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In this report, we present the literature survey done for our work with SA and other NLP applications.

The road map of this report is as follows. In Section-1, we introduce clustering process and describe a

few existing word clustering techniques. Section-2 talks about the smoothing process followed by why

clustering is better for our work in Section-3. Finally in Section-4, we talk about the related work done

for different NLP applications in which word clusters are used as helpful features.

1 Clustering: The Savior

The sparsity problem is a very familiar problem in the regimes of statistical modeling. Clustering is one of

the techniques, which can be used to solve the sparsity problem. After introducing the clustering process,

in this section, we describe the Brown Clustering algorithm (Brown et al., 1992), the Predictive

Exchange algorithm (Uszkoreit and Brants, 2008) and the Cross-lingual Clustering algorithm

(Täckström et al., 2012). We use these clustering techniques in our approaches for handling sparsity

problem in different NLP applications. In the next subsection, we introduce the word clustering process.

1.1 What is Clustering?

Cluster analysis or clustering is a task of assigning a set of objects into groups (called clusters) so

that the objects in the same cluster are more similar (in some sense or another) to each other than to

those in other clusters1. It can be considered as the most important unsupervised learning problem. It

deals with finding a structure in a collection of unlabelled data2. The clustering techniques are very

useful in reducing sparsity because of their inherent nature of achieving abstraction. We can represent

the clustering process as shown in Figure-1.

In Figure-1, we can easily identify that the data can be divided into three clusters. For deciding

whether to keep two objects into one cluster or not, we can use various types of similarity criterion.

1http://en.wikipedia.org/wiki/Cluster_analysis (accessed 11 June, 2013)
2http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/ (accessed 11 June, 2013)
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Figure 1: Clustering

This criterion can be distance, i.e., two or more objects belong to the same cluster if they are “close”

according to a given distance (in above case it is geometrical distance). This is known as distance-based

clustering.

Another kind of clustering is conceptual clustering in which two or more objects belong to the

same cluster if they define a concept common to all other objects in that cluster. In other words, objects

are grouped according to their fit to descriptive concepts, not according to simple similarity measures.

A categorization of major clustering algorithms and short description about them are as follows (Han,

2005):

• Partition methods: Given a dataset of n objects or data tuples, a partition method constricts k

partitions of the data, where each partition represents a cluster and k ≤ n.

• Hierarchical methods: This method creates a hierarchical decomposition of the given set of data

objects. Based on how the hierarchical decomposition is formed, it can have two different types:

agglomerative approach (bottom-up) and divisive (top-down).

• Density-based methods: Distance based clustering methods can only find the spherical-shaped

clusters and face difficulties in finding clusters of arbitrary shapes. In this method, the general idea

is to continue growing the given cluster so long as the density (number of objects or data points)

in the neighborhood exceeds some threshold. This approach can find the clusters with arbitrary

shapes as well.

• Grid-based methods: This method quantizes the object space into finite number of cells which

form a grid structure. It then performs all of clustering operations on the grid structure. The main
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advantage of this approach is its fast processing time which is typically independent of the number

of data objects.

• Model-based methods: This method hypothesizes a model for each of the clusters, and finds the

best fit of the data to that model.

For clustering of words in the text, the techniques are mainly classified into two types:

• Word clustering based on paradigmatic analysis: This is same as conceptual clustering.

WordNet is a byproduct of such clustering based on paradigmatic analysis. In WordNet, paradigms

are manually generated based on the principles of lexical and semantic relationship among words

(Fellbaum, 1998).

• Word clustering based on syntagmatic analysis: This type of clustering techniques con-

centrate on the surface properties of the text. Brown clustering algorithm, predictive exchange

algorithm, and corss-lingual clustering fall into this category.

In the next subsection, we present a few applications of the clustering in general apart from solving

data sparsity problem.

1.2 Applications of Clustering

The goal of clustering is to determine the intrinsic grouping in a set of unlabelled data. For deciding

the quality of the clustering, there is no absolute best criterion as such which would be independent of

the final aim of the clustering. Consequently, it is the user which must supply this criterion, in such a

way that the result of the clustering will suit their needs. For instance, we could be interested in finding

representatives for homogeneous groups (data reduction), in finding natural clusters and describe their

unknown properties, in finding useful and suitable groupings, in finding unusual data objects (outlier

detection) etc. Some of the possible applications of clustering are as following3:

• Marketing: finding groups of customers with similar behavior given a large database of customer

data containing their properties and past buying records

• Biology: classification of plants and animals given their features

• Libraries: book ordering

• Insurance: identifying groups of motor insurance policy holders with a high average claim cost;

identifying frauds

• City-planning: identifying groups of houses according to their house type, value and geographical

location

• Earthquake studies: clustering observed earthquake epicenters to identify dangerous zones

3http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/ (accessed 11 June, 2013)
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• WWW: document classification; clustering web-log data to discover groups of similar access

patterns

In the next subsection, we see how clustering is helpful in addressing data sparsity problem in different

NLP applications.

1.3 How Clustering Reduces Sparsity Problems

As explained earlier, data sparsity problem occurs in the setting of supervised statistical learning

method, when some data from the test side is not present in the training dataset. The size of the model

becomes large when the number of features used in modeling process is very large. In addition, large

number of features make the feature vectors sparse and pull down the accuracy of the statistical model.

We describe the effects of clustering on above points one by one.

Effects on data sparsity problem

In case of a data in lexeme space, it is very likely that some of the test data may not be present in the

training data. Since the clustering process allows us to transfer the data from lexeme space to cluster

space, we can reduce this problem of data sparsity. While using the data in cluster space, it is very

unlikely to come across such data from the test side which is not present in the training data. The reason

for that is: number of unique clusters are lesser as compared to the unique number of words. Thus, by

transferring data from lexeme space to cluster space with the help of clustering process, we decrease the

data sparsity problem up to large extent.

Effects on the size of the model

When we use words as features in the statistical modeling process, most of the times we end up having

a large number of features. Typically, for statistical modeling techniques which use surface words as

features, the size of feature vectors become same as number of unique words in the data. This makes

the statical model very large. When we convert the data in lexeme space to cluster space, we reduce the

vocabulary of the data (as the number of clusters are lesser than the number of unique words). This

reduces the number of features in the statistical modeling and also reduces the size of the model by

dimensionality reduction. This also leads to reduction in noise (Cunningham, 2008). Apart from this, it

has also been shown that the simple hypothesis or model performs better than the complex models with

large feature set.

The next subsection explains different word clustering methods based on syntagmatic analysis. We

use these methods in our approach to reduce sparsity problem in different NLP applications.
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1.4 Brown Clustering Algorithm

Brown clustering algorithm (Brown et al., 1992) is a bottom-up agglomerative clustering algorithm

which generates hard clustering, i.e., each word belongs to one cluster. The primary motivation of this co-

occurrence based algorithm is to learn the class based language model. However, it can also be applied to

any statistical problem where there is a need of reducing sparsity. Since this technique is co-occurrence

based, it is able to extract the classes that have the flavor of either syntactically based groupings or

semantically based grouping, depending on the nature of the underlying statistics.

1.4.1 Methodology

It is a well known fact that some words are similar to other word in their meaning and syntactic

function. For example, it would not be surprising to learn that the probability distribution of words in

the neighborhood of the word Thursday is very much like that for words in the neighborhood of the word

Friday. Based on this assumption, the algorithm tries to cluster surface words based on co-occurrence

probabilities.

This hierarchical word clustering algorithm takes a large corpus of sentences as an input and gives a

partition of the words into clusters as an output. The mathematical formulation of the same is as follows

4:

Let us assume that,

• V is the vocabulary of the corpus

• w : w1, w2, ..., wm is the word sequence with w ∈ V ∪ S, where S is the special starting symbol

• n(w, v) is the number of times w precedes v in the corpus

• n(w) is the number of times w has occurred in the corpus

If, C : V → 1, 2, ...k is a partition function of the vocabulary into k classes, the likelihood model is

defined as:

P (w; C) =

m∏
i=1

p(wi|C(wi)) · p(C(wi)|C(wi−1)) (1)

In above equation, the bi-gram probabilities are used because it has been observed that by using bi-gram

probabilities, the maximum likelihood assignment of words to classes is equivalent to the assignment for

which the average mutual information of adjacent classes is greatest. Above equation can be written

down in a more convenient way as:

logP (w; C) =

m∑
i=1

log[p(wi|C(wi)) · p(C(wi)|C(wi−1))] (2)

To define the quality of a clustering, Liang (2005) view the clustering process in the context of a

class-based bigram language model as shown in Figure-2. Given a clustering C that maps each word to

4http://www.cs.columbia.edu/~mcollins/courses/e6998-3/lectures/lec11.pdf (accessed 10 October, 2012)
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a cluster, the class-based language model assigns a probability to the input text w1, ..., wm, where the

maximum-likelihood estimate of the model parameters (estimated with empirical counts) are used. The

quality of the clustering C is defined as the logarithm of this probability (Equation-2) normalized by the

length of the text:

Quality(C) =
1

m

m∑
i=1

log p(wi|C(wi)) · p(C(wi)|C(wi−1))

=
∑
w,w′

n(w,w′)

m
log p(C(w′)|C(w)) · p(w′|C(w′))

=
∑
w,w′

n(w,w′)

m
log

n(C(w), C(w′))
n(C(w))

· n(w′)

n(C(w′))

=
∑
w,w′

n(w,w′)

m
log

n(C(w), C(w′)) ·m
n(C(w)) · n(C(w′))

+
∑
w,w′

n(w,w′)

m
log

n(w′)

m

=
∑
c,c′

n(c, c′)

m
log

n(c, c′) ·m
n(c) · n(c′)

+
∑
w′

n(w′)

m
log

n(w′)

m

=
∑
c,c′

p(c, c′) log
p(c, c′)

p(c) · p(c′)
+

∑
w

p(w) · log p(w)

= I(C)−H (3)

c1 c2 c3 ci cn

w1 w2 w3 wi wn

.....

P(ci |ci-1)

P(wi |ci)

Figure 2: The class-based bigram language model: quality of a clustering

Where, p(c, c′) = n(c,c′)
m , p(w) = n(w)

m and p(c) = n(c)
m . The first term I(C) is the mutual information

between adjacent clusters and the second term H is the entropy of the word distribution. Note that

the quality of C can be computed as a sum of mutual information weights between clusters minus the

constant H, which does not depend on C. This decomposition allows to make optimizations. There were

improvements in the brown clustering algorithm based on optimization techniques. The different versions

of this algorithm are described as following.
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First algorithm

In this algorithm, the aim is to find k clusters. The algorithm is defined as follows:

Step-1: Start with |V | clusters: each word gets its own cluster

Step-2: Run |V | − k merge steps:

• At each merge step, pick two clusters ci and ck, and merge them into a

single cluster such that, Quality(C) for the clustering C after the merge step

is maximized at each stage

This naive algorithm has complexity of O(|V |5). Even after the improvements by Brown et al. (1992), it

still remains O(|V |3).

Second algorithm

Step-1: Take the top k most frequent words and put them into its own cluster: c1, c2, ..., ck

Step-2: For i = (k + 1)...|V |:

• Create a new cluster, ck+1, for ith most frequent word, which will create k + 1

clusters

• Choose two clusters from c1...ck+1 to be merged such that new clustering gives

maximum value for Quality(C), which will again create k clusters

Running time of this algorithm is: O(|V | · k2 + n), where n is the corpus length and k is the number

of clusters.

Sample clusters after the clustering process are given in Figure-3. In the next subsection, we describe

the predictive exchange algorithm which is similar to the brown clustering algorithm.

1.5 Predictive Exchange Algorithm

Uszkoreit and Brants (2008) propose the predictive class-based bi-gram model as:

P (w; C) =

m∏
i=1

p(wi|C(wi)) · p(C(wi)|wi−1) (4)

This model is again a co-occurrence based model like brown cluster algorithm. Compare this to the model

of brown clustering algorithm:

P (w; C) =

m∏
i=1

p(wi|C(wi)) · p(C(wi)|C(wi−1))
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Figure 3: Sample Clusters (Brown et al., 1992)

The use of class-to-class transitions can lead to more compact models, which also helps in addressing

data sparsity. But Uszkoreit and Brants (2008) propose that reliable statics can directly be obtained on

the word-to-class transitions while clustering the large data sets.

In this algorithm, they modify the exchange algorithm (Kneser and Ney, 1993), which is based on

the model proposed by Brown et al. (1992). The mathematical formulation of the predictive exchange

algorithm is as follows:

P (w; C) =

m∏
i=1

p(wi|C(wi)) · p(C(wi)|wi−1)

=

m∏
i=1

N(wi)

N(C(wi))
· N(wi−1, C(wi))

N(wi−1)
(5)

Where, N(w) denotes the number of the word w in the training corpus and N(v, c) the number of

occurrences of the word v followed by some word in class c. Then, the following optimization criterion

can be derived, with LL(C) being the log likelihood function of the predictive class bigram model given
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Algorithm 1 Predictive Exchange Algorithm

Input: The fixed number of cluster Nc

Output: Compute initial clustering

1: while clustering changed in last iteration do

2: for w ∈ V do

3: for c ∈ C do

4: move word w tentatively to cluster c

5: compute updated optimization criterion

6: end for

7: move word w to cluster maximizing optimization criterion

8: end for

9: end while

a clusterng C:

LL(C) =
∑
w∈V

N(w) · log p(w|C(w)) +
∑

v∈V,c∈C
N(v, c) · log p(c|v)

=
∑
w∈V

N(w) · log
N(w)

N(C(w))
+

∑
v∈V,c∈C

N(v, c) · log
N(v, c)

N(v)

=
∑
w∈V

N(w) · logN(w)−
∑
w∈V

N(w) · logN(C(w))

+
∑

v∈V,c∈C
N(v, c) · logN(v, c)−

∑
v∈V,c∈C

N(v, c) · logN(v) (6)

The last summation of Equation-6 effectively sums over all occurrences of all words and thus cancels

out with the first summation of Equation-6 which leads to:

LL(C) =
∑

v∈V,c∈C
N(v, c) · logN(v, c)−

∑
w∈V

N(w) · logN(C(w)) (7)

In the first summation of Equation-7, for a given word v only the set of classes which contain at least

one word w for which N(v, w) > 0 must be considered, denoted by suc(v). The second summation is

equivalent to
∑
c∈C N(c) · logN(c). This will simplify the criterion:

LL(C) =
∑

v∈V,c∈suc(v)

N(v, c) · logN(v, c)−
∑
c∈C

N(c) · logN(c) (8)

Based on above mathematical formulation, the predictive exchange algorithm is as shown in Algorithm-

1 (Uszkoreit and Brants, 2008). For efficiency reasons, an exchange of a word between two clusters is

separated into a remove and a move procedure. In each iteration the remove procedure only has to

be called once for each word, while for a given word move is called once for every cluster to compute

the consequences of the tentative exchanges. The move method is given in Algorithm-2 (Uszkoreit and

Brants, 2008). The remove method is similar.

In the next subsection, we talk about one more clustering algorithm, the cross-lingual clustering

proposed by Täckström et al. (2012).
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Algorithm 2 Procedure move

Input: A word w, and a destination c

Output: The change in the optimization criterion when moving w to c

1: delta← N(c) · logN(c)

2: N ′(c)← N(c)−N(w)

3: delta← delta−N ′(c) · logN ′(c)

4: if not a tentative move then

5: N(c)← N ′(c)

6: end if

7: for v ∈ suc(w) do

8: delta← delta−N(v, c) · logN(v, c)

9: N ′(v, c)← N(v, c)−N(v, w)

10: delta← delta+N ′(v, c) · logN ′(v, c)

11: if not a tentative move then

12: N(v, c)← N ′(v, c)

13: end if

14: end for

1.6 Cross-lingual Clustering Algorithm

In any cross-lingual application, the essential requirement is to bridge the language gap by transferring

linguistic structure from one language to other. To achieve this, one of the obvious ways is to use the

surface level words and transfer them to other language using an Machine Translation (MT) system.

Use of an MT system for such cross-lingual applications is not motivated because it requires that the

respective language pair has an efficient MT system.

Based on this idea, Täckström et al. (2012) proposed a cross-lingual technique which uses word

clusters to bridge the language gap in the cross-lingual applications. The methodology of the algorithm

is explained in the next subsection.

1.6.1 Methodology

Naive method of generating cross-lingual clustering has two stages. In the first stage, it clusters the

source language (S) using modified exchange algorithm (Uszkoreit and Brants, 2008) and then using

word alignments it projects these clusters to a target language (T). Given two aligned word sequences

wS = 〈wSi 〉
mS
i=1 and wT = 〈wTi 〉

mT
j=1, let αT |S be a set of scored alignments from source language to the

target language, where (wTj , w
S
aj , sj,aj ) ∈ αT |S is an alignment from the aj

th source word to jth target

word, with score sj,aj ≥ δ. The shorthand j ∈ αT |S is used to denote those target words wTj that are

aligned to some source word wSaj . Given the source side clustering CS , they align the target word t ∈ CT
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to the cluster with which it is most often aligned:

LC(t) = argmax
k

∑
j∈αT |S

s.t.CT (wT
j )=t

sj,aj

[
CS(wSaj ) = k

]
(9)

Where, [·] is the indicator function.

As per Täckström et al. (2012), there are two potential drawbacks with this naive approach:

• Since the approach uses word alignments, it only provides a clustering of the target words which

occur in the word aligned data. The word aligned data is typically smaller than the monolingual

data sets.

• The projected clustering on the target side may not necessarily correspond to an acceptable

clustering in terms of monolingual likelihood.

To resolve these issues, a complex model is proposed, which tries to find the clustering which is good

according to both source and target language. The intuition of this approach is that the clusterings CS

and CT are forced to jointly explain the source and target data, treating the word alignments as a form

of soft constraints.

They use the model of predictive exchange algorithm to cluster the large monolingual data sets.

These likelihood functions are denoted as LS(wS ; CS) and LT (wT ; CT ) for source and target language

respectively (as defined in Equation-4). Here, word sequences denoted by wS and wT denote large

monolingual non-aligned data sets. Afterwards, these monolingual likelihood functions are coupled with

additional factors based on word alignments:

LT |S(wT ;αT |S ; CT ; CS) =
∏

j∈αT |S

p(wTj |CT (wTj )) · p(CT (wTj )|CS(wSaj ))

and the symmetric LS|T (wT ;αS|T ; CS ; CT ). By combining all four factors, the joint monolingual and

cross-lingual objective function can be defined as:

LS,T (wS , wT ;αT |S , αS|T ; CS ; CT ) = LS(...) · LT (...) · LT |S(...) · LS|T (...) (10)

They also proposed an algorithm to approximately optimize Equation-10 with the alternating proce-

dure as given in Algorithm-3. In this algorithm, they iteratively maximize LS and LT , keeping the other

factors fixed. This technique is referred as X-Lingual clustering.

Thus, in this section, we introduced clustering, its applications and how it helps to solve the data

sparsity problem. We also described different clustering algorithms which we use to tackle data sparsity

problem in various NLP applications. There is one more technique which goes hand in hand with data

sparsity problem, i.e., smoothing. In the next section, we introduce smoothing and a few smoothing

techniques.
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Algorithm 3 Cross-lingual Clustering (XC)

Input: Source and target language corpora, word aligned corpus

Output: Cross-lingual clusters

1: ## CS, CT randomly initialized

2: for i← 1 to N do

3: Find CS∗ ≈ argmaxCS L
S(wS ; CS)

4: Project CS∗ to CT using Equation-9 by keeping clusters of non-projected words in CT fixed

5: Find CT∗ ≈ argmaxCT L
T (wT ; CT )

6: Project CT∗ to CS using Equation-9 by keeping clusters of non-projected words in CS fixed

7: end for

2 Smoothing: An Alternative

In this section, we explain the smoothing techniques, which also addresses the sparsity problem. We

explain the smoothing phenomenon from Chen and Goodman (1996), in which they present the smoothing

techniques in context of n-gram language models. However, the techniques are generic in terms of their

usages. In the next subsection, we introduce a task of smoothing.

2.1 What is Smoothing?

In statistics and image processing, to smooth a data set is to create an approximating function that

attempts to capture important patterns in the data, while leaving out noise or other fine-scale struc-

tures/rapid phenomena 5. Smoothing may be used in two important ways that can aid in data analysis:

• By being able to extract more information from the data as long as the assumption of smoothing

is reasonable

• By being able to provide analysis that are both flexible and robust

The term smoothing describes techniques for adjusting the maximum likelihood estimate of prob-

abilities to produce more accurate probabilities. The name smoothing comes from the fact that these

techniques tend to make distributions more uniform, by adjusting low probabilities such as zero proba-

bilities upward and high probabilities downward. Not only do smoothing techniques generally prevent

zero probabilities, but they also attempt to improve the accuracy of the model as a whole. In the next

subsection, we explain the need of smoothing in statistical modeling6.

2.2 Motivation

The main motivation behind using smoothing techniques is to remove the sparsity problem, which is very

likely to occur in case of any statistical modeling. Let us say, we have a probabilistic model for an event

5http://en.wikipedia.org/wiki/Smoothing (accessed 11 June, 2013)
6http://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf (accessed 11 June, 2013)
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e, which is a distribution P (e) over an event space E. Now, we want to estimate the parameters of our

model from the data. In this case, we would like to use Maximum Likelihood (ML) estimate and our

model parameters will be,

PML(x) =
c(x)∑
e c(e)

But the problem with the above parameter estimation is, if we have insufficient data, there will be

many events x such that c(x) = 0. This will also make our ML estimate, PML(x) = 0. Most of the NLP

problems have unbounded event space E. In this case, above problem is undesirable. If this problem

remains while modeling, it can lead to disastrous results. Consider the case of a language model which

gives zero probability to unseen words. Just because an event has never been observed in the training

data, it does not mean it cannot occur in the test data. Now the question which needs to be answered

is: What should p(x) be, if c(x) = 0?

We need some technique which will resolve the above issue. Smoothing is one of the techniques,

which addresses this problem. In Chen and Goodman (1996), it has been said that,

Whenever data sparsity is an issue, smoothing can help performance, and data sparsity is

almost always an issue in statistical modeling. In the extreme case where there is so much

training data that all parameters can be accurately trained without smoothing, one can almost

always expand the model, such as by moving to a higher n-gram model, to achieve improved

performance. With more parameters data sparsity becomes an issue again, but with proper

smoothing the models are usually more accurate than the original models. Thus, no matter

how much data one has, smoothing can almost always help performance.

In the next subsection, we give an example of the sparsity problem and its solution from Chen and

Goodman (1996) in the settings of n-gram language modeling.

2.3 An Example

Consider the case of a bigram model. Let us say, we have three sentences from which we want to estimate

bigram language model. Consider the following examples:

john read moby dick

mary read a different book

she read a book by cher

Now the maximum likelihood model for bigram language model would be:

p(s) =

l+1∏
i=1

p(wi|wi−1) (11)

Where,

p(wi|wi−1) =
c(wi−1wi)∑
wi
c(wi−1wi)

(12)
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Here, s represents a sentence and l is length of a sentence. Now, let us calculate the probabilities of

some sentences by using above three sentences as training data. We will use Equation-11 for calculating

probability values. Let us first calculate the probability of a sentence john read a book (# and $ are two

special symbols, which are used as starting and ending symbol in the sentence respectively).

p(# john read a book $)

= p(john|#) · p(read|john) · p(a|read) · p(book|a) · p($|book)

=
c(# john)∑
w c(# w)

· c(john read)∑
w c(john w)

· c(read a)∑
w c(read w)

· c(a book)∑
w c(a w)

· c(book $)∑
w c(book w)

=
1

3
· 1

1
· 2

3
· 1

2
· 1

2

≈ 0.6

Let us take an other example of a sentence cher read a book :

p(# cher read a book$)

= p(cher|#) · p(read|cher) · p(a|read) · p(book|a) · p($|book)

=
c(# cher)∑
w c(# w)

· c(cher read)∑
w c(cher w)

· c(read a)∑
w c(read w)

· c(a book)∑
w c(a w)

· c(book $)∑
w c(book w)

=
0

3
· 0

1
· 2

3
· 1

2
· 1

2

= 0

Above calculation means that the probability of occurring a sentence cher read a book is zero, which is

certainly not the case when we are working in the unbounded event space like natural language sentences.

Since we have not seen this type of sentence in the training data, we can only say that the above sentence

can occur with very less probability. It would be very harsh to say that the above sentence can not

occur at all (zero probability). After learning about this problem, in the next subsection, we describe

a few smoothing techniques in brief.

2.4 Smoothing Techniques

2.4.1 Add-one Smoothing

In this technique, we change the bigram probability equation as follows:

p(wi|wi−1) =
1 + c(wi−1wi)∑
wi

[1 + c(wi−1wi)]
=

1 + c(wi−1wi)

|V |+
∑
wi
c(wi−1wi)

Here, V is the vocabulary of the corpus. This technique is also known as Laplace smoothing. In

general, the use of this smoothing technique is less preferred because of its poor performance. If we

follow this method the probability of above two sentences will be as following. We can see that how a

smoothing technique prevents assignment of zero probability to unseen data.
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p(#john read a book$)

=
1 + 1

11 + 3
· 1 + 1

11 + 1
· 1 + 2

11 + 3
· 1 + 1

11 + 2
· 1 + 1

11 + 2

≈ 0.0001

p(cher read a book)

=
1 + 0

11 + 3
· 1 + 0

11 + 1
· 1 + 2

11 + 3
· 1 + 1

11 + 2
· 1 + 1

11 + 2

≈ 0.00003

2.4.2 Additive Smoothing

In this method, n-gram equation is used as:

p(wi|wi−1i−n+1) =
δ + c(wii−n+1)

δ|V |+
∑
wi
c(wii−n+1)

The main ideas behind this technique is: we assume that we have seen each n-gram δ times more than

we have. So in case we miss to learn about any n-grams from the training data, we still do not get its

probability value as zero. Add-one Smoothing is a specific case of this technique. Gale and Church (1994)

argues that this method also performs poorly.

2.4.3 Good-Turing Estimation

In this technique, the main idea is to reallocate the probability mass of n-grams that occur r + 1 times

in the training data to the n-grams that occur r times. Particular to our problem, by using this method,

we reallocate the probability mass of n-grams that were seen once to the n-grams that were never seen.

For each count r, we compute an adjusted count r∗, such that

r∗ = (r + 1)
nr+1

nr

Where, nr is the number of n-grams which are seen exactly r times. Then, the probability equation

becomes,

PGT (x : c(x) = r) =
r∗

N

Where, N =
∑∞
r=0 r · nr. The problem with this approach is that, What if nr+1 = 0?. This is

common for high values of r. Ideally we should calculate r∗ as:

r∗ = (r + 1) · E[nr+1]

E[nr]

But the question is how do we estimate the expectation? Thus, this method requires some elaboration

to be useful. However, it provides a foundation on which other smoothing methods are build.

Apart from above smoothing techniques, there are a few other smoothing techniques as well. This

techniques are as follows:
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• Jelinek-Mercer smoothing (Interpolation)

• Katz smoothing (Backoff)

• Written-Bell smoothing

• Absolute discounting

• Kneser-Ney smoothing

Thus, in this section, we gave a basic idea about the smoothing techniques. In the next section, we

talk about differences between the smoothing techniques and the clustering approach. We also explain

that why we are using clustering in our work instead of smoothing techniques.

3 Smoothing v/s Word Clustering

Smoothing techniques are very well known for solving the data sparsity problem. But one point which

smoothing techniques do not tackle is dimensionality reduction. It does not achieve the dimensionality

reduction, rather opposite to that, smoothing techniques increase the size of the statistical model. These

techniques just accommodate unseen data into probability distribution learned from the training data

during the modeling process, albeit it is not possible to completely remove the data sparsity problem for

the statistical modeling with larger event space, e.g., NLP applications.

Word clustering mainly performs abstraction of the data. We believe that this process of abstraction

actually addresses both the problems, the data sparsity problem and the large size of the statistical

model. Because of the data abstraction, the size of the features set reduces by large extent in case of NLP

problems where words are used as features, e.g., language model, sentiment analysis etc. Additionally,

the probability of encountering some unseen data which is not present in the training data becomes very

less because of this data abstraction achieved by clustering process. To support the abstraction, the

Occam Razor hypothesis also claims that the simpler statistical model performs better. In Balamurali

et al. (2011), they also show that the data abstraction process leads to improvements in the performance

of sentiment analysis. This type of abstraction can be achieved easily through abstraction processes

like word clustering. Thus, for our work, we choose to work with clustering techniques as described in

Section-1.

Thus, after choosing clustering as our weapon to tackle the data sparsity problem, in the next section,

we talk about the related work in which researchers have used word clusters as helpful features in different

NLP applications.

4 Related Work

Word cluster features have been shown to be useful in various NLP tasks. When used as an additional

feature with word based language models, it has been shown to improve the system performance, viz.,
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machine translation (Uszkoreit and Brants, 2008; Stymne, 2012), speech recognition (Martin et al., 1995;

Samuelsson and Reichl, 1999), dependency parsing (Koo et al., 2008; Haffari et al., 2011; Zhang and

Nivre, 2011; Tratz and Hovy, 2011), and NER (Miller et al., 2004; Faruqui and Padó, 2010; Turian et al.,

2010; Täckström et al., 2012). In the subsequent subsections, we give an overview of the existing work

for a few NLP applications which use word clusters.

4.1 Word Clustering for Machine Translation

In Uszkoreit and Brants (2008), they investigate the effects of applying word cluster techniques to higher-

order n-gram models trained on large corpora in MT. They also introduce a modification of the exchange

clustering algorithm (Kneser and Ney, 1993), which is referred as predictive exchange algorithm. The

distributed version of this algorithm efficiently obtains automatic word classifications for large training

corpora. They use this resulting clusterings in training partially class-based language models for MT.

We have already explained the predictive exchange algorithm in detail in Section-1.5.

When using this algorithm on large corpora, even this predictive exchange algorithm would still

require several days if not weeks of CPU time for a sufficient number of iterations. To overcome this, a

novel distributed exchange algorithm based on the predictive exchange algorithm was introduced. The

idea is basically to randomly partition the vocabulary into sets of roughly equal size and distribute the

clustering work amongst multiple CPU workers. MapReduce programming model (Dean and Ghemawat,

2008) was used to implement this distributed algorithm.

The experiments were performed for English-Arabic language pair. Predictive class-based 5-gram

models were trained using clusterings with 64, 128, 256, and 512 clusters on the English data. These

class-based models were added as additional features to the log linear model of the Arabic-English machine

translation system along with the word-based 5-gram model. It was observed that adding the class-based

models leads to small improvements in BLEU score (Papineni et al., 2002). It was shown that class-

based models trained using the word classifications can improve the quality of a state-of-the-art machine

translation system as indicated by the BLEU score. It was also shown that class-based language models

are effective tools to ease the effects of data sparsity.

Part-of-speech tagging has previously been successfully used for learning reordering rules that can

be applied before training and translation. In Stymne (2012), authors investigate if clustered word

classes can be used in a preordering strategy, where the source language is reordered prior to training

and translation. In this work, it is shown that word clusters can be used for learning rules with only

slightly worse performance than for standard POS-tags on an English–German translation task. Since

the suggested preordering algorithm with word classes is fully unsupervised, the method can be applied

to less-resourced languages where no taggers or parsers are available. This is not the case for many

preordering methods which are based on POS-tags or parse trees. They show the usefulness of this

approach for translation from resource poor language Haitian Creole to English, where the proposed

approach is significantly better than the baseline.
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4.2 Word Clustering for Speech Recognition

In Martin et al. (1995), authors describe an efficient method for obtaining word classes for class language

models. The method employs an exchange algorithm using the criterion of perplexity improvement.

Using this method, experiments were conducted on speech recognition system and improvements were

observed. In Samuelsson and Reichl (1999) also, authors propose a new approach for generating a

class-based language model based on part-of-speech ambiguity classes. They explored two methods for

combining the class-based and word-based language models. It was also showed that both approaches

led to significant reductions in word error-rate in large-vocabulary speech-recognition tasks.

4.3 Word Clustering for Dependency Parsing

For dependency parsing, in Koo et al. (2008), authors present a simple and effective semi-supervised

method for training. The authors introduce features that incorporate word clusters derived from a

large unannotated corpus. They show that the cluster-based features improve performance across a

wide range of conditions. In the case of English unlabelled second-order parsing, performance improved

from a baseline accuracy of 92.02% to 93.16%. For Czech unlabelled second-order parsing, performance

improved from a baseline accuracy of 86.13% to 87.13%. It has been also shown that their method

improves performance even when the small amounts of training data is available.

In Haffari et al. (2011), authors combine multiple word representations based on semantic clusters

extracted from the Brown clustering algorithm and syntactic clusters obtained from the Berkeley parser

to improve discriminative dependency parsing in the MST-Parser framework of McDonald et al. (2005). A

method for combining diverse cluster-based models was also introduced and improvement in the accuracy

of discriminative dependency parser from 90.82% to 92.13% was shown. In Täckström et al. (2012),

they propose an algorithm to generate cross-lingual word clusters. They show that by augmenting the

delexicalized direct transfer system of McDonald et al. (2011) with cross-lingual cluster features, they

can reduce its error by up to 13% relative.

4.4 Word Clustering for Name Entity Recognition

In Miller et al. (2004), they present a technique for augmenting annotated training data with hierarchical

word clusters, automatically derived from a large unannotated corpus. They encode the cluster mem-

bership in features that are incorporated in an NE tagging model. In experiments with Named Entity

Recognition (NER), they show that compared to a state-of-the-art HMM-based tagger, the presented

technique requires only 13% as much annotated data to achieve the same level of performance. Given a

large annotated training set of 10,00,000 words, the technique achieves a 25% reduction in error over the

state-of-the-art HMM trained on the same material.

Faruqui and Padó (2010) presented a study on training and evaluating a Named Entity Recognizer for

German. The NER system propose by them, applies semantic generalizations (clustering) learned from a

18



large unlabelled corpus in the absence of large training corpora for German. Because of the generalization

process, even though small corpora yield a significant improvement. In Turian et al. (2010), authors found

that word clusters obtained from Brown clustering and word embeddings both can improve the accuracy

of a near-state-of-the-art supervised NLP system like NER.

In Täckström et al. (2012), authors show that monolingual word cluster features induced from a

large corpora helps the semi-supervised method for structure learning methods. They show that this

method is robust across thirteen languages for dependency parsing and four languages for NER. A

method is introduced in which cross-lingual word cluster features are used to transfer linguistic structure

from English to other languages. They used a probabilistic model combining monolingual data in two

languages and parallel data using which enforce the cross-lingual word-cluster constraints. They show

that by applying the cross-lingual cluster features to direct-transfer NER, a relative error reduction of

26% was achieved.

Thus, in this repoer, we talked about the existing word clustering algorithms, smoothing techniques

and why we choose clustering for our work instead of smoothing. We also talked about some of the

similar research work where word cluster features are used in NLP applications.
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