ𝑇 .

6.4.2 EM Framework of Inference

The objective is to maximize the log-likelihood of the observed data (s,t):

𝑙(𝜃) = log 𝑝(s, t; 𝜃) = log
∑︁
𝑚

𝑝(m, s, t; 𝜃)

with respect to the model parameters 𝜃 = (𝑊𝑆,𝑊𝑇 ,Ψ𝑆,Ψ𝑇 ).

In the EM algorithm, we find a maximum weighted partial bipartite matching m in

the E-Step. In the M-Step, we find the parameters 𝜃 by performing canonical correlation

analysis(CCA).

∙ E-Step:

m = argmax
𝑚′

log 𝑝(𝑚′, 𝑠, 𝑡; 𝜃)

This is cast as a maximum weighted bipartite matching problem and can be solved

using the Hungarian Algorithm.

∙ M-Step: Given a matching m, the M-Step optimized log p(m,s, t; 𝜃) with

respect to 𝜃.

max
𝜃

∑︁
(𝑖,𝑗)𝜖m

log 𝑝(𝑠𝑖, 𝑡𝑗; 𝜃)

This objective is similar to maximizing the likelihood of a probabilistic CCAmodel

and it is proved that maximum likelihood estimate can be computed using CCA.
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So, CCA finds d-dimensional subspaces of source and target so that components

of projection are maximally correlated.

6.4.3 Feature Set:

Following features are used to generate the feature vector 𝑓𝑆(.) and 𝑓𝑇 (.), which are

derived from the monolingual corpora.

1. Orthographic features: This is more suitable for closely related languages, as

they share many orthographic features. Edit Distance is used to get a score for

this feature.

2. Context Features: If words s and t are translations of each other, then there

also should be a strong correlation between the source words in the context of s

and target words in the context of t.

Thus, a bilingual lexicon is generated by first having a language independent concept

represented in the latent space and then generating the feature vectors that connect the

words in different languages to this concept. These words are nothing but translations

of each other.

Summary

This chapter explored various approaches for extracting bilingual lexicons from compa-

rable corpora. Bilingual Lexicons can be learned using approaches like bootstrapping,

a feature-rich hybrid EM framework, making use of a Pivot language, canonical corre-

lation analysis, etc. The next chapter explains bootstrapping to make the most out of

a comparable corpus.
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Chapter 7

Bootstrapping

The number of parallel sentences that can be extracted from comparable or non-parallel

corpora depends on the bilingual lexicon (dictionary) or the phrase translation table

generated by training the classifiers on a seed parallel corpus. If this seed corpus has a

poor dictionary coverage, then the parallel sentence extraction process can be adversely

affected. This is because, many words from the candidate sentence pairs will be out-

of-vocabulary for our translation table, and hence, the sentence pair may be classified

as non-parallel even if it is very parallel.

A simple solution to this problem is bootstrapping (Fung and Cheung, 2004a). In

bootstrapping, we perform parallel sentence extraction in iterations. In each iteration,

we learn new word translations from the intermediate output of the previous parallel

sentence extraction. This refines our bilingual lexicon with more in-domain data, and

hence the overall extraction process.

Steps for bootstrapping:

∙ Document Alignment

Find all the similar document pairs from the corpus using any of the techniques

discussed previously. These mostly employ word overlap, TFIDF and cosine sim-

ilarity.

∙ Parallel Sentence Extraction

In the aligned documents, find all parallel sentences using any of the techniques
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Figure 7.1: Parallel Sentence Extraction System with Bootstrapping

discussed in the previous sections. They rely mostly on word overlap, ME classi-

fiers or Ranking models and sentence similarity.

∙ Update Lexicon

The extracted sentence pairs can be simply added to the training data and an

updated bilingual lexicon can be obtained.

∙ Iterate

After obtaining the updated lexicon, we reiterate from the document alignment

step.

∙ Terminate

The iteration process can be terminated when no new parallel sentences are ex-
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tracted.

7.1 Issues with Bootstrapping

A bootstrapping system is able to learn new lexical items that occur only in the ex-

tracted parallel sentences. But, the number of sentences extracted may be quite low as

compared to the entire collection of documents from which we are extracting. This col-

lection of documents may also contain many aligned document pairs that do not contain

any parallel sentences, yet contain many words and phrases that are good translations

of each other.

7.2 Alternative Approach: Lexicon Induction

To take advantage of such word and phrase occurrences, we can use an alternative

approach (Smith et al., 2010) of lexicon refinement. A Lexicon model based on

P(𝑤𝑡|𝑤𝑠,T,S)Ψ

where, 𝑤𝑡 is word in target language

𝑤𝑠 is word in source language

T and S are target and source languages.

This model is trained similar to the sentence extraction model, but the only differ-

ence is that, we will align word pairs instead of sentence pairs with this model. It can be

trained using a corpus that has annotated alignments for the word that are translations

of each other. Then, the following word-level induced lexicon features (Smith et al.,

2010) can be used in the lexicon model.
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7.2.1 Translation probability

An HMM word alignment model can be trained on some seed parallel data and the

translation probabilities can be taken as features. The translation probabilities are

p(𝑤𝑡|𝑤𝑠), the opposite direction i.e., p(𝑤𝑠|𝑤𝑡) and also log of these probabilities.

7.2.2 Orthographic Similarity

Orthographic similarity can be calculated using a function of the edit distance (Leven-

shtein distance) between the source and target words. Edit distance is the minimum

number of single-character edits required to change one word into the other. A small

edit distance generally implies that the words are translations of each other.

e.g. consider the set of English and corresponding French and Spanish words shown

in figure 7.2. Each of them are translations, and have a small edit distance (2 to 3

letters).

Figure 7.2: Levenshtein distance

7.2.3 Context Similarity

This feature measures the context similarity of two words 𝑤𝑠 and 𝑤𝑡 in source and

target languages, respectively. All the words occurring next to 𝑤𝑠 in article S and

all the words occurring next to 𝑤𝑡 in article T, within a context window, are found
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out. Then, scoring functions are computed to measure the translation correspondence

between these contexts. A similar context can be indicative of the words 𝑤𝑠 and 𝑤𝑡

being translations of each other.

7.2.4 Distributional Similarity

This feature corresponds closely to the context similarity feature described above. For

each source word 𝑤𝑠, we collect a distribution of context words 𝑣𝑠 in offset positions,

o 𝜖 {-2,-1,+1,+2}. -2 and -1 are two and one positions to the left of 𝑤𝑠 respectively,

and similarly, +1 and +2 are one and two positions to the right. This distribution is

based on the count of the number of times a context word 𝑣𝑠 occurs in a position o in

the context of 𝑤𝑠. The probability distribution is given as:

P(o,𝑣𝑠 | 𝑤𝑠) 𝛼 weight(o) · count(𝑤𝑠,o,𝑣𝑠)

weight(o) = 2 · · · if o = ±1

= 1 · · · otherwise

A similar distribution of context words 𝑣𝑡 is collected for all target words 𝑤𝑡. Then,

we use an IBM Model 1 trained on a seed parallel corpus and get a translation table

P(𝑣𝑡 | 𝑣𝑠) i.e., the translation probability of context words. Using this, we estimate a

cross-lingual context distribution as,

P(o,𝑣𝑡 | 𝑤𝑠) =
∑︀

𝑣𝑠
P(𝑣𝑡 | 𝑣𝑠).P(o,𝑣𝑠 | 𝑤𝑠).

Then, the similarity of words 𝑤𝑠 and 𝑤𝑡 is found by using

Similarity of 𝑤𝑠 and 𝑤𝑡 = 1 Jensen-Shannon divergence of the distributions over

positions and target words.

Thus, either bootstrapping or a word level lexicon model can be used for acquiring

new lexical items at each intermediate step. This helps in more precise re-alignment of
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documents and extraction of parallel sentences.

Summary

Bootstrapping can be employed to increase the number of sentences that can be ex-

tracted. But, bootstrapping has some issues, which can be solved using an induced

lexicon.
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Chapter 8

Conclusion

Lack of parallel corpora is a major bottleneck in development of SMT systems for

many language pairs. There are large amounts of comparable and non-parallel corpora

available for many language pairs. These can be exploited to extract parallel data from

them.

From any non-parallel set of documents, document alignment gives a definite region

in the entire search space to look for parallel sentence pairs. The sentence extraction

step must be robust in order to filter any noise and give accurate, parallel sentence

pairs. Good use of feature functions for ME classifiers and ranking models can be used

to serve the purpose.

The amount of data extracted is often adversely affected by a poor dictionary cov-

erage. This can easily be resolved by using a few boostrapping iterations or other

approaches as discussed.

Data extracted by such techniques tends to be somewhat noisy but is still shown

to be very useful in a standard SMT system. Thus, this is a great step in creation of

parallel corpus for language pairs that have scarcity of parallel corpora resources.
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