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Abstract

Hit-Song Science has matured into a mul-
timodal research field that blends music-
information retrieval, natural-language process-
ing and user-behaviour analytics. This sur-
vey consolidates more than two decades of
work and is organised around seven themes.
We begin with the historical evolution of Hit-
Song Science, tracing the shift from audio-
only heuristics to integrated frameworks that
model music as both an acoustic artefact and
a social commodity. We then review the fea-
ture landscape—audio descriptors, lyric signals
and social-metadata cues—and show how re-
cent learned representations, such as neural au-
dio tokens and transformer-based text embed-
dings, have superseded handcrafted features. A
dedicated section examines musical-structure
segmentation, comparing classical audio tech-
niques, lyric-driven methods and emerging mul-
timodal approaches. Next, we map the data
requirements for scalable popularity modelling,
outlining best practices for audio-, lyric- and
social-feature extraction and for the construc-
tion of reliable popularity targets. We cata-
logue open-source music datasets, highlight-
ing their modality coverage and licensing con-
straints, and analyse how dataset choice influ-
ences reported performance. Throughout, we
identify four persistent gaps: structural lyric un-
derstanding, artist-career dynamics, expressive
audio representations and interpretable fusion
architectures. We conclude by outlining a re-
search agenda that couples large language mod-
els, neural audio codecs and modality-aware
learning to produce more accurate and explain-
able popularity predictors.

1 Introduction

In 2023, the global recorded music market gener-
ated $28.6 billion! in revenue. With the advent
of social media and streaming services, defining
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a single metric for music success has become in-
creasingly challenging (Cosimato et al., 2019b; Lee
et al., 2020). Music popularity prediction can help
the industry and artists forecast and optimize the
potential success of newly composed songs.

Research in music popularity prediction has been
driven by the advancements in machine learning
with researchers applying classical ML approaches
to predict popularity using acoustic features, and
further with the growth of social networks, infor-
mation about music consumers’ tastes capturing
consumer response and their evolving music pref-
erences (Seufitelli et al., 2023). Advancements in
deep learning further sharpen the prediction model
capability of capturing and learning complex pat-
terns of evolving music taste, and researchers have
worked on incorporating multiple modalities such
as audio, lyrics and social metadata to predict song
success (Zangerle et al., 2019b; Martin-Gutiérrez
et al., 2020). In all these works, the popularity
score is typically defined as the time the song re-
mains on the Billboard Top charts, and the eval-
uation metrics used include MAE, MSE, R? for
regression, and accuracy, precision, recall, and F1
for classification. Recent developments in large
language models have led to further research in
music-related fields such as recommendation sys-
tems, sentiment/emotion analysis, data augmen-
tation, understanding and composing song lyrics,
using song lyrics text as the data source (Rossetto
et al., 2023; Sable et al., 2024; Ma et al., 2024;
Ding et al., 2024). The next section presents a
detailed review of prior studies.

2 Related Work

2.1 Hit Song Science: A MultiModal
Paradigm

Interesting is the Hit Song Science—the artful fu-
sion of the human imagination along with human
perception with the accuracy of an algorithm whose


https://www.ifpi.org/our-industry/industry-data/

main motto is to forecast the success even before
the song comes into the market. (Pachet and Sony,
2012) defined HSS as "an emerging field of sci-
ence that aims at predicting the success of songs
before they are released on the market." Such a
definition leads to conceptualizing HSS not only as
a technological project but as an ambitious project
to condense the intricacies of human musical tastes
and preferences into measurable features. Essen-
tially, HSS employs machine learning algorithms
for the automated predictive intent regarding the
trajectory of popularity ahead of formal release for
a song.

Figure 1: The timeline of Hit Song Science, in which
too major works are in direction of Hit Song Prediction.
Source: HSS Survey

HSS is typically investigated under two major
lenses: prediction and science. From a predictive
lens, HSS faces the multilayered nature of music
consumption. Music has a highly personal dimen-
sion, bringing out micro-emotions that are usually
linked to individual histories, contexts, and other
things that cannot be analytically reduced to simple
analysis. These evasive properties make the pre-
diction task complex because decoding of patterns
would transcend simple auditory characteristics.
Rather, HSS posits, from the perspective of a sci-
entific enterprise, these factors may be complex
but would feature and model representability, thus
closing the chasm between subjective emotional
reaction and objective analysis.

This dual vision becomes essential in taking into
account the chasm between the intangible qual-
ity of musical success and the analytical zeal that
hankers after reifying it. For instance, (Ogihara
and Kim, 2011) recommend that HSS should in-
clude psychology of listening to music, effects of
repeated exposure, nature of Western media and
broadcasting systems, and the strong social influ-
ences that are at work in communities. This gives
an insight into even bigger dimensions of HSS, in-
cluding psychological and sociological as well as
technological aspects.

From a broader angle of view, Hit Song Science
finds its place in the large family of Music Infor-
mation Retrieval (MIR), which includes research
activities concerned with what information regard-
ing relevance can be found from music content.
Considering HSS as a special task in MIR under-
lines its importance when shedding light on the
interrelation between technology and musicology.
The classic MIR research traces tasks like genre
recognition and classification, which identifies the
genre of a piece from the musical features ((Sturm,
2014); (Corréa and Rodrigues, 2016)). But HSS
surpasses genre categorization by relating intrinsic
features of songs with the resultant popularity.

The HSS field in itself evolved to be multidisci-
plinary where it combines computer science with
traditional music-related topics such as music the-
ory, sociology, and cultural markets. This approach
will engage the acquisition and analysis of music
data with different modalities from diverse data
sources using methodologies from information re-
trieval, machine learning, and data mining. Ulti-
mately, the goal will be to detect chart-topping hits
and predict them. The core premise of HSS re-
volves around the notion that popular songs share
a number of characteristics in common which res-
onate well with the listeners, and such features
could be found out and modelled through state-of-
the-art algorithms.

2.1.1 Historical Development and Theoretical
Inventions

The first phase of HSS can be traced back to the
year 2003 when Polyphonic HMI presented an ap-
plication of machine learning that was called Hit
Song Science. This innovative work made use of
mathematical algorithms as well as statistical meth-
ods for predicting a song’s success based on au-
dio features. According to the company, using the
software could predict songs by such big artists
such as Norah Jones, Jennifer Lopez, or Robbie
Williams. Researchers and enthusiasts of this field
used innovative applications in machine learning
and mathematical modeling to break down millions
of those hit songs long past into quantifiable fea-
tures: rhythm, harmony, and timbre. This event
has actually been quite a leap forward in the field,
creating new roads for algorithmic music research.

Following the concept development, early re-
search work in HSS was mainly viewed as feature
extraction or analysis of song-related data using a
combination of machine learning techniques. In
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these early attempts, they made use of different
classification algorithms like the boosting classifier
for classification purposes ((Dhanaraj and Logan,
2005)), adaptive learning approaches ((Chon et al.,
20064a)), and Support Vector Machines ((Dhanaraj
and Logan, 2005); (Pachet and Roy, 2008)). This
improved access to better data processing and mod-
eling techniques meant HSS methods emerged as
strong, more complete frameworks for use. Re-
searchers started exploring larger datasets with ad-
vanced algorithms in pursuit of deeper insights into
the relationship between attributes of music and
commercial success ((Herremans and Bergmans,
2020); (Yang et al., 2017); (Martin Gutiérrez et al.,
2020)).

This also includes the range of research from
recent years through social media data and stream-
ing services like Spotify and Deezer. In the past
decade, researchers have slowly begun using social
information as a variable that predicts popularity
in songs that has revealed how the networks and
preferences of the group impact the fame of each
song ((Abel et al., 2010); (Bischoff et al., 2009a);
(Koenigstein et al., 2009); (Yu et al., 2019)). The in-
fluencing elements of social factors include shared
listening experiences, online user interactions, and
playlist curation, which contribute to the emergent
success of a track as seen through various empirical
studies ((Interiano et al., 2018); (Ren et al., 2016);
(Silva and Moro, 2019)).

Despite the substantial growth experienced in the
past decades, Hit Song Science remains a relatively
new field of research within the broad bracket of
Music Information Retrieval. In the last decade,
the number of publications on HSS has gradually
increased, reflecting the growing recognition of its
significance and complexity (see Figure 2). A mul-
tidisciplinary debate that was there a decade ago
now brings together scholars and practitioners from
different backgrounds, presenting new visions and
optimizing prediction methods. This still-growing
body of research can then be understood as shar-
ing methodological characteristics that generalize
into a coherent workflow for predicting hit songs,
opening the doors to further study of multimodal
approaches.

2.2 Features

For both high-level and low-level audio features,
researchers have utilized platforms like Spotify’s
API and tools such as librosa and Essentia to ex-
tract these features. Although most high-level fea-

tures, such as danceability, energy, and valence, are
available on platforms like Spotify ((Al-Beitawi
et al., 2020)), for deeper low-level analysis, open-
source libraries like librosa are often used. With
librosa, features such as MFCCs, ZCR, Spectral
Centroid, and tempo can be extracted from audio
signals ((Araujo et al., 2020)). The Essentia library
provides more than 40 basic spectral and tempo-
ral descriptors, enabling researchers to gather low-
level information needed for rhythm, tonal, and
spectral analysis.

Lyrics are also quite relevant during feature se-
lection. Researchers have studied many techniques
for quantifying and analyzing lyrics. (Dhanaraj and
Logan, 2005) were among the first to apply seman-
tic analysis techniques, including Probabilistic La-
tent Semantic Analysis (PLSA), to extract descrip-
tive features based on lyrical content. Their method
represented songs as vectors that expressed the like-
lihood of certain themes being present, thereby
essentially measuring lyrical similarity between
songs. This thematic approach had the possibility
of taking lyrical features more seriously as a hit
prediction factor.

The two concepts built on this were further pre-
sented by (Singhi and Brown, 2014) with a com-
pletely lyrics-based feature-based hit prediction
model. They developed an absolute 24 rhyme as
well as syllable-based features that make use of the
software developed by Hirjee and Brown in 2010:
the Rhyme Analyzer software, namely, features
such as syllables/line, rhymes/line, and links/line.
Furthermore, they utilized the CMU Pronunciation
Dictionary that was developed by Elovitz et al. in
1976 to transcribe lyrics into phoneme sequences-
a novel source of phonetic features-that capture
stress patterns in the lyrics. Their results demon-
strated the effects of complexity and structure of
rhyme and meter in determining hit songs.

Study of lyrical features has expanded with new
advances in more advanced machine learning and
natural language processing techniques. Using La-
tent Dirichlet Allocation (LDA), (Ren et al., 2016)
uncovered latent topics in song lyrics that were
found to include recurring themes such as ’love’
and ’life’ in popular tracks. In the same direction,
(Ren and Kaufman, 2017) applied LDA to extract
semantic themes from a dataset comprising 4,410
tracks; they found that lyrical themes could highly
aid in understanding the intent of the artist or the
attraction of the song.

Analysis has also focused recently on the use



of word usage, frequency, and stylistic features.
For example, the study conducted by (Chiru and
Popescu, 2017) used a bag-of-words method to
extract words as well as their frequency, in which
they emphasized that lyrical content has played a
crucial role in identifying the possible success of a
song. The kind of feature engineering, combined
with other multimodal inputs, gives one a holistic
perception about how well the song is liked.

It has added yet another dimension to the hit pre-
diction. (Martin-Gutiérrez et al., 2020) and (Raza
and Nanath, 2020) applied Natural Language Pro-
cessing (NLP) to extract features of the sentence
count, word length, and vocabulary richness. Of
course, the overall sentiments of the lyrics ranged
from negative to positive, that is what made the
analysis so key. (Kamal et al., 2021) has demon-
strated that the majority of popular songs are neu-
tral or slightly positive and underlines how the
lyrical tone influences the commercial appeal of a
song.

Recent advances in transformer-based language
models have further enhanced lyrical analysis capa-
bilities for popularity prediction. (Prevedello et al.,
2024) demonstrated the effectiveness of Large Lan-
guage Model (LLM) embeddings for song success
prediction, comparing sentence embeddings from
pre-trained models with traditional stylometric fea-
tures across different stages of a song’s lifecycle.
Their work showed that LLM-based lyrical embed-
dings provide complementary information to con-
ventional features and significantly improve early-
stage predictions when combined with audio and
platform metadata, highlighting the potential of
modern NLP architectures in capturing nuanced
semantic content from song lyrics.

2.3 Learnt Representation

Recent work in machine learning has transitioned
significantly from hand-crafted vectors to learned
representations serving as feature vectors for differ-
ent modalities of data, specifically audio and text.
In contrast, domain experts have usually designed
the algorithms over painful crafting of raw data
for extracting specific features-like Mel-Frequency
Cepstral Coefficients (MFCC) over audio or Bag-
of-Words model over text-for capturing relevant
information for tasks like speech recognition or
sentiment analysis. But such hand-crafted features
are often less generalizable and in many cases re-
quire rather large amounts of domain knowledge.
Deep learning, especially generative Al, has

changed this approach by developing large mod-
els that learn complex representations and patterns
directly from a large sum of data. This, in turn,
directly helps for acquiring a vector representation
of the different modalities of data and further for
using the same in the downstream task. In the
following sub-section we detail the work that has
been done for audio data via neural codec models
whereas transformers for text data.

2.3.1 Audio Learnt Representation: An
Overivew

Recently, the field of audio coding has undergone
a paradigm shift with the advent of neural audio
codecs. These have been designed fresh for ef-
fective compression as well as reconstruction of
audio signals for minimal data transmission latency
without degrading the quality of audio: Traditional
codecs were psychoacoustic models and essentially
speech synthesis principles that relied heavily on
human auditory perception-based signal reconstruc-
tion: (e.g., (Dietz et al., 2015)). But neural audio
codecs go far beyond those approaches, using novel
architectures that would allow higher compression
rates and better quality.

The first model was probably that by (Zeghidour
et al., 2022), creating the SoundStream. The stan-
dard neural codec architecture used includes an
encoder, a quantizer, and a decoder. The encoder
streams SEANets, and the quantizer uses Residual
Vector Quantization (RVQ) for the parallel streams
of tokens. Optimization of this model by a com-
bination of reconstruction and adversarial losses
is deployed in the SoundStream model, capable
of compressing audio efficiently yet maintaining
strong reconstruction quality. Building upon this,
SoundStorm enhanced its hierarchical structures of
tokens and designed non-autoregressive decoding
to be more efficient and produce better quality au-
dio outputs (Borsos et al., 2023). This was the first
step towards using neural audio codecs not only for
compression but also to create building blocks for
audio language modeling tasks.

As the speed of neural audio codec advances per-
mitted, models like Encodec (Défossez et al., 2022)
could extend SoundStream capabilities through ad-
ditional LSTM layers and a Transformer-based ar-
chitecture. This allowed even more powerful se-
quence modeling of RVQ codes to enhance this
coder’s ability to capture complex audio patterns.
Later adaptations introduced AudioDec (Wu et al.,
2023), which combined group convolutions for
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Figure 2: The Timeline of current neural codec models
and codec-based language models. Source: Audio lan-
guage modeling - overview

streaming with HiFi-GAN architectures to generate
audio at 48 kHz. Again, emphasis on very high-
quality audio generation was a direct consequence
of this development, and interesting application do-
mains apart from speech compression to music and
general audio were opened.

An important achievement was the Academi-
Codec model, which introduced group-residual vec-
tor quantization. The approach yielded improve-
ments in reconstruction with multiple parallel RVQ
groups at a minimum cost of the bit rate for length-
ier speech tokens within speech language model-
ing. This innovation fills an essential gap between
codec-based compression and efficient token rep-
resentation toward large-scale tasks in language
modeling.

Another significant development for the field
has been the presentation of models specifically
designed to tokenize and represent speech data for
language models. For instance, SpeechTokenizer
(Zhang et al., 2024) leverages a hierarchical archi-
tecture based on RVQ to separate semantic and
acoustic tokens, thereby enabling the effective dis-
entanglement of various aspects of speech. Tech-
niques such as semantic token regularization with
HuBERT tokens (Hsu et al., 2021), for example,
are employed in SpeechTokenizer to emphasize the
richer details captured within speech data, which
enables more and possibly better language models.

Apart from these advancements in RVQ-based
codecs, other approaches like the Descript-Audio-
Codec (DAC) (Kumar et al., 2023) also looked into
its viability. This is because DAC differs with the
universal usage in a vast variety of sounds of audio
types; it ranges from music to speech. It employs
advanced techniques such as periodic activation
functions, L2-normalized codes, and random quan-
tizer dropout for reconstructive purposes which are
highly accurate. It is one of the versatile and ro-
bust models that have acquired a very high value in
the market as the leading neural codec for general

usage of audio applications.

Last but not least, FunCodec (Du et al., 2023)
proposed a new technique in the frequency do-
main, which was also designed to be friendly with
fewer parameters but optimize the efficiency of the
codec. In the frequency domain, Fun Codec has
similar performance with a lower computational
cost and is therefore useful for real-time applica-
tions. Semantic information is also integrated into
the tokens of the codec, thus further improving
the quality of speech, even at low bit rates. These
high-performance neural audio codecs have revo-
lutionized audio representation significantly. Not
just compression models anymore, but really pow-
erful tokenizers that take continuous audio and turn
it into discrete codes; thus, new frontiers for au-
dio language modeling are available. Neural audio
codecs that not only preserve content but also par-
alinguistic nuances in some sense provide a really
powerful foundation for building an audio language
model that generalizes across kinds of audio types,
namely speech, music, and general audio.

2.3.2 Text Learnt Representation: An
Overview

(Patil et al., 2023) The science of song lyric mean-
ing capturing has come a long way. It began from
very simple statistical models to sophisticated tech-
niques in understanding subtleties and emotion in-
corporated in words of a song. Until these models
realized how words functioned in isolation-only
rather than together, the subtler associations that
make lyrics memorable and emotionally resonant,
traditional methods, such as Bag-of-Words (BoW)
and Term Frequency-Inverse Document Frequency
(TE-IDF), were considered sufficient enough to per-
form even the most basic text analysis.

But it wasn’t until word embeddings like
Word2Vec and GloVe, which provided a more di-
mensional representation of words based on their
relationships, that the game really changed. Innova-
tion was such that a model could capture a lot of the
semantic essence of words by mapping them into
dense, multi-dimensional spaces. Representations
like these go on to identify recurring themes in
hit songs-things like love, heartbreak, or rebellion.
These embeddings did capture general meaning but
could not be sensitive and adjust to each unique
lyrical context.

Enter BERT and GPT of context-sensitive em-
beddings, which seemed to completely change the
game. These models brought a sense of awareness
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to the words, adapting their meanings based on
surrounding context. This evolved really crucial to
tackle the layers of complexity contained in song
lyrics. For instance, the same word could convey
highly contrasting meaning in the same ballad if
it’s a sorrowful one compared to an energetic pop
anthem and to capture all that subtlety it is very crit-
ical that these words are interpreted in the broader
context of the lyrics; BERT, with its bidirectional
attention mechanism, can grasp every word in con-
text to every other word in the lyrics, hence under-
standing the poetic rhythm, the feeling, and even
some little twists that make a song relatable

It didn’t end there. Contextual embeddings, such
as ELMo, dove in even deeper. They added layers
of interpretation. So not only does it read the line
of a song just within its proximity but all over the
lyrics’s narrative arc. This way, models can grasp
complex techniques of storytelling like metaphors,
emotional transitions, and even juxtapositions of
conflicting feelings that many artists embed in their
work

These advances in text representation have been
game-changers in predicting a hit song. Sentiment
analysis with deep contextual models allows for
a much more nuanced understanding of a song’s
emotional trajectory. For instance, one study uti-
lizing BERT-based models presented significant
improvements toward being able to identify poten-
tial hits by analyzing shifts in tone and sentiment
over the course of the lyrics. Capturing these kinds
of details empowers models not only to know what
a song is talking about but also to understand how
it makes one feel, an essential driver in determining
whether a track becomes a chart-topper.

2.4 Musical Structure Segmentation in MIR

Musical structure (or form) refers to dividing a
song into contiguous, labeled segments (e.g. intro,
verse, chorus, bridge, etc.) that listeners perceive
as meaningful parts (Serra et al., 2020). In MIR,
Music Structure Analysis (MSA) is formally de-
fined as finding these non-overlapping segments
and their types from audio (Serra et al., 2020). For
example, Fig. 3 illustrates an annotated song: the
spectrogram (top) is partitioned into segments A,
B, C, etc. (bottom), representing repeated verses or
choruses as perceived by the annotator (Serra et al.,
2020). This segmentation mirrors Western music
theory (e.g. binary, ternary forms or verse—chorus
structure) (Serra et al., 2020). Importantly, music
structure can be hierarchical (e.g. motifs or sub-

sections within a chorus) (Serra et al., 2020), but
most MIR methods focus on the flat (single-level)
segmentation problem (Levy and Sandler, 2008).
Researchers note that while exact boundaries are
subjective, humans largely agree on major section
boundaries (Serra et al., 2020; Levy and Sandler,
2008).

The Cure - How Beautiful You Are (Annotator 5)

500 50 51 52 53 54 65 66 57 58 59 60
‘Time (z00med in)

Figure 3: Example annotated segmentation (bottom) of
a song with four sections A, B, C, C’. The top shows the
song’s spectrogram. Such manual annotations define
musical structure (verse/chorus labels. Source Audio-
Based Music Structure Analysis

2.4.1 Traditional Audio-Based Segmentation
Methods

Traditional approaches rely on audio signal features
and structural principles (homogeneity, novelty,
repetition, regularity) to detect section boundaries.
A common pipeline is to extract musical features
(e.g. timbral or spectral features like MFCCs, mel-
spectrogram, constant-Q/chromagram) and com-
pute a self-similarity matrix (SSM) of these fea-
tures over time. The SSM is a time-time map
where bright off-diagonal blocks indicate repeated
or similar sections (Foote, 2000). For example,
Fig. 4 shows an SSM (left) with repeated diagonal
blocks (musical repetitions) and a checkerboard
novelty kernel used along the main diagonal to pro-
duce a novelty curve (right) (Foote, 2000). Peaks
in this novelty curve often align with actual seg-
ment boundaries (Foote, 2000). This checkerboard
method (Foote, 2000) remains a classic: sliding a
positive—negative kernel along the diagonal of the
SSM highlights sudden changes in features, whose
prominent peaks are taken as boundaries (Foote,
2000).

Traditional signal features serve different roles.
Timbral/spectral features (e.g. MFCCs or log-mel
spectrograms) capture changes in instrumentation
or texture, while harmonic features (chromagram
or constant-Q) capture chord/tonal patterns. Recent
studies show that compact spectral representations
(CQT, mel-spectrogram) often outperform older
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Self Similarity Matrix

Novelty Curve

Time

Figure 4: Self similarity matrix (left) and its associ-
ated novelty curve (right) of track 10 from SALAMI.
Brighter colors in the SSM indicate a greater degree
of similarity. Dashed lines mark segment boundaries.
Source Audio-Based Music Structure Analysis

MFCC/chroma in structure tasks (Levy and San-
dler, 2008; Grill and Schliiter, 2015). Many sys-
tems also use beat-synchronous analysis: aligning
features to detected beats yields cleaner diagonals
in the SSM, improving repeat detection (Serra et al.,
2020).

In addition to novelty detection, repetition-based
methods explicitly find recurring segments. For
example, lag matrices (Goto, 2003) compute simi-
larity of each frame to its past frames, making hori-
zontal/vertical lines in the matrix that indicate rep-
etition (Goto, 2003). Serra et al. (2014) introduced
structural features by rotating lag matrices, com-
bining homogeneity and repetition cues to form
an enhanced novelty function (Serra et al., 2014).
Other methods build on these features with clus-
tering or probabilistic models. Levy and Sandler
(2008) used constrained clustering (HMM) on beat-
synchronous features to jointly segment and label
(chorus/verse) (Levy and Sandler, 2008). Paulus
and Klapuri (2009) proposed a probabilistic fitness
measure over possible segmentations (Paulus and
Klapuri, 2009). Dynamic programming or HMMs
have also been used to impose temporal consistency
in the segmentation (Paulus and Klapuri, 2009).

* Novelty/Homogeneity: Convolve a checker-
board kernel on the SSM diagonal; pick peaks
in the resulting novelty curve (Foote, 2000).
(Foote, 2000) (Foote, 2000).

* Repetition: Identify diagonal paths (repeated
blocks) via lag matrices or graph-walking
(Goto, 2003). (Goto, 2003; Serra et al., 2014)
(Serra et al., 2014).

* Feature Types: Use timbral/spectral (MFCC,

mel-spectrogram) and harmonic (chroma-
gram, CQT) features. Beat-synchronized fea-
tures often enhance repeated structures (Serra
et al., 2020).

* Clustering/Probabilistic Models: Con-
strained clustering or HMM methods segment
frames into states/segments to optimize struc-
ture criteria (Levy and Sandler, 2008).

* Deep Learning: Recent CNN-based mod-
els learn internal features from spectrograms.
Grill & Schliiter (2015) and Ullrich et al.
(2014) trained CNNss to detect novelty, achiev-
ing state-of-art boundary detection (Grill and
Schliiter, 2015; Ullrich et al., 2014). McCal-
lum (2019) showed unsupervised CNN fea-
tures + checkerboard kernel also work well
(McCallum, 2019).

Each approach has trade-offs. Homogene-
ity/novelty tends to find boundaries where the au-
dio changes suddenly (e.g. verse—chorus), while
repetition methods exploit returning patterns (re-
frain or cyclic motifs). Regularity constraints (typ-
ical segment lengths) are sometimes used to filter
false positives (Paulus and Klapuri, 2009). Despite
these methods, evaluation is hard: algorithms rarely
achieve perfect match to human annotations due
to subjectivity and varying definitions of “section’
(Serra et al., 2020; Cheng et al., 2009).

Figure [49] below illustrates a novelty-based ap-
proach: the SSM (left) of a track shows bright
diagonals where sections repeat, and the novelty
curve (right) has peaks aligning with the annotated
boundaries (dashed lines) (Foote, 2000). Peaks in
the novelty curve often correspond to transitions
between sections (e.g. verse to chorus).

bl

2.4.2 Lyrics and Musical Structure

Song lyrics carry their own structure which often
aligns with musical sections. Lyrics are typically
grouped into repeated lines or verses (e.g. chorus
lyrics repeat) and unique stanzas (verses/bridge).
These patterns mirror the song’s form: choruses
usually use the same lyrics each time, verses use
different lyrics, etc. Indeed, “lyrics contain re-
peated patterns that are correlated with the rep-
etitions found in the music they accompany” (Fell
et al., 2022). Researchers exploit this: repeated
lyric lines strongly indicate chorus segments and
help segment text into verses/choruses (Fell et al.,
2018, 2022).
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Several approaches analyze lyrics text to infer
structure:

 Textual segmentation by repetition: Falling
back on dynamic programming, Fell et al.
(2018, COLING) trained CNN models on
raw lyrics to detect section boundaries, using
features that capture word/phrase repetitions
(Fell et al., 2018). Their model learns that
identical or similar lines mark boundaries (e.g.
the start of a chorus) without audio (Fell et al.,
2018).

* Longest common subsequence (LCS): Cheng
et al. (2009) segment lyrics by computing
LCS similarity between lyric paragraphs. The
most repeated paragraph (highest LCS with
others) is labeled as the chorus, the unique
short paragraphs as verse or bridge (Cheng
et al., 2009). This leverages the idea that re-
peated lyric blocks — chorus (Cheng et al.,
2009).

Neural sequence models: Watanabe & Goto
(2023) treat chorus detection as sequence
labeling in lyrics text. They automatically
align lyrics with audio-detected choruses to
train a neural model that detects repeating
lyric phrases. Their results show that learned
“phrase repetition” patterns can identify cho-
rus sections across languages (Watanabe and
Goto, 2023). In short, repeated lyric motifs
are strong signals of musical sections.

These lyric-only methods assume clean lyric
transcripts and moderate knowledge of language.
They demonstrate that lyrics alone can predict struc-
ture with some accuracy (Fell et al., 2022). For
example, Fell et al. (2021) report 67% F-score in
purely text-based segmentation (improving a previ-
ous 59%) by focusing on repetitive lyric patterns
(Fell et al., 2022). Similarly, Watanabe & Goto
generated chorus labels via audio and then learned
to detect them in lyrics, finding repeating lines to
be language-independent cues (Fell et al., 2022).

Beyond segmentation, lyrics inform alignment
of text to sections. Since each lyrical paragraph
often corresponds to a musical section (Watanabe
and Goto, 2023), one can map labeled lyric seg-
ments to audio segments. Cheng et al. (2009) used
this mapping: they first segmented audio by clus-
tering, then analyzed lyrics to label each segment
(intro, verse, chorus, etc.) based on lyric repeti-
tion and position (Cheng et al., 2009). In their

framework, lyrical analysis made segment labeling
(chorus/verse) straightforward, since lyrics of the
same type tend to repeat (Cheng et al., 2009).

In summary, lyrics and music structure are
tightly linked. Repeated lyrical motifs typically
coincide with repeated musical sections (e.g. cho-
ruses). Algorithms exploit this by segmenting
lyrics (via repetition or learning) and aligning text
segments to audio. These cues supplement audio-
only cues, especially for labeling sections semanti-
cally (Cheng et al., 2009).

2.4.3 Recent Multimodal Approaches

Recent research has begun combining audio and
lyrics for more robust structure segmentation.
These multimodal approaches leverage the comple-
mentary information: audio captures the acoustic
changes, lyrics capture semantic repetitions.

* Joint Audio+Lyrics Segmentation: Cheng et
al. (2009) pioneered this idea. They proposed
a multimodal segmentation system where au-
dio frames are clustered (with constraints) and
lyrics are analyzed in parallel (Cheng et al.,
2009). Their insights include: (1) lyrics make
it easier to infer the number of segments and
avoid under/over-segmentation; (2) segments
of the same type have similar lyrics despite
audio variations, aiding segment matching;
(3) lyric content provides high-level cues for
labeling (intro, chorus, etc.) (Cheng et al.,
2009). In practice, they first segmented audio
(imposing smoothness constraints), then used
LCS on lyric paragraphs to label segments
(identifying repeated paragraphs as chorus,
etc.) (Paulus and Klapuri, 2009; Cheng et al.,
2009). The result was more accurate boundary
detection and semantic labeling than audio-
only methods.

* Bimodal Neural Models: More recently, Fell
et al. (2021) introduced a bimodal CNN
that processes lyric text and synchronized
audio jointly to segment lyrics (Fell et al.,
2022). With a dataset of 4.8k songs with
time-aligned lyrics, they showed that adding
audio features to a text-based model boosts
segmentation F-score from 67% to 75% (Fell
et al., 2022). In other words, text and audio
capture complementary structure cues. This is
one of the first large-scale demonstrations that
fusing lyric and audio modalities improves
section segmentation performance.



* Data Annotation and Learning: Another hy-
brid approach is using one modality to anno-
tate the other. Watanabe & Goto (2023) auto-
matically detected choruses in audio (using an
existing audio-based method) and then trans-
ferred these labels to lyric lines, creating a
training set (Watanabe and Goto, 2023). They
then trained a lyric-only model for chorus de-
tection, effectively using audio to bootstrap
text segmentation. This illustrates a broader
trend: large audio-lyrics datasets (e.g. DALI
(Meseguer-Brocal et al., 2018)) now enable
training of cross-modal models.

In the MIR community, there is growing inter-
est in such multimodal structure analysis. The
“Everything Corpus” discussion notes that long-
standing tasks like audio segmentation have begun
to incorporate lyrics (Schubert et al., 2023). New
datasets (e.g. DALI, Lyrics aligned to audio) and
tasks (lyrics-to-audio alignment in MIREX) fuel
this trend. Ultimately, hybrid models can yield
more accurate and semantically meaningful seg-
mentations than audio or lyrics alone.

Automated structure segmentation in MIR builds
on both classic signal processing methods and
newer deep learning. Audio-only methods use self-
similarity/novelty and repetition detection on tim-
bral/harmonic features (Foote, 2000; Goto, 2003).
Lyrics themselves form a parallel structure: re-
peated lyric lines often mark chorus boundaries
(Fell et al., 2018; Cheng et al., 2009). Recent work
shows that combining lyrics and audio yields better
segmentation: lyrics inform the semantic labeling
and global layout of segments, while audio con-
firms boundaries in the waveform (Cheng et al.,
2009; Fell et al., 2022). Altogether, the literature
shows a move toward multimodal structural analy-
sis, leveraging both modalities to detect and label
song sections more reliably.

2.5 Overview and Data Requirements

Prediction systems that aim to forecast whether
a track will break through the musical “attention
economy” must be built on data that describe a
song from three inter-locking viewpoints: its acous-
tic fingerprint, the story told by its lyrics, and the
pattern of audience engagement that unfolds once
the track is released. Research in “hit-song sci-
ence” consistently shows that omitting any one of
these modalities caps model accuracy, whereas ap-
proaches that fuse all three continue to yield state-

of-the-art results. The remainder of this section
details, in turn, the feature spaces that have proved
most informative for each modality and the ways
in which popularity itself is operationalised.

2.5.1 Audio-level features

Early studies relied on low-level descriptors such
as Mel-frequency cepstral coefficients (MFCCs),
spectral centroid, bandwidth, zero-crossing rate,
and chroma vectors to capture timbre, brightness,
and pitch content . Although inexpensive to com-
pute, these frame-wise statistics ignore long-range
form and dynamics. Researchers therefore in-
troduced mid- and high-level attributes—tempo,
key, mode, loudness, danceability, energy, valence,
speechiness, liveness—first via the Echo Nest and
now via the Spotify Web API. These features fold
low-level curves into song-level embeddings that
correlate well with listener perception and have be-
come standard inputs in recent popularity models
and competitions. Some projects go further, ex-
tracting rich temporal signatures with tools such
as librosa or Essentia, yielding beat-synchronous
MFCC summaries, harmonic change detection,
octave-based spectral contrast, and Tonnetz trajec-
tories that let a network “hear” modulation. More
recent papers tokenise the full waveform with neu-
ral audio codecs (e.g., EnCodec) or WavTokenizer
to preserve second-by-second evolution—an ap-
proach we extend in Stage 2 of this thesis.

2.5.2 Lyrics-level features

Lyrics furnish a complementary channel unavail-
able in the raw audio. Early papers modelled lyric
text as bag-of-words or topics learned via proba-
bilistic latent semantic analysis and LDA, demon-
strating that semantic distance and theme recur-
rence correlate with chart outcome. Fine-grained
rhyme and metre statistics, harvested with tools
such as Rhyme Analyzer, subsequently revealed
that intricate rhyme schemes and higher syllable
density are over-represented among hits. Recent
large-scale analyses strengthen the case for linguis-
tic detail: across 48 000 pop, rock, rap, R&B and
country tracks, descriptors such as the number of
unique rthyme words, repeated-line ratio, structural
ratios of chorus-to-verse, lexical diversity (e.g.,
Dugast’s U, MTLD) and readability scores emerge
as top predictors, with genre-specific patterns in the
direction and strength of each effect . These find-
ings motivate the structure-aware lyric embeddings
introduced later.



2.5.3 Social Metadata features

Social signals translate listeners’ collective be-
haviour into numbers that a model can digest.
The literature converges on three complementary
vantage-points. Top-Charts perspective metrics are
taken directly from published rankings such as Bill-
board Hot 100, the UK Official Singles Chart, Spo-
tify Top 200 or Gaon. Common variables include
the song’s debut rank, weekly position trajectory,
time-to-peak, peak position, and total weeks on
chart. These statistics encode both the height a
track reaches and the shape of its ascent and de-
cline, making them valuable for regression tasks
that attempt to learn full popularity curves as well
as for classification settings that mark any chart en-
try as a “hit” . Beyond simple ranks, rank-derived
measures such as rank score (maxrank currentrank
+ 1) and life-cycle descriptors (slope of rise/fall,
area under the rank curve) give finer temporal reso-
lution .

The Economy perspective captures how much
money or attention a track converts into sales. Clas-
sical variables are Nielsen SoundScan weekly units,
Billboard album-equivalent units, and International
Federation of the Phonographic Industry (IFPI)
shipment reports. Online retail adds further res-
olution through Amazon Best-Seller Rank, which
updates hourly and has proved a reliable proxy for
real sales volume . These measures are particu-
larly useful when the modelling goal is revenue
forecasting or cross-platform valuation rather than
short-term virality.

The Engagement perspective has expanded
fastest in the streaming era and now dominates
machine-learning studies. It mines high-velocity
metrics such as Spotify play-count, playlist addi-
tions, follower growth, Shazam tags, TikTok us-
age counts, YouTube views and likes, and Last.fm
“scrobbles”. Spotify’s own 0-to-100 popularity
score—a recency-weighted play-count—has be-
come the de-facto continuous label in recent work
because it is easily retrievable through the Web
API and strongly correlates with external chart
success. Regional services provide analogous sig-
nals: KKBOX play-counts dominate studies on
Southeast-Asian markets, while Last.fm listener
counts and YouTube views supply user-generated
engagement traces that extend back more than a
decade .

Researchers also engineer secondary social fea-
tures that amalgamate raw counts into more predic-
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tive forms. Examples include hit score, the product
of log(play-count) and log(unique users), which
dampens superstar outliers; HITS graph centrality
linking artists, tracks and tags; and early-adopter
indicators such as the first 48-hour stream total,
shown to be predictive of long-run success . Re-
gardless of the metric, best practice is to store each
observation with a timestamp, geographic scope
and data-source tag so that models can respect tem-
poral causality and diagnose regional bias.

2.5.4 Popularity Score Modeling

Because “popularity” is multi-faceted, scholars op-
erationalise it along two main axes. Continuous
indices treat success as a real-valued quantity. Spo-
tify’s popularity score is the most widely used:
it blends lifetime plays with a recency decay so
that yesterday’s viral spike has more weight than
streams accrued years ago. Other continuous labels
include raw or log-scaled stream totals, Last.fm
listener counts, Amazon Best-Seller Rank inver-
sions, and Echo Nest’s historical hotttnesss score,
which merges web mentions, blog reviews and
play-counts. These labels support regression and
time-series models that can predict trajectories or
forecast future demand.

Discrete schemes convert popularity into classes.
The simplest rule flags any appearance on a recog-
nised chart—Billboard Hot 100, Official UK Top
40, Spotify Viral 50—as “hit” and treats non-
charted tracks as “non-hits”. More nuanced thresh-
olds slice charts into strata (e.g., Top 10, 11-100,
101-200) or use the sample median of a chosen met-
ric to split high- and low-popularity songs . When
negatives are underspecified, researchers sample
non-hits by matching artist or release year, thereby
controlling for fan-base size and seasonality bias.

A third family of labels captures trajectory char-
acteristics rather than absolute magnitude. Vari-
ables such as weeks on chart, time-to-peak, sus-
tainability index (area under the rank curve) and
chart lifespan allow models to differentiate flash-
in-the-pan virality from slow-burn success . These
descriptors align naturally with survival analysis
and epidemic-style diffusion models that treat at-
tention as a contagious process.

Whichever formulation is chosen, three safe-
guards are mandatory. First, the popularity window
must open after the last date used to compute input
features to prevent information leakage. Second,
the label’s time granularity (daily, weekly, cumu-
lative) must match that of the features; misalign-



ment can spuriously inflate performance estimates.
Third, whenever data permit, both global and re-
gional scores should be stored, because a track can
be a blockbuster in one territory and invisible in
another—an effect that otherwise embeds hidden
bias into the model. Adhering to these principles
yields labels that are both statistically sound and
industry-relevant, providing a trustworthy target
for the multimodal architectures developed in sub-
sequent chapters.

10 15
Amount of Papers

(a)

Figure 5: Data sources for Hit Song Science: (a) Top 10
data sources ranked according to number of papers (b)
Usage trend of top sources. Source: Hit Song Science

Of its many charts, the Billboard Hot 100 repre-
sents the most commonly used measure of a song’s
popularity. It releases a weekly rank of the 100
most streamed songs from all music styles in the
United States, based on parameters such as ra-
dio airplay, sales, and streaming figures ((Askin
and Mauskapf, 2017); (Bischoff et al., 2009b);
(Kim and Oh, 2021)). The Year-End Hot 100 also
summarizes these weekly rankings, and most re-
searchers use this integrated data for general under-
standing ((Singhi and Brown, 2014)). However,
some researchers focus on individual Billboard
charts like the Top Jazz Chart or Rock Songs Chart,
which allows for a finer level of observation within
particular genres ((Chon et al., 2006b); (Lee and
Lee, 2015)). As the level of global connectivity con-
tinues to grow, research has expanded beyond U.S.
rankings. The Official Charts Company (OCC)
represents British rankings at its core ((Herremans
et al., 2014)). Besides this, other regional markets
from which data has been gathered include France,
Belgium, and Germany ((Buda and Jarynowski,
2015); (Herremans and Bergmans, 2020)). In addi-
tion to this, growing music markets in Asia, such
as South Korea ((SHIN and PARK, 2018)) and In-
donesia ((Febirautami et al., 2018)), have also been
considered. Some authors have used alternative
metrics of popularity, such as YouTube views and
interactions ((Chiru and Popescu, 2017)), as well
as Amazon sales reports and Nielsen SoundScan
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((Dewan and Ramaprasad, 2014)).

Acoustic Features The acoustic aspects need
to be taken into account in the analysis of song
composition. Initially, authors relied on in-house
databases to analyze the acoustic features of songs,
as seen in (Dhanaraj and Logan, 2005). Over
time, with the rapid advancements in Music Infor-
mation Retrieval (MIR), more sophisticated data
sources like the EchoNest API emerged, compris-
ing over a trillion data points for more than 34
million songs ((Herremans et al., 2014)). This API
has been widely utilized in research to extract fea-
tures such as tempo, time signature, loudness, and
song duration ((Askin and Mauskapf, 2017); Fan
& Casey, 2013). Since 2014, when it acquired
EchoNest, Spotify’s Developer API has become
the primary data source for new research focusing
on acoustic features ((Kamal et al., 2021); (Raza
and Nanath, 2020)). Other databases like The Mil-
lion Song Dataset (MSD) ((Zangerle et al., 2019c¢))
and AcousticBrainz > ((Votter et al., 2021)) have
provided additional information on different audio
features.

Lyric-Based Data Song lyrics provide a unique
dimension to music success, offering insights into
rhyme schemes and textual sentiment. Although
there is no consensus on a single reliable source,
multiple studies have utilized online platforms
like Astraweb Lyric Search, MetroLyrics, Music-
SongLyrics, and LyricsMania ((Chiru and Popescu,
2017); (Ren et al., 2016)). Recently, due to the
existence of a dedicated API, the platform Genius
has gained popularity among researchers, as it sim-
plifies data collection without the need for web
crawlers.

Social Behavior Data The development of social
networks has significantly influenced how people
share their opinions, impacting the music world.
As such, user behavior has become a critical ele-
ment in analyzing successful artistic products. Plat-
forms like Last.fm 3 have been extensively used
to gather listener-based data, including user prefer-
ences and interactions ((Ren et al., 2016); (Votter
et al.,, 2021)). Blogging platforms like Spinn3r
“have also been employed to gather vast amounts
of blog posts related to music, reflecting listeners’
sentiments about songs and artists ((Abel et al.,

2AcousticBrainz: http://acousticbrainz.org
3Last.fm API: http://www.last.fm/api
4Spinn3r: http://docs.spinn3r.com


https://www.tandfonline.com/doi/epdf/10.1080/09298215.2023.2282999?needAccess=true
http://acousticbrainz.org
http://www.last.fm/api
http://docs.spinn3r.com

2010)).

In recent studies, social networks like Twitter,
Instagram, and Facebook have been explored to
examine user behavior concerning new releases
((Araujo et al., 2020); (Cosimato et al., 2019a)).
The integration of social media data provides re-
searchers with deeper insights into listener engage-
ment and conversations surrounding music.

In summary: HSS models typically pool data
from multiple sources to generate comprehensive
predictions about musical success. As illustrated
in Figure 4(a), popular chart rankings such as Bill-
board® and Official Charts Company ® dominate
the landscape, followed by more data-intensive
song features involving acoustic properties, lyrics,
and social interactions. However, the use of spe-
cific charts introduces regional biases, as each mar-
ket recognizes different artists and genres. As the
music industry becomes increasingly globalized, re-
searchers are employing a broader range of sources
to capture diverse market dynamics.

2.6 Literature Survey of Open-Source Music
Datasets

The public corpus landscape has expanded from
modest audio-only collections to vast, richly an-
notated datasets that encode many facets of mu-
sical engagement, and this evolution has under-
pinned each fresh wave of popularity-prediction re-
search. The Million Song Dataset (MSD) released
by Bertin-Mahieux et al. (Bertin-Mahieux et al.,
2011) marked the first large-scale, legally share-
able repository, offering one million 30-second ex-
cerpts with detailed Echo Nest timbre and rhythm
descriptors but no native success label, thereby
forcing later studies to graft in external chart or
stream data. Companion logs such as the Taste
Profile Subset compiled by the same authors added
forty-eight million user—song play-count triplets
(Bertin-Mahieux and Ellis, 2011), while Ocelma
(Ocelma, 2010) furnished the Last.fm 360K col-
lection with 17.6 million user—artist counts and
basic demographics; together, these interaction ma-
trices provided the first open proxies for popularity
through aggregate listening statistics. In the same
period, the Yahoo! Music Ratings corpus released
for the KDD-Cup 2011 (Dror et al., 2011) supplied
300 million explicit 1-5 star ratings for 600 k items,
enabling studies that framed success as a crowd-
sourced quality score rather than as chart position.

SBillboard: http://www.billboard.com/charts
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Figure 6: Onion model of music features. Source:

Music4allOnion

Building on these foundational datasets, Fig-
ure 5 illustrates how source usage has diversi-
fied and accelerated in recent years. In panel
(a), traditional chart data—most prominently Bill-
board—remains the largest single repository for
success labels, while streaming metrics such as
Spotity have quickly become nearly as prevalent in
the HSS literature. Panel (b) shows Spotify’s adop-
tion surging after 2018, outpacing more gradual
rises for Last.fm and EchoNest, and underscoring
the field’s shift toward real-time listener feedback
alongside established chart metrics.

The next generation of corpora hard-wired chart
information directly into the dataset. Oliveira et
al. (Oliveira and Pacheco, 2021) curated MUHSIC,
a complete facsimile of every Billboard Hot 100
entry since the 1940s, exposing weekly rank time-
series that let models predict trajectory shape as
well as peak. Silva et al. (Silva et al., 2019) built
MusicOSet by matching 20 405 U.S. tracks to Bill-
board ranks, Genius lyrics and Essentia acoustic
features, and published both a continuous year-end
score and a binary hit/non-hit flag—an influential
template for multimodal benchmarking. Parallel
work at Innsbruck produced the Hit-Song Predic-
tion suites: HSP-S and HSP-L (Vétter et al., 2022)
comb the AcousticBrainz repository to pair 7 736
and 73 482 tracks, respectively, with Billboard peak
rank plus Last.fm listener counts, while also releas-
ing mel-spectrograms so that end-to-end deep ar-
chitectures can be trained without external feature
extraction.

Streaming platforms then shifted attention from
static chart peaks to continuous engagement met-

8Official Charts: http://www.officialcharts.com/chartsrics. Santana et al. (Santana et al., 2020) intro-


http://www.billboard.com/charts
http://www.officialcharts.com/charts
https://dl.acm.org/doi/10.1145/3511808.3557656

duced Music4All, a 109 269-track corpus that em-
beds Spotify’s 0-100 popularity index alongside
audio clips, lyrics and Last.fm tags; its successor
Music4All-Onion (Moscati et al., 2022) retains the
same track universe but appends 252 984 396 lis-
tening events and organises all modalities into con-
centric “layers,” as shown in Fig 6 encouraging
systematic ablation. A similar philosophy guides
SpotGenTrackPopularity (Martin-Gutiérrez et al.,
2019), which aggregates Spotify acoustic features
and Genius lyrics for an unspecified but compara-
bly large set of tracks, again adopting the Spotify in-
dex as a regression target. On the consumption side,
LFM-1b (Schedl, 2016) and LFM-2b (Schedl et al.,
2022) expose more than two billion Last.fm “scrob-
bles,” preserving timestamps and user profiles so
that researchers can derive early-momentum or
long-tail endurance indicators. Twitter-sourced cor-
pora such as #nowplaying (Zangerle et al., 2014)
and #nowplaying-RS (Zangerle et al., 2019a) col-
lect up to fifty million listening declarations linked
to MusicBrainz IDs, extending implicit-feedback
coverage to social-media contexts.

Engagement data at still greater scale ar-
rived with the commercial release of Yambda-5B
(Ploshkin et al., 2025), which logs 4.79 billion
user—track events and explicit like/dislike interac-
tions for 9.39 million tracks in the Yandex-Music
catalogue; although no single composite popular-
ity score is provided, the raw counts empower se-
quence models that learn success signals directly
from interaction streams. The playlist-centric Spo-
tify Million Playlist Dataset (Chen et al., 2018)
offers a complementary view by treating track fre-
quency across one million user-generated playlists
as an implicit salience cue, a feature found to corre-
late with both short-term viral spikes and long-term
consumption.

Across these corpora, three modality trends
emerge. First, low-level spectral features have been
steadily supplemented—and often superseded—by
high-level perceptual attributes supplied via the
Spotify API or Essentia, allowing researchers to
bypass costly signal processing. Second, lyric avail-
ability has grown from sparse manual transcriptions
to near-comprehensive crawls, enabling sentiment,
structural and complexity analyses at scale. Third,
popularity labels have diversified: binary chart ap-
pearance, ordinal rank strata, explicit star ratings,
raw play counts, recency-weighted Spotify indices
and even unaggregated user-event sequences all co-
exist, each favouring a different class of predictive

13

model. The chronological arc from MSD’s audio-
only snapshot through chart-aligned benchmarks
to streaming-native, multimodal giants thus traces
the field’s methodological maturation and provides
today’s researchers with a rich menu of openly li-
censed options for benchmarking music-popularity
prediction.

2.7 Summary and Conclusion

We conducted a detailed review of the Music Infor-
mation Retrieval (MIR) literature, with a particular
focus on the subfield of Hit Song Science (HSS).
HSS lies squarely at the intersection of algorithmic
predictability and the science of human preference
in music. Scientists have approached from both
prediction and science sides aiming to unlock the
secrets of musical appeal and what makes a song
a hit. This dual focus on teasing apart the intan-
gible qualities of music and quantifying them into
workable data forms the backbone of HSS. The
field has, in a way, evolved to be what it is today-a
multidisciplinary pursuit, taking music theory and
sociology off the shelf and adding machine learn-
ing and data science to predict the most effective
chart-toppers. It reveals a growth in complexity
and ambition in forecasting musical success from
the early genre categorization models to the more
global frameworks of HSS.

The change in feature representation is also quite
dramatic within the literature. While we once had
handcrafted traditional features, we now see mas-
sive shifts with regard to learned representations
through deep learning. The neural audio codecs
and the rise of transformer-based architecture, in-
cluding BERT, are redefining how audio and text
are encoded and understood. Audio codecs like
SoundStream, Encodec, and other neural codecs
provide highly aggressive audio compression while
still maintaining all the essential parts of music
and paralinguistic information. Contextual embed-
dings like BERT, GPT, and ELMo gave models
an understanding of deeper levels of meaning and
an emotional trajectory of lyrics where traditional
textual representations like TF-IDF and Word2Vec
became inadequate. The transition into learned
representations improved the feature generaliza-
tion and enhanced the expressive and the narrative
dimensions of audio and text for MIR tasks. Multi-
modal data integration, such as audio, lyrics, and
social features, has, therefore opened doors for
more comprehensive and accurate predictions in
HSS.



The thorough literature review reveals a number
of significant gaps in the state of hit song science
today that restrict the precision and interpretability
of systems for predicting music popularity.

The way lyrics are structurally understood and
processed is still fundamentally lacking, despite
the fact that previous research has investigated
lyrical content using sentiment analysis and the-
matic modeling. The majority of current methods
treat lyrics as unstructured text, using simple em-
bedding techniques or bag-of-words, ignoring the
songs’ natural structural organization into verses,
choruses, bridges, and other semantic segments.
Important details about how musical narratives de-
velop and how recurring elements like choruses
enhance memorability and listener engagement are
lost as a result of this structural blindness. Sys-
tematic methods for automatically recognizing and
utilizing these structural components in popularity
prediction models are lacking in the literature.

Previous research has mostly ignored the dy-
namic elements of an artist’s career trajectory in
favor of static artist characteristics like follower
counts, historical chart performance, or demo-
graphic data. Research on how an artist’s momen-
tum, growth patterns, listener engagement qual-
ity, and career consistency over time affect how
new releases are received is conspicuously lacking.
There is a substantial knowledge gap regarding how
artistic careers develop and affect the performance
of individual tracks since the literature does not
adequately depict the temporal evolution of artist
popularity and its predictive value for future song
success.

Further the Hit Song Science has been sluggish
to embrace these state-of-the-art methods for mu-
sic analysis, despite developments in neural audio
codecs and learned representations in other fields.
Instead of using neural audio codecs, which can ex-
tract richer semantic and acoustic information from
entire audio tracks, the majority of current work
still relies on conventional handcrafted features like
MFCCs and Spotify’s high-level descriptors. This
gap is an uncharted area where the expressiveness
and granularity of audio features used in popularity
prediction could be greatly improved by contempo-
rary representation learning.

To combine audio, lyrical, and social features,
current multimodal approaches in HSS usually use
basic ensemble techniques or simple concatenation.
Sophisticated fusion architectures that can dynami-
cally weight the significance of various modalities
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according to their dependability and pertinence for
individual songs are lacking in the literature. Addi-
tionally, model interpretability is not given enough
consideration; knowledge of the characteristics that
influence predictions and the ways in which vari-
ous modalities influence success forecasts is still
largely unexplored, which restricts the useful infor-
mation that these systems can offer to artists and
business professionals.

These gaps serve as the basis for the contribu-
tions made in this thesis, which investigates neural
audio codec representations, introduces career tra-
jectory dynamics as temporal features, addresses
structural lyric understanding through large lan-
guage model-based annotation, and creates inter-
pretable modality-aware fusion networks for more
precise and explicable music popularity prediction.
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