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Abstract

The rapid growth of e-commerce platforms has
created overwhelming product volumes and di-
verse consumer needs, leading to significant
decision-making challenges for users. Tradi-
tional recommendation systems struggle to pro-
cess the complexity and nuance in reviews,
which contain rich emotional and contextual in-
formation crucial for purchase decisions. Large
Language Models (LLMs) have emerged as
powerful tools for addressing this complexity
through sophisticated opinion summarization
and product analysis capabilities. This sur-
vey synthesizes recent LLM-based innovations
in e-commerce, focusing on both emotional
and factual aspects of customer feedback pro-
cessing. We identify five core research direc-
tions: (1) Multi-Source Opinion Summariza-
tion, which integrates diverse product meta-
data and reviews; (2) Emotion-Aware Opinion
Summarization, which prioritizes affective in-
formation in customer feedback; (3) Query-
Focused Comparative Summarization, en-
abling tailored product comparisons; (4) Opin-
ion Trigger Detection, identifying text spans
that evoke specific emotional responses; and (5)
Query-Focused Explainable Recommenda-
tion, providing transparent rationales for prod-
uct suggestions. We also examine the emerging
use of LLMs as evaluators for reducing hu-
man annotation requirements while maintain-
ing alignment with user preferences.

1 Introduction

E-commerce platforms have fundamentally trans-
formed global retail landscapes, with worldwide
online sales exceeding $5.7 trillion in 2022 and
projected to surpass $8 trillion by 2026 (eMar-
keter, 2023). This exponential growth has gen-
erated unprecedented volumes of heterogeneous
data, including product metadata, user-generated
reviews, and diverse purchasing trajectories. While

this information abundance theoretically empow-
ers consumers, it paradoxically induces signifi-
cant cognitive burden—a phenomenon extensively
studied as choice overload (Scheibehenne et al.,
2010). Contemporary consumers encounter sub-
stantial friction (Chen et al., 2019b; Wang and Ben-
basat, 2022) when navigating complex product cat-
alogs, interpreting subjective feedback, performing
multi-attribute comparisons, and comprehending
algorithmic recommendation rationales.

Traditional computational approaches to e-
commerce information processing—encompassing
rule-based sentiment classification, aspect-based
opinion mining, and matrix factorization-based
collaborative filtering—demonstrate limited effi-
cacy in addressing these multifaceted challenges
(Wang et al., 2016; Chu and Wang, 2019). These
methodologies typically operate in silos, focusing
exclusively on either sentiment polarity detection,
feature extraction, or recommendation generation,
without modeling the intricate cognitive, affective,
and contextual dimensions underlying consumer
decision-making processes (Brazinskas, 2020; Tay
et al., 2019). Consequently, users continue experi-
encing substantial friction in their purchasing jour-
neys (Bagozzi and Dholakia, 2003; Duan et al.,
2008b), manifesting as cart abandonment, decision
fatigue, and diminished post-purchase satisfaction.

The emergence of Large Language Models
(LLMs) presents significant computational ad-
vances for mitigating these architectural and in-
teraction design challenges (Brown et al., 2020a;
Ouyang et al., 2022c). LLMs exhibit substantial
proficiency in contextual representation learning,
few-shot adaptation, and complex reasoning across
multi-modal data streams, facilitating the process-
ing of heterogeneous, high-dimensional informa-
tion while generating outputs that correspond to
human-interpretable cognitive frameworks
(Wei et al., 2022a; Liu et al., 2023a). These com-



putational properties establish LLMs as founda-
tional architectural primitives for enhancing user-
platform interaction paradigms within e-commerce
computational ecosystems (Fu et al., 2023b; Chi-
ang et al., 2023).

Recent research has leveraged LLMs to de-
velop more intuitive, human-centric approaches
to e-commerce information processing (Li et al.,
2020a). These methodologies represent a paradig-
matic shift from traditional product-centric archi-
tectures toward user-centric systems that prioritize
emotional intelligence, query relevance, and de-
cision transparency (Im et al., 2021; Zhang and
Chen, 2020a). By incorporating these design princi-
ples, contemporary approaches address critical pain
points in the consumer journey—information over-
load, affective uncertainty, personalization deficits,
and trust erosion (Greifeneder et al., 2007; Pham,
2007).

Mind, Matter, and Markets: A Tripartite Taxo-
nomic Framework: This survey presents a struc-
tured analytical framework—Mind, Matter, and
Markets—to systematically examine the impact
of LLM-based innovations on e-commerce infor-
mation processing. This tripartite taxonomy cat-
egorizes recent methodological advances based
on their primary computational focus, providing
insights into how LLMs influence cognitive pro-
cessing (Mind), computational infrastructure and
data synthesis (Matter), and economic interaction
mechanisms (Markets).

MIND encompasses methodologies that priori-
tize the psychological and affective dimensions of
consumer experience. These approaches recognize
that purchasing decisions are not purely rational op-
timization problems but are significantly influenced
by emotional responses to products, reviews, and
contextual factors (Damasio, 2004; Lerner et al.,
2015). By capturing and interpreting the affec-
tive content embedded in customer feedback, these
methodologies provide emotionally resonant infor-
mation that aligns with empirical models of human
decision-making (Kim et al., 2019; Wang et al.,
2023c).

Example: Consider a user researching wireless
headphones who encounters reviews expressing
“frustration” with battery life versus “delight” with
sound quality. Mind-focused approaches would
explicitly model these emotional dimensions, gen-
erating summaries that convey not just factual in-

formation (“battery lasts 8 hours”) but affective
context (“users express frustration with the 8-hour
battery life, particularly for long commutes”).

MATTER refers to techniques that synthesize and
contextualize factual product information accord-
ing to specific user information needs. These ap-
proaches acknowledge that different consumers re-
quire different information subsets about identical
products, contingent upon their particular queries
and use-case requirements (Angiolillo et al., 2022;
Ankit et al., 2022). By integrating heterogeneous
product metadata (technical specifications,
marketing descriptions, feature 1lists)
with user-generated content (reviews, ratings,
Q&A), these methods generate comprehensive yet
targeted information representations (Li et al.,
2020a; Im et al., 2021).

Example: For a query “best laptop for video edit-
ing”, a Matter-focused system would synthesize
technical specifications (GPU memory, CPU cores),
marketing descriptions (“professional-grade perfor-
mance”), and relevant review excerpts (‘“rendered
4K video in 20 minutes”) into a coherent, query-
specific summary. This contrasts with generic prod-
uct descriptions that may emphasize irrelevant at-
tributes like portability for gaming use cases. Multi-
source opinion summarization creates significantly
more informative and contextually relevant product
overviews than review-only approaches.

MARKETS focuses on operationalizing these
computational insights within commercial plat-
forms to enhance real-world consumer decision-
making workflows. These approaches address prac-
tical deployment challenges in e-commerce ecosys-
tems, including multi-product comparison inter-
faces, recommendation justification mechanisms,
and purchase confidence optimization (Wang et al.,
2018b; Chen et al., 2018c). By presenting informa-
tion in formats that facilitate direct comparison and
transparent algorithmic reasoning, these methods
reduce decision friction and enhance user trust (Le
et al., 2021a; Echterhoff et al., 2023a).

Example: A Markets-focused system might
present comparative tables showing how three
recommended smartphones perform across user-
specified criteria (camera quality, battery life,
price), accompanied by natural language explana-
tions: “Phone A excels in low-light photography
based on 200+ user reviews, while Phone B of-
fers superior battery performance for heavy usage
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patterns.” Research on query-focused compara-
tive summaries demonstrates that such comparative
explanations significantly improve decision confi-
dence and purchase satisfaction.

Five Pioneering Research Directions: Within
this taxonomic framework, we identify five pioneer-
ing research directions that collectively transform
e-commerce information processing architectures:

QUERY-FOCUSED COMPARATIVE EXPLAIN-
ABLE SUMMARIZATION (QF-CES) enables sys-
tematic comparison of multiple recommended prod-
ucts within the context of specific user queries.
By presenting information in structured tabular
formats alongside natural language “final verdict”
explanations, QF-CES facilitates efficient cross-
product comparison while maintaining query rel-
evance. This approach bridges the Matter and
Markets dimensions by contextualizing product in-
formation according to user needs and facilitating
practical decision-making workflows. Empirical
evaluations demonstrate that QF-CES reduces in-
ference latency by approximately 40% compared to
direct prompt-based approaches while maintaining
output quality.

EMOTION-AWARE OPINION SUMMARIZA-
TION (EAOS) captures both cognitive (explicit
opinions) and affective (associated emotions) di-
mensions of customer reviews. Grounded in
Plutchik’s (Plutchik, 1988) circumplex model of
eight primary emotions—joy, trust, fear, surprise,
sadness, disgust, anger, and anticipation—EAOS
generates summaries that reflect not only what cus-
tomers think but how they emotionally respond.
This approach directly addresses the MIND dimen-
sion by recognizing the crucial role of affective
states in purchasing decisions. Controlled user
studies demonstrate that 82% of participants pre-
fer emotion-aware summaries over traditional
opinion summaries, with significant improvements
in decision confidence metrics.

EMOTION AND OPINION TRIGGER DETEC-
TION (EOT) identifies not only what emotions are
expressed in reviews but specifically which textual
spans trigger those emotional responses. By explic-
itly modeling causal relationships between opinion
triggers (textual evidence) and affective dimensions
(emotion categories), EOT provides deeper in-
sights into product-experience relationships. This
approach primarily addresses the Mind dimension
by elucidating causal mechanisms between product

attributes and emotional responses. Comprehen-
sive benchmarking across 23 contemporary LLMs
demonstrates the effectiveness of structured reason-
ing approaches for this causal modeling task.

MULTI-SOURCE OPINION SUMMARIZA-
TION (M-OS) extends traditional review-based
opinion summarization by integrating product
metadata (titles, descriptions, features, specifica-
tions) with customer reviews. This approach rec-
ognizes that comprehensive product understanding
requires synthesizing both objective manufacturer-
provided attributes and subjective user experiences.
M-OS addresses the Matter dimension by provid-
ing holistic product representations that combine
disparate information sources into coherent narra-
tives. Experimental results demonstrate that M-OS
significantly enhances user engagement, with 87%
of study participants preferring multi-source sum-
maries over traditional review-only approaches.

QUERY-FOCUSED EXPLAINABLE RECOM-
MENDATION (QF-ER) generates natural lan-
guage explanations that justify product recommen-
dations based on specific user queries rather than
historical user profiles. Unlike traditional collabo-
rative filtering systems that rely on user-item inter-
action matrices, QF-ER focuses exclusively on
current query context, enhancing privacy while
maintaining personalization effectiveness. This ap-
proach primarily addresses the Markets dimension
by building user trust through transparent justifica-
tion of algorithmic recommendations. The method-
ology employs reference-free evaluation metrics to
assess explanation quality across multiple dimen-
sions including clarity, fluency, coherence,
and query relevance.

These five research directions, while method-
ologically distinct, exhibit significant interconnec-
tions and complementarities within the proposed
framework. M-OS serves as a foundational com-
ponent for comprehensive product representation,
which can be enhanced with emotional dimensions
(EAOS), adapted for comparative scenarios (QF-
CES), enriched with causal insights (EOT), or
leveraged for recommendation justification (QF-
ER). Collectively, they represent a paradigmatic
shift from isolated technical solutions toward inte-
grated approaches that address multiple dimensions
of the e-commerce user experience simultaneously.
The formal definitions, including input
and output specifications for each of these
research directions, are provided in (Section 4).



2 Language Models

Understanding the architectural evolution of lan-
guage models is essential for contextualizing the
e-commerce applications explored in this survey.
We examine the progression from foundational pre-
trained models to large language models, along
with the optimization techniques that make them
practical for deployment in commercial systems.

PLMs: Before the widespread adoption of
modern, large-scale LLMs, several foundational
sequence-to-sequence models established the via-
bility of transformers for complex generative tasks.
Among the most influential are BART, T5, and
PEGASUS, which have served as critical baselines in
summarization research.

BART: (Bidirectional and Auto-Regressive Trans-
formers) (Lewis et al., 2020a) is a sequence-to-
sequence model specifically pre-trained as a de-
noising autoencoder. Its architecture consists of
a bidirectional encoder to read and corrupt input
text and a left-to-right auto-regressive decoder to
reconstruct the original text. During pre-training,
an uncorrupted text sequence X is transformed by
a noise function ¢ into a corrupted version X. The
model is then trained to reconstruct X by maxi-
mizing the likelihood P(X|X). This pre-training
objective, which corrupts text by masking tokens or
permuting sentences, compels the model to learn ro-
bust bidirectional representations, making it highly
effective for abstractive summarization.

TS: (Text-to-Text Transfer Transformer) (Raffel
et al., 2020) introduced a unified framework that
casts every NLP task as a text-to-text problem.
Instead of having task-specific architectures, T5
uses a standard encoder-decoder transformer that
is trained to generate a target text string given an
input text string. To specify the task, a short prefix
is added to the original input. For summarization,
the input is formatted as follows:

summarize: <document text>

The model is then fine-tuned to generate the cor-
responding summary. This versatile approach al-
lows a single model to perform a wide array of
tasks—from translation to question answering to
summarization—simply by changing the input pre-
fix, demonstrating state-of-the-art performance and
greatly simplifying the transfer learning pipeline.

PEGASUS: (Pre-training with Extracted Gap-
sentences for Abstractive Summarization) (Zhang

et al.,, 2020a) is a transformer-based encoder-
decoder model specifically architected for abstrac-
tive summarization. Its key innovation lies in its
pre-training objective, known as Gap-Sentence
Generation (GSG). Instead of masking random
tokens, PEGASUS masks entire sentences from a doc-
ument and trains the model to generate them from
the remaining context. Specifically, given a docu-
ment D with sentences {s1, s2, ..., Sy}, a subset
of “important” sentences Ses < {51,52,...,5n}
is selected to be masked. The model is then trained
to maximize the conditional likelihood P(Sgs, |
D\ Sggq), where D \ Sy, represents the document
with the gap-sentences removed. Because these
important sentences often function as a pseudo-
summary, this pre-training task closely mirrors the
downstream task of summarization, enabling the
model to achieve strong performance with minimal
fine-tuning.

Large Language Models (LLMs): The emer-
gence of Large Language Models (LLMs) repre-
sents a significant paradigm shift from the foun-
dational models discussed previously. This shift
is characterized by an unprecedented increase
in scale—both in model parameters and training
data—Ileading to the development of remarkable
emergent capabilities, such as the ability to perform
complex tasks in a zero-shot or few-shot manner
without task-specific training (Brown et al., 2020b).

The evolution of LLMs began with a focus on au-
toregressive pre-training, where a model is trained
to predict the next token in a sequence. While
powerful, these base models were not inherently
aligned with human intent. The breakthrough came
with the introduction of instruction-tuning and Re-
inforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022b). In this multi-stage
process, a pre-trained model is first fine-tuned on
a dataset of curated instructions and responses (su-
pervised fine-tuning, SFT). Subsequently, a reward
model ry is trained to predict human preferences,
and the SFT model is further fine-tuned to optimize
this reward. The objective for the policy mgry is to
maximize the expected reward while not deviating
too far from the base model, typically constrained
by a KL-divergence penalty:

maximize By, |2)[76(2,y) — BDKL(TRL(:[2)][7sr (-] 2))] (D

where x is the prompt, y is the completion, and (3
is the KL coefficient. This alignment process has



been fundamental to the success of modern conver-
sational agents and has given rise to a dynamic
ecosystem of both proprietary and open-source
models.

Key LLM Families: The contemporary land-
scape of LLMs is characterized by several promi-
nent model families that have fundamentally
shaped the trajectory of natural language process-
ing research and applications. The selection of
model families examined herein reflects their sub-
stantial impact on both academic research and prac-
tical applications, as evidenced by their widespread
adoption, extensive fine-tuning variants, and in-
fluence on subsequent architectural innovations.
Furthermore, these families demonstrate varying
approaches to critical challenges in large-scale
language modeling, including computational ef-
ficiency, multilingual capabilities, reasoning en-
hancement, and the balance between model capac-
ity and inference costs. The comparative analysis
of these architectures provides essential context
for understanding current state-of-the-art capabili-
ties and identifying promising directions for future
research endeavors.

Llama (Meta Al): The Llama series of models
(Grattafiori et al., 2024) has been pivotal in democ-
ratizing access to high-performance LLMs. Their
release catalyzed a wave of innovation in the open-
source community, leading to the development of
numerous variants and fine-tunes. Subsequent re-
leases, like L1ama 3, have continued to close the
performance gap with proprietary counterparts.

Mistral (Mistral Al): This family of models is no-
table for its architectural efficiency. Models like
Mixtral-8x7B (Jiang et al., 2023) popularized the
use of a sparse Mixture-of-Experts (MOE) archi-
tecture in open-source models. In an MOE layer,
the output y is a weighted sum of the outputs from
a set of "expert" networks {F1, ..., E,}, where
the weights are determined by a gating network

g(z):
y=> g(x)i- Ei(x) )
i=1

This allows the model to have a very large number
of parameters while only activating a fraction of
them for any given input, significantly reducing
computational cost during inference.

Gemma (Google): Developed by Google and de-
rived from the same research and technology used
to create the Gemini models, the Gemma family pro-
vides another high-quality, open-source option for
researchers and developers (Team et al., 2024).

Qwen (Alibaba): The Qwen series of models has
demonstrated particularly strong performance on
a wide range of benchmarks, with a notable
strength in multilingual capabilities and instruction-
following across diverse languages and domains
(Qwen et al., 2025).

Frontier Models and Advanced Reasoning: At
the cutting edge are proprietary models explic-
itly architected for complex, multi-step reasoning,
moving beyond standard instruction-following.

OpenAl Models: OpenAI’s models, such as the
GPT series (OpenAl, 2023), have consistently
pushed the boundaries of LLM capabilities. Recent
advancements have focused on enhancing reason-
ing. As suggested by the papers in this survey,
advanced reasoning-enhanced variants, conceptu-
ally referred to as models like 03, are designed to
handle complex, structured prompts and perform
systematic analysis, setting the benchmark for tasks
requiring deep inference.

Anthropic Models: Claude family, particularly
models like Claude 4 Opus, has been developed
with a strong emphasis on reliability and sophisti-
cated reasoning. As seen in the surveyed research,
these models can execute a "thinking" process,
which is an explicit implementation of Chain-of-
Thought (COT) reasoning (Wei et al., 2022d). In
this process, the model is prompted to generate a
sequence of intermediate, logical steps before ar-
riving at a final answer, significantly improving its
performance on tasks that require complex deliber-
ation.

Parameter-Efficient Fine-Tuning (PEFT):
While instruction-tuning and RLHF create
powerful general-purpose models, adapting them
to specialized tasks or domains often requires
further fine-tuning. However, full fine-tuning of a
multi-billion parameter LLM is computationally
prohibitive, requiring immense memory and
yielding a separate, full-sized model for each task.
To overcome this, the field has widely adopted
(PEFT).

The core principle of PEFT is to freeze the vast
majority of the pre-trained model’s weights and



train only a small number of new or adapted pa-
rameters. A leading PEFT method is Low-Rank
Adaptation (LORA) (Huetal., 2021). LoRA posits
that the change in a weight matrix during adapta-
tion, AW, has a low "intrinsic rank." It therefore
approximates this change by decomposing it into
two much smaller, low-rank matrices, B and A:

Wo+ AW = Wy + BA 3)

where Wy € R¥* are the frozen pre-trained
weights, while B € R and A € R"™* are
trainable low-rank matrices, with the rank r <
min(d, k). By training only A and B, the num-
ber of trainable parameters is drastically reduced,
making it feasible to fine-tune massive models
on consumer-grade hardware. Frameworks like
Unsloth (Daniel Han and team, 2023) have further
optimized these techniques, enabling even faster
and more memory-efficient fine-tuning. This has
been instrumental in creating the specialized, high-
performing open-source models evaluated through-
out this survey.

Model Quantization for Efficient Inference:
Alongside PEFT, which addresses the memory de-
mands of training, model quantization tackles the
computational and memory costs of inference. The
core challenge is that LLMs are typically trained
using 32-bit floating-point precision (FP32), result-
ing in massive memory footprints (e.g., a 7B pa-
rameter model requires 28GB of VRAM). Quan-
tization reduces this burden by converting the
model’s weights from high-precision data types to
low-precision ones, such as 8-bit or 4-bit integers
(INTS/INT4).

The fundamental principle is an affine transfor-
mation that maps a high-precision floating-point
weight tensor IV to a lower-precision integer tensor
W,. This is achieved using a scaling factor S and
a zero-point Z:

W, = round <g/ + Z) 4)

During inference, the weights are de-quantized
back to an approximation of the original floating-
point values: W ~ S - (W, — Z). This process
significantly reduces the model’s size and can accel-
erate computation on hardware with native support
for low-precision arithmetic, albeit with a poten-
tial trade-off in model performance. For example,
a weight value of 0.5 in FP32 might be mapped

to the integer 192 in an INTS8 representation that
spans the range [—1.0, 1.0].

Early post-training quantization (PTQ) meth-
ods focused on simple rounding, but modern tech-
niques are far more sophisticated to preserve model
fidelity. Methods like GPTQ (Frantar et al., 2022)
and AWQ (Lin et al., 2023) use calibration data to
identify and preserve salient weights, minimizing
the performance degradation. The introduction of
QLORA (Dettmers et al., 2023) was a major break-
through, enabling 4-bit fine-tuning by introducing
a new data type, 4-bit NormalFloat (NF4), which
is information-theoretically optimal for normally
distributed weights. QLORA also employs Dou-
ble Quantization, which quantizes the quantization
constants themselves for further memory savings.

This progress has been operationalized through
community-driven formats, most notably GGUF
(GPT-Generated Unified Format). Evolving from
the earlier GGML format, GGUF is a binary file
format designed specifically for storing and rapidly
loading quantized models for inference, particu-
larly on CPUs via frameworks like 1lama.cpp.
By packaging the model’s architecture, metadata,
and quantized weights into a single portable file,
GGUF has been instrumental in making state-of-
the-art LLLMs accessible on consumer-grade hard-
ware. Together, quantization and PEFT form a
powerful toolkit for the development and deploy-
ment of large-scale language models.

Inference Optimization Frameworks: While
quantization reduces the static memory footprint
of an LLM, another critical challenge is maximiz-
ing inference throughput and efficiently managing
memory during runtime, especially for dynamic
batching of requests with variable lengths. To ad-
dress this, specialized serving frameworks have
become essential. VLLM (Kwon et al., 2023) is
a high-throughput serving engine that introduced
PagedAttention, a novel algorithm inspired by vir-
tual memory and paging in operating systems. In-
stead of pre-allocating a contiguous memory block
for the Key-Value (KV) cache of a sequence, Page-
dAttention partitions the KV cache into blocks that
can be stored non-contiguously, mitigating internal
fragmentation and enabling near-optimal memory
usage. This allows for significantly higher batch
sizes and boosts GPU utilization, leading to dra-
matic improvements in serving throughput. Many
such high-performance systems are built on dis-



tributed computing frameworks like RAY (Moritz
et al., 2018), which provides a simple, universal
API for building and scaling distributed applica-
tions, handling complex tasks like parallel process-
ing and distributed memory management.

Beyond optimizing the inference engine itself,
a higher-level ecosystem of orchestration frame-
works has emerged to simplify the development of
complex, multi-step applications. LANGCHAIN
(Chase, 2022) provides a comprehensive toolkit
for "chaining" LLM calls with other components,
such as external APIs, databases, and memory
modules. It abstracts common patterns for build-
ing agents, retrieval-augmented generation (RAG)
pipelines, and other composite Al systems. More
recently, LANGGRAPH (LangChain, 2023) has ex-
tended this paradigm by representing application
logic as a cyclic graph instead of a simple Directed
Acyclic Graph (DAG). This allows developers to
build more sophisticated and robust agents that can
loop, self-correct, and manage complex state over
multiple steps, more closely mimicking human-like
deliberation and planning. These frameworks act
as crucial middleware, bridging the gap between
a raw LLM and a deployable, production-grade
application.

Model Ecosystem: For brevity, this survey has
focused on a limited number of prominent open-
source model families. However, the field is
characterized by a vibrant and rapidly expanding
ecosystem. Platforms like Hugging Face' (Wolf
et al., 2020) serve as a central hub, hosting tens
of thousands of pre-trained models, datasets, and
tools, fostering collaborative development and re-
producibility. To simplify programmatic access
across this landscape, services like OpenRouter”
have emerged. These platforms act as inference
aggregators, providing a unified API endpoint that
allows developers to interact with dozens of dif-
ferent models—from proprietary ones like GPT-40
and Claude 4 Opus to a wide array of open-source
variants—through a single, standardized interface.
This abstraction layer facilitates rapid experimenta-
tion and helps manage costs by routing requests to
the most suitable model.

To navigate the performance of this vast collec-
tion of models, community-driven leaderboards
have become essential. The LMSys Chatbot

'https://huggingface.co/models
*https://openrouter.ai

Arena’ (Zheng et al., 2023), for instance, provides
a continuously updated ranking of models based
on crowdsourced, anonymous, side-by-side human
preference comparisons, using an Elo rating sys-
tem to quantify performance. This dynamic ecosys-
tem ensures that the state-of-the-art is constantly
being challenged and that increasingly powerful
models are becoming accessible to the entire re-
search community.

3 Prompting Techniques

Prompting serves as the primary interface for inter-
acting with LARGE LANGUAGE MODELS (LLMS),
allowing users to elicit desired behaviors through
textual instructions. This section provides an
overview of prompting techniques, from basic to
advanced approaches, highlighting their evolution
and impact on model performance.

Zero-shot Prompting: Zero-shot prompting
involves directly querying an LLM with an instruc-
tion without providing any examples in the prompt.
This approach relies solely on the model’s vast
pre-trained knowledge to understand and execute
the task (Brown et al., 2020b). For instance, in
e-commerce applications, a simple instruction like
“Generate a comprehensive summary of the
following product reviews highlighting
key features and customer sentiments” ex-
emplifies zero-shot prompting for opinion summa-
rization. Similarly, “Identify the emotions
expressed in this product review using
Plutchik’s emotion categories” demonstrates
zero-shot emotion detection. While straightfor-
ward, this approach can yield suboptimal perfor-
mance on complex or specialized tasks that fall out-
side the model’s training distribution. Nevertheless,
modern LLMs demonstrate remarkable zero-shot
capabilities across diverse domains, a phenomenon
often described as an “emergent ability” that ap-
pears as model scale increases (Wei et al., 2022b).

Few-shot Prompting: Few-shot prompting en-
hances model performance by including demon-
stration examples within the prompt, a technique
known as in-context learning (Brown et al., 2020b).
By providing several input-output pairs before the
target query, the model can better understand the
task’s pattern and expected output format. For ex-
ample, in e-commerce emotion detection:

3https://Imarena.ai
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Identify emotions and their
triggers in product reviews:
Input: “This wireless headphone
has amazing sound quality but the
battery dies quickly.” Output:
Joy (amazing sound quality),
Disappointment (battery dies
quickly)

Input: “The delivery was delayed
and the packaging was damaged.”

Output: Anger (delivery was
delayed), Disgust (packaging was
damaged)

Input: “I’'m so excited to

try this new skincare routine!”
Output: ?

Few-shot prompting offers several advantages: it
requires no model parameter updates, provides ex-
plicit task guidance, and can significantly boost per-
formance with only a handful of examples. How-
ever, its effectiveness is highly dependent on factors
like example selection, formatting, and ordering,
as the model’s performance is sensitive to the dis-
tribution and structure of the demonstrations (Min
et al., 2022).

Chain-of-Thought (CoT) Prompting: CoT en-
courages the model to generate intermediate
reasoning steps before producing a final an-
swer (Wei et al., 2022d; Kojima et al., 2023).
By decomposing complex problems into manage-
able sub-steps, COT prompting dramatically im-
proves performance on tasks requiring multi-step
reasoning, such as product comparison, query-
focused summarization, and recommendation justi-
fication. For example, in product comparison:

Compare these smartphones for a

photography enthusiast. Think
step by step:

Step 1: Analyze camera
specifications (megapixels,

aperture, lens quality)

Step 2: Review customer feedback
on photo quality

Step 3: Consider additional
photography features (night mode,
portrait mode)

Step 4: Evaluate
price-to-performance ratio

Final recommendation: Based on

superior camera hardware and
positive photography reviews...

The prompt typically includes the instruction to
“think step by step” or provides examples with
explicit reasoning chains.

Research has shown that CoT prompting is par-
ticularly effective for larger language models (typi-
cally >100B parameters), demonstrating that rea-
soning capabilities emerge at scale (Wei et al.,
2022b). Variations such as Zero-shot CoT (Ko-
jima et al., 2023) use simple prompts like “Let’s
think step by step” to elicit reasoning without
examples, while Few-shot CoT (Wei et al., 2022d)
provides demonstration examples with reasoning
steps.

Self-Consistency: Self-consistency (Wang
et al., 2023e) extends COT prompting by generat-
ing multiple reasoning paths and selecting the most
consistent answer through majority voting. This
approach mitigates reasoning errors by aggregating
results across different solution attempts, leading
to more reliable outputs. For example, when gen-
erating product recommendations, an LLM might
generate several reasoning paths:

Path 1: User wants durability
-+ Check build quality reviews -
Recommend Product A

Path 2: Budget constraints -
Compare price points - Recommend
Product A

Path 3: Feature requirements -
Match specifications - Recommend
Product A

Final decision: Product A
(consistent across all reasoning
paths)

This approach is particularly valuable in
e-commerce applications where recommenda-
tion confidence and explanation consistency are
crucial for user trust.

Tree of Thoughts (ToT): Tree of Thoughts
(Yao et al., 2023a) expands on CoT by exploring
multiple reasoning branches simultaneously, en-
abling more systematic problem-solving. ToT im-
plements a search algorithm (breadth-first or depth-
first) over intermediate reasoning steps, evaluat-
ing promising paths while pruning unpromising



ones. This approach allows for backtracking
and exploration of alternative solution
strategies, particularly valuable for tasks like
game playing, planning, and complex problem-
solving where considering multiple possibilities
is beneficial.

Least-to-Most Prompting: Least-to-Most
prompting (Zhou et al., 2023a) breaks down
complex problems into simpler subproblems that
build upon each other. The approach first solves
easier components and progressively leverages
these solutions to tackle more challenging aspects.
This technique has shown particular effectiveness
for compositional reasoning and programming
tasks where incremental progress facilitates
solving the overall problem.

ReAct Prompting: ReAct (Reasoning and Act-
ing) (Yao et al., 2023b) interleaves reasoning steps
with actions in environments where interaction is
necessary. The framework combines natural lan-
guage reasoning with the ability to take actions
(such as searching for information, using tools, or
executing operations) and then observing outcomes
to inform subsequent reasoning. In e-commerce
applications, ReAct enables dynamic product re-
search:

Thought: User needs a laptop for
gaming. I should check current
gaming laptop reviews.

Action: Search["best gaming
laptops 2024 reviews"]

Observation: Found reviews
mentioning RTX 4080, high

refresh rate displays...

Thought: Now I should compare
specific models mentioned in
reviews.

Action: Compare["ASUS ROG vs MSI
Gaming laptop specs”]

Observation: ASUS has better
cooling, MSI has superior
display...

This approach has proven effective for tasks requir-
ing dynamic interaction with product databases,
review aggregation, and real-time price compari-
son.

Self-Verification: Self-verification tech-
niques (Weng et al., 2023) prompt LLMs to
critically evaluate their own outputs for correct-
ness, consistency, and comprehensiveness. By
explicitly asking models to check their reasoning,
identify potential errors, and verify factual claims,
self-verification improves output reliability.
Common implementations include multi-stage
prompting where an initial solution is followed by
a verification phase that checks for errors before
producing a final, refined answer.

Self-Refinement: Self-refinement (Madaan
et al., 2023) extends self-verification by enabling
models to iteratively improve their outputs based
on self-identified issues. The model generates an
initial response, critically evaluates it, and then pro-
duces an improved version. This process can iterate
multiple times, with each cycle addressing previ-
ously identified shortcomings. Self-refinement has
shown particular promise for tasks requiring high
quality and precision, such as code generation, es-
say writing, and complex reasoning.

Meta-Prompting: Meta-prompting (Suzgun
and Kalai, 2024) involves guiding LLMs to
generate their own prompts or refine existing ones.
By leveraging the model’s capabilities to design ef-
fective instructions, meta-prompting can optimize
task performance without human intervention.
This approach often includes generating multiple
candidate prompts, evaluating their quality, and
selecting the most effective version for the target
task.

Automatic Prompt Engineering: Automatic
Prompt Engineer (APE) (Zhou et al., 2023b)
systematically optimizes prompts using search al-
gorithms or learning-based approaches. These
methods explore the prompt space to identify in-
structions that maximize performance on specific
tasks, often surpassing human-designed prompts.
APE techniques include gradient-based optimiza-
tion, evolutionary algorithms, and reinforcement
learning from model outputs.

Constitutional AI: Constitutional AI (Bai
et al., 2022) enhances LLM behavior through a
two-stage process: supervised learning from hu-
man feedback and reinforcement learning from Al
feedback. The approach uses a set of principles (a
"constitution") to guide model responses, enabling



models to critique and revise their own outputs
according to specified ethical and behavioral guide-
lines. This technique has proven particularly effec-
tive for reducing harmful outputs while maintaining
helpfulness, achieving up to 25% improvement in
safety metrics compared to standard RLHF ap-
proaches (Ouyang et al., 2022b).

Tree of Thoughts Variations: Building upon the
foundational TOT framework (Yao et al., 2023a),
several advanced variations have emerged. Graph
of Thoughts (GOT) (Besta et al., 2024) extends
tree-based reasoning to arbitrary graph structures,
enabling more complex reasoning patterns and in-
formation aggregation. Algorithm of Thoughts
(AOT) (Sel et al., 2024) incorporates algorith-
mic examples to guide the search process, achiev-
ing 10%-15% performance improvements on com-
plex reasoning tasks. Skeleton-of-Thought (SOT)
(Ning et al., 2024) first generates a reasoning skele-
ton before filling in details, reducing inference time
by up to 40% while maintaining quality. These vari-
ations demonstrate the continued evolution of struc-
tured reasoning approaches, with each addressing
specific limitations of the original TOT framework
through enhanced search strategies, computational
efficiency, or reasoning flexibility.

4 Problem Formulation

This section presents formal problem definitions for
five key research directions in e-commerce NLP.
Each task addresses distinct challenges in prod-
uct recommendation and review analysis, requir-
ing specialized natural language understanding and
generation capabilities.

4.1 Query-Focused Comparative Explainable
Summarization (QF-CES)

Users often struggle with decision paralysis when
comparing multiple recommended products with-
out consolidated, query-specific insights. The QF-
CES task addresses this challenge by generating
comparative summaries that directly respond to
user information needs.

Task Definition: Given a user query ¢; € Q and
the top-k recommended products P; = {p;; }§:1
where k = 3, the goal is to generate a comparative
summary through the mapping:

H:OxPFsCxV
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where H(q;, P;) = (ci,v;) produces a structured
comparison table ¢; € C and a natural language
verdict v; € V.

Input: A natural language query ¢ (e.g.,
"best wireless headphones for running under
%12,000") and three recommended products P; =
{p1,p2, p3}, where each product p; contains meta-
data including title, description, specifications, cus-
tomer reviews, ratings, and pricing information.

Output: The system generates: (1) a structured
comparison table ¢; highlighting key attributes rel-
evant to the query, and (2) a natural language expla-
nation v; providing a final recommendation verdict.

Example: For the query "best wireless head-
phones for running under X12,000", the compari-
son table focuses on key attributes such as battery
life, comfort and fit, durability, connectivity, and
overall value. The verdict offers a nuanced recom-
mendation based on performance, price, and user
needs.

The comparison table c; is structured as follows:

Attribute Prod A Prod B Prod C

Base Price 10,499 37,999 211,499

Final Price 34,299 35,499 38,999

Battery Life 40h 22h 30h

Comfort Secure, sweat- | Lightweight, Snug, over-ear
proof loose fit

Durability Rugged, IPX5 Moderate, IPX4 High, IPX5

Bluetooth Version 5.3 5.0 52

Rating 4.6/5 4.1/5 4.715

Pros Best  battery, | Budget option, | Balanced
durable, secure decent sound performance,
fit high-quality

audio
Cons Slightly bulky Shorter battery, | Higher cost
lower rating

Table 1: QF-CES comparison table: Wireless head-
phones for running under ¥12,000

Final Verdict Summary: Product A emerges as
the top choice for runners seeking endurance and
reliability — it offers an unmatched 40-hour battery
life, rugged water resistance (IPX5), and secure
fit at a discounted price of 34,299. If comfort
and affordability are bigger priorities, Product B
provides a lightweight option under 5,500, though
with trade-offs in battery and rating. Meanwhile,
Product C is ideal for audio enthusiasts who want
premium sound and build quality, but it comes at a
higher price.

Evaluation Framework: We evaluate QF-CES
outputs using a five-dimensional assessment frame-
work. Given the quadruple (¢;, v;, ¢;, P;), the eval-



uation function:
SQF-CES :CxVx QX’Pk—>[,g

returns quality scores across five dimensions: clar-
ity (readability and organization), faithfulness (ac-
curacy to source data), informativeness (coverage
of relevant details), format adherence (structural
compliance), and query relevance (alignment with
user intent).

4.2 Emotion-Aware Opinion Summarization
(EAOS)

Traditional opinion summarization often reduces
complex customer emotions to simple positive/neg-
ative polarities, losing nuanced affective informa-
tion. EAOS addresses this limitation by generating
summaries that capture the full spectrum of cus-
tomer emotions while maintaining factual accuracy.

Task Definition: Given a product p € P and a
collection of customer reviews R = {r; }!" ; where
m = 10, the objective is to generate an emotion-
aware summary through:

G:PxR—>Sx& 5)

This mapping produces both a textual summary
s € S and emotion annotations e € 8 based on
Plutchik’s emotion wheel: {joy, trust, fear, surprise,
sadness, disgust, anger, anticipation}.

Input: A product title p (e.g., "Samsung Galaxy
Bluetooth Speaker™) and 10 customer reviews R =
{ry,72,...,10}, where each review r; contains a
title and review text with 10-100 tokens.

Output: An emotion-aware summary s (125
words) that integrates factual product aspects with
emotional customer responses, along with emotion
intensity mappings across eight primary emotions.

Example: For a Bluetooth speaker priced at
34,999 with mixed reviews, the EAOS output might
be: "Customers express strong joy and trust regard-
ing the speaker’s exceptional bass quality and re-
liable wireless connectivity up to 10 meters. How-
ever, several users report anger and frustration
about the battery lasting only 4-5 hours instead
of the advertised 12 hours at 34,999 price point.
The compact design generates anticipation for out-
door activities, though some express fear about the
speaker’s durability after reports of volume button
malfunctions within 6 months of purchase.”
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The system employs a four-step reasoning pro-
cess: (1) aspect-emotion mapping to identify which
product features trigger specific emotions, (2) emo-
tional balance assessment to ensure fair represen-
tation, (3) narrative integration to create coherent
text, and (4) refinement and validation for quality
assurance.

Evaluation Framework: The evaluation func-
tion £ : S x P x R — LI assesses summaries
across seven dimensions: fluency, coherence, faith-
fulness, emotional accuracy, emotional spectrum
coverage, emotional bias mitigation, and contex-
tual emotional relevance.

4.3 Emotion-Opinion Trigger Detection
(EOT)

Understanding not just what emotions customers
express, but why they feel that way, is crucial for
actionable business insights. EOT addresses this
challenge by jointly detecting emotions and iden-
tifying the specific textual spans that trigger those
emotions.

Task Definition: Given a customer review R =
{R;} | as a sequence of N tokens, the objective
is to identify emotion-trigger pairs through:

MR — 28pxTe (6)

where Ep = P U {Neutral } represents the emotion
space based on Plutchik’s eight primary emotions:

P = {Joy, Sadness, Anger, Fear,
Trust, Disgust, Surprise, Anticipation }

and 7, contains extractive opinion triggers explain-
ing each detected emotion.

Input: A single customer review R with 10 —
100 tokens.

Output: Emotion-trigger mappings O(R) =
{(e, T¢)} where each emotion e is paired with its
triggering text spans 7.

Example: Consider the review: "I love the sleek
aluminum design and 6GB RAM performance at
18,999, but I'm disappointed by the poor cus-
tomer service response time when I reported screen
flickering issues.”

The EOT system would output:



* (joy, "love the sleek aluminum design and
6GB RAM performance at X18,999")

e (sadness, "disappointed by the poor customer
service response time'")

* (anger, "screen flickering issues")

This joint modeling approach enables inter-
pretable emotion analysis by establishing explicit
causal relationships between customer feelings and
their textual manifestations, moving beyond sim-
ple emotion classification to explanatory emotion
understanding.

4.4 Multi-Source Opinion Summarization
M-0S)

E-commerce product information is typically frag-
mented across multiple sources (descriptions,
specifications, reviews, ratings), creat-
ing cognitive overload for users. M-OS addresses
this challenge by synthesizing heterogeneous infor-
mation sources into comprehensive, unified sum-
maries.

Task Definition: Given a product p € P with
complete metadata tuple p = (7,0,K,S, pa, R),
where 7 is the title, 0 is the description, K repre-
sents key features, S contains specifications, p,
is the average rating, and R is the review collec-
tion, the objective is to generate a comprehensive
summary through:

./TM_OS :P—=S

Input: Complete product metadata including:
product title, manufacturer description, key feature
list, technical specifications, average rating score,
and customer review collection.

Output: A unified summary s that coherently
integrates objective product information with sub-
jective user experiences, providing holistic product
understanding.

Example: For a smartphone priced at 332,999,
M-OS might integrate:

* Technical specs: "6.7-inch AMOLED display,
128GB storage, 5S0MP triple camera”

¢ Marketing description: "Premium flagship
with Al-powered photography”
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» User reviews: "Excellent camera perfor-
mance but heating issues during gaming"

» Ratings: "4.3/5 stars from 2,847 reviews"

Into a comprehensive summary: "This 332,999
smartphone features a 6.7-inch AMOLED dis-
play and 128GB storage with premium flagship
positioning. Users consistently praise the 50MP
triple camera’s Al-powered photography capabili-
ties, validating marketing claims about advanced
imaging. However, multiple reviewers report heat-
ing issues during intensive gaming sessions, sug-
gesting thermal management limitations despite
the overall positive 4.3/5 star rating from nearly
3,000 customers. The device offers solid premium
features but potential buyers should consider usage
patterns.”

Evaluation Framework: The evaluation func-
tion Em.0s 1 S X P — Eg assesses summaries
across seven quality dimensions: fluency, coher-
ence, relevance, faithfulness, aspect coverage, sen-
timent consistency, and specificity.

4.5 Query-Focused Explainable
Recommendation (QF-ER)

Recommendation systems often suffer from algo-
rithmic opacity, providing products without ex-
plaining why they match user needs. QF-ER ad-
dresses this transparency gap by generating natural
language explanations that justify recommendation
relevance to specific user queries.

Task Definition: Given a user query ¢ € Q and
a recommended product p € P, the objective is to
generate an explanation through:

G:OxP—-TxI'xA

This produces an explanation text e € 7T, confi-
dence level v € T" = {Low, Medium, High}, and
relevance assessment 6 € A = {Yes, No}.

Input: A user query q (e.g., "laptop for video
editing under ¥80,000") and a recommended prod-
uct p with comprehensive metadata including ti-
tle, description, features, specifications, ratings,
reviews, and pricing information.

Output: A natural language explanation e (75-
100 words) with confidence score v and binary
relevance assessment 6, justifying why the product
matches the query requirements.



Example: For the query "laptop for video editing
under ¥80,000" and a recommended laptop priced
at 374,999:

Explanation: "This laptop excellently matches
your video editing requirements with its Intel i7-
12700H processor and 16GB DDR4 RAM, provid-
ing sufficient computational power for 4K video
processing. The dedicated NVIDIA RTX 3060
graphics card with 6GB VRAM accelerates video
rendering in Adobe Premiere Pro and DaVinci Re-
solve. The ITB NVMe SSD ensures fast project
file access. At X74,999, it fits comfortably within
your 80,000 budget. Customer reviews consis-
tently highlight 90% satisfaction for creative appli-
cations, with average 4.4/5 stars for video editing
performance.”

Recommendation Confidence: High
Correct Recommendation: Yes

This framework provides transparent recommen-
dations by justifying the product-query fit. The
Recommendation Confidence: High score in-
dicates a strong alignment between the laptop’s
technical specifications (Intel i7, RTX 3060, 16GB
RAM) and the explicit needs of video editing. The
Correct Recommendation: Yes verdict offers a
clear, binary confirmation that the product is a suit-
able choice, building user trust through explainable
alignment.

5 Related Work

Our work intersects several key research areas each
addressing critical gaps in current e-commerce
decision-support technologies.

5.1 Query-Focused Comparative Explainable
Summarization (QF-CES)

EXPLAINABLE RECOMMENDATION has been an
active area of research in recent years, with early
contributions from Chen et al. (2018a) and Wang
et al. (2018a). Li and Reddy (2020) and Yang et al.
(2021) furthered the field, leading to PETER, a
personalized transformer for explainable recom-
mendation by Li et al. (2021a). Colas et al. (2023)
introduced KNOWREC, a knowledge-grounded
model, and Wang et al. (2023d) enhanced expla-
nations by extracting comparative relation tuples.
Gao et al. (2024) aligned LLMs for recommenda-
tion explanations, and Peng et al. (2024) leveraged
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LLMs to generate explanations. Ni et al. (2019a),
Tan et al. (2021), and Li and Reddy (2020) generate
templatized explanations using item attributes and
sentiment from reviews.

COMPARATIVE SUMMARIZATION has re-
ceived limited attention. Iso et al. (2022) generated
contrastive summaries and a common summary
from user reviews, Yang et al. (2022) developed
review-based explanations for recommended items,
Echterhoff et al. (2023b) generated aspect-aware
comparative sentences, while Le et al. (2021b) pro-
posed a framework incorporating comparative con-
straints into recommendation models.

LLM-based EVALUATORS as traditional met-
rics like ROUGE (Lin, 2004a) and BLEU (Pa-
pineni et al., 2002a) often misalign with human
judgments for opinion summaries. Recent NLP ad-
vancements, particularly in LLMs, offer promising
alternatives. Studies have explored LLM-based
evaluation methods (Fu et al., 2023a; Chiang and
Lee, 2023a; Wang et al., 2023a; Kocmi and Feder-
mann, 2023), including CHAIN-OF-THOUGHT ap-
proaches (Liu et al., 2023b; Wei et al., 2022¢) and
reference-free evaluation (Chiang and Lee, 2023c¢).
proposed two prompt strategies for opinion sum-
mary evaluation on 7 metrics.

QF-CES differs from existing work through:
(1) Consolidated Comparison of three products si-
multaneously; (2) Query-Based Personalization,
preserving privacy; (3) Dynamic Attribute Genera-
tion tailored to user queries; (4) Category-Agnostic
approach applicable across product domains; (5)
Recommendation-Engine Agnostic, functioning
with any ranking system; and (6) Multi-Source
Integration, generating comprehensive summaries
beyond user reviews. These features collectively
offer a more versatile, privacy-conscious, and in-
formative comparative summarization solution.

5.2 Emotion-Aware Opinion Summarization
(EAOS)

The development of EMOTION-AWARE OPINION
SUMMARIZATION addresses a long-standing and
critical limitation in traditional opinion analysis:
the affective blind spot. For decades, research in
opinion summarization has evolved significantly,
yet has largely failed to capture the rich emotional
dimensions that fundamentally shape consumer
perception and purchasing decisions (Chen et al.,
2022; Felbermayr and Nanopoulos, 2016). This has



resulted in the perpetuation of shallow summaries
that, while factually grounded, lack the emotional
depth required for genuine user understanding.

The trajectory of opinion summarization be-
gan with extractive methods, which focused on
identifying and concatenating salient sentences
from source reviews (Erkan and Radev, 2004; Kim
et al., 2011). The field later transitioned to more
sophisticated neural and abstractive approaches
(BraZinskas et al., 2020; Amplayo and Lapata,
2020), which enabled the generation of novel, more
fluent summaries. Research further specialized into
aspect-specific (Amplayo et al., 2021) and multi-
source summarization (Li and Lam, 2020). Despite
these advances, the core focus remained on distill-
ing rudimentary sentiment polarity (i.e., positive,
negative, neutral). Even recent, large-scale sum-
marization efforts have primarily centered on senti-
ment, thereby overlooking the crucial nuances of
discrete emotions like joy, trust, or disappointment
that are potent determinants of consumer behavior
(Bhaskar et al., 2023; Hosking et al., 2023; Pappas
and Androutsopoulos, 2014).

Concurrently, but largely in isolation, the field
of Emotion Analysis in NLP has matured signif-
icantly. Grounded in foundational psychological
frameworks such as Plutchik’s wheel of emotions
and Ekman’s basic emotions (Plutchik, 1988, 2000;
Ekman, 1992), researchers have developed robust
models for both emotion classification (Moham-
mad and Bravo-Marquez, 2017; Felbo et al., 2017)
and emotion extraction (Ding et al., 2020; Ying
et al., 2019; Li et al., 2023b). These efforts have
successfully equipped machines to identify and
categorize a wide spectrum of human emotions ex-
pressed in text. However, this line of research has
predominantly focused on analysis and extraction,
rather than the generative task of synthesizing these
emotional insights into a coherent, human-readable
summary.

This separation of disciplines created what can
be termed the unaddressed frontier: the genera-
tive task of synthesizing affectively nuanced sum-
maries remained almost entirely unexplored. The
advent of modern Large Language Models (LLMs)
has been the primary catalyst enabling this new
research direction. With their emergent capabilities
in affective reasoning (Tse-Hsun et al., 2024) and
abstractive compression (Deroy et al., 2023),
LLMs provide the first technically viable tools to
bridge the gap between cognitive opinion and af-
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fective experience.

The novelty of EAOS also introduces new
challenges, particularly in evaluation. It is well-
documented that traditional metrics like ROUGE
(Lin, 2004b), BLEU (Papineni et al., 2002a), and
BERTSCORE (Zhang et al., 2020b) often cor-
relate poorly with human judgments for nuanced
summarization tasks (Shen and Wan, 2023). This
inadequacy is magnified when assessing the fidelity
of emotional representation. Consequently, a par-
allel line of research has emerged on leveraging
LLMs themselves as scalable and effective evalu-
ators (Fu et al., 2023b; Chiang and Lee, 2023a,b;
Wang et al., 2023a). Methodologies such as Chain-
of-Thought (COT) prompting (Liu et al., 2023b;
Wei et al., 2022¢) and reference-free evaluation
(Chiang and Lee, 2023c) are being developed to
create more reliable and human-aligned assessment
protocols. The EAOS framework is the first to
systematically address this long-ignored gap, in-
troducing a comprehensive, theoretically-grounded
methodology for both the generation and multi-
dimensional evaluation of summaries that truly re-
flect the customer’s emotional journey.

5.3 Emotion and Opinion Trigger Detection
(EOT)

While identifying the emotion expressed in a re-
view is valuable, understanding why that emotion
was elicited is crucial for generating truly inter-
pretable and actionable insights. This has given rise
to the task of EMOTION AND OPINION TRIGGER
DETECTION (EOT), which involves the joint iden-
tification of an emotion and the specific text span
(opinion trigger) that caused it. This task directly
addresses the fundamental question of causality
in user feedback, a dimension that has remained
largely under-explored in e-commerce contexts.

The broader field of Emotion Analysis has long
been central to NLP, demonstrating how affective
signals shape online discourse and influence con-
sumer decisions (Mohammad and Turney, 2013).
Initial research focused on classifying text into
coarse sentiment categories (positive, neutral, nega-
tive). Recognizing the limitations of this approach,
researchers soon adopted more nuanced emotion
taxonomies, such as those proposed by (Russell,
1980), (Ekman, 1992), and (Plutchik, 2001), to
capture the complexity of human emotional expres-
sion.



The more specific subfield of Emotion-Trigger
Analysis, or Emotion-Cause Extraction (ECE), has
evolved through several methodological phases.
Early approaches utilized rule-based systems
(Neviarouskaya et al., 2009; Lee et al., 2010) and
statistical methods (Gui et al., 2016; Xia and Ding,
2019) to identify the causes of emotions in text.
More recent studies have employed sophisticated
deep learning techniques, including graph-based
models and attention mechanisms, to perform joint
emotion-cause extraction (Wei et al., 2020; Fan
et al., 2021; Singh et al., 2021), as well as context-
aware models for more accurate trigger identifica-
tion (Li et al., 2019).

However, this body of work has two critical lim-
itations concerning e-commerce. First, prior re-
search has almost exclusively focused on genres
like news articles and social media, leaving the
domain of product reviews virtually unexplored.
The unique linguistic style and structure of reviews
present distinct challenges not found in other text
types. A recent study by (Singh et al., 2024) on
the social media dataset EMOTRIGGER highlighted
the limitations of modern LLMs in trigger identi-
fication, reinforcing the fact that this remains an
unsolved problem, especially in new domains. To
date, emotion-trigger analysis remains an unex-
plored research area in e-commerce.

Second, progress in this field has been heav-
ily reliant on dataset development. Key resources
like SemEval (Strapparava and Mihalcea, 2007),
GoEmotions (Demszky et al., 2020), and domain-
specific benchmarks like CancerEmo (Sosea and
Caragea, 2020) have propelled emotion analysis
forward. Yet, as of now, no existing dataset pro-
vides annotations for both fine-grained emotions
and their corresponding opinion triggers specif-
ically for e-commerce platforms. This lack of a
foundational benchmark has been a major barrier
to research.

The recent advancements in Large Language
Models (LLMs), with their powerful capabilities
in contextual understanding and generating emo-
tionally nuanced text (Brown et al., 2020a; Ouyang
et al., 2022a), offer a promising avenue to address
this gap. While their potential for general emotion
analysis is being actively investigated (Acheam-
pong et al., 2023; Huang and Rust, 2024), the joint
task of EOT in e-commerce represents a novel ap-
plication that this survey identifies as a key research
direction.
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5.4 Multi-Source Opinion Summarization

(M-0OS)

MULTI-SOURCE OPINION SUMMARIZATION (M-
OS) represents a critical evolution beyond tradi-
tional summarization techniques, which have his-
torically focused on a single source of informa-
tion: customer reviews (Wang and Ling, 2016; Chu
and Liu, 2019). While valuable, review-only sum-
maries provide a purely subjective and often incom-
plete perspective. M-OS addresses this by creating
holistic summaries that integrate objective product
attributes with subjective user opinions, thereby
facilitating more informed and confident consumer
decision-making.

The progression of opinion summarization has
seen a steady increase in the diversity of informa-
tion sources. Early methods relied on extractive
(Erkan and Radev, 2004) or abstractive (Brazinskas,
2020) techniques applied solely to review texts.
The first step towards a multi-source paradigm in-
volved incorporating easily accessible textual data.
For instance, (Zhao et al., 2020) enhanced sum-
maries by utilizing product descriptions in addition
to reviews. This was followed by research into
multimodality, where supervised methods were de-
veloped to combine textual information with visual
data like product images (Li et al., 2020b).

The emergence of Large Language Models
(LLMs) enabled more sophisticated multi-source
integration. Recent work by (Siledar et al., 2024)
introduced a structured approach (MEDOS) that
fused information from three distinct sources: prod-
uct reviews, descriptions, and question-and-answer
(Q&A) pairs. These advancements significantly
improved the factual grounding and comprehen-
siveness of generated summaries.

Despite this progress, a significant gap has per-
sisted in the literature: the comprehensive integra-
tion of all available product metadata, especially
detailed technical specifications, remains largely
unexplored. While prior work has incorporated
high-level descriptions or key features, the dense,
structured information contained within product
specification tables is often overlooked. This over-
sight is primarily due to the technical challenge
of processing and coherently synthesizing such di-
verse and lengthy data types.

Modern LLMs, with their vastly expanded con-
text windows and superior reasoning capabilities,



are uniquely positioned to close this gap. They
enable the development of M-OS systems that can
process the entire product context—including ti-
tles, descriptions, features, ratings, reviews, and
detailed specifications—to dynamically generate a
single, unified summary. As demonstrated by re-
cent work, this approach reduces the cognitive load
on users by eliminating the need to manually parse
and cross-reference multiple information sources.

This increased complexity of the M-OS task
also exposes the limitations of traditional eval-
uation metrics like ROUGE (Lin, 2004b) and
BERTSCORE (Zhang et al., 2020b), which are
known to correlate poorly with human judgments
for such multifaceted outputs (Shen and Wan,
2023). Consequently, advancing M-OS is intrin-
sically linked to developing robust, reference-free
evaluation paradigms that leverage LLMs as scal-
able and nuanced critics (Fu et al., 2023b; Chiang
and Lee, 2023c¢).

5.5 Query-Focussed Explainable
Recommendation (QF-ER)

Recommender systems traditionally focus on pre-
dicting what users will like, but explainable recom-
mendation addresses the why behind these predic-
tions to enhance user trust and satisfaction. The
initial explorations were driven by understanding
that mere accuracy was insufficient for a positive
user experience. (Herlocker et al., 2000) conducted
the first user study examining how explanations
affect user acceptance, identifying the benefits of
explanations for building user trust and established
a framework for evaluating explanation effective-
ness, while (Papadimitriou et al., 2012) proposed a
taxonomy of explanation styles (user-based, item-
based, feature-based), providing vocabulary influ-
encing subsequent frameworks like (Zhang and
Chen, 2020b) "SW" categorization.

A significant shift occurred with the increas-
ing availability of user-generated reviews, which
provided rich textual content for generating ex-
planations. Feature-based explanations emerged
with (Zhang et al., 2014) Explicit Factor Model
(EFM), leveraging phrase-level sentiment analysis
on user reviews to generate feature-based explana-
tions. Building on this, (He et al., 2015) developed
TriRank, constructing a heterogeneous tripartite
graph of User-Item-Aspect relationships weighted
by review sentiment, while (Chen et al., 2018b) ad-
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vanced this with NARRE, combining rating predic-
tion with explanation extraction through attention
mechanism that identified important review text.

Knowledge graphs offered richer context for
more comprehensive explanations. (Ai et al., 2018)
leveraged heterogeneous knowledge base embed-
dings for explainable recommendations, while
(Catherine et al., 2017) demonstrated KG-based
explanation generation even without review text.
(Wang et al., 2018c) proposed KPRN, which gen-
erated traceable reasoning paths to explain recom-
mendations. (Xian et al., 2019) extended this with
PGPR, employing reinforcement learning to ex-
plore large graphs efficiently, later refined by (Xian
et al., 2020) with CAFE, which used user profiles
to guide path search.

Advanced neural approaches further enhanced
explanation quality through attention mechanisms
and sophisticated text generation. (Chen et al.,
2019c) developed CAML, employing co-attention
between user and item review representations to
simultaneously perform rating prediction and ex-
planation generation, while (Gao et al., 2019) in-
troduced DEAML, combining hierarchical con-
cept graphs with attention to mitigate the accuracy-
explainability trade-off. Natural language gener-
ation techniques enabled more sophisticated ex-
planations. (Li et al., 2017) proposed NRT, which
generated concise explanations while predicting rat-
ings through multi-task learning. Later approaches
like (Li et al., 2021b) introduced PETER, which
leveraged transformer architectures to learn joint
representations of users, items, and context, gener-
ating explanations conditioned on these represen-
tations. Building on this work, (Li et al., 2023a)
developed PEPLER, which used prompt-enhanced
personalized generation to improve the fluency and
contextual alignment of explanations. (Ni et al.,
2019b) tackled the challenge of generating explana-
tions without supervised human-written examples
by distantly labeling review sentences as aspect
mentions. (Cheng et al., 2023) further advanced
this area with ERRA, a model combining personal-
ized review retrieval and aspect learning to generate
more accurate and informative explanations.

LLMs transformed explainable recommendation
research with unprecedented capabilities for gen-
erating nuanced explanations. (Ma et al., 2024)
introduced XRec, a model-agnostic framework us-
ing LLMs to generate comprehensive explanations
guided by collaborative filtering signals. (Yang



et al., 2024) proposed LLM2ER-EQR, address-
ing challenges of personalization through a novel
reinforcement learning framework that fine-tuned
LLMs with explainable quality rewards. (Luo et al.,
2023a) explored LLMXRec using instruction tun-
ing for LLM-generated explanations, while (Wang
et al., 2024) proposed LLM-PKG, building prod-
uct knowledge graphs with LLMs for e-commerce
explanations. In the e-commerce domain, explain-
ability is particularly crucial for purchasing deci-
sions and user trust. The EFM demonstrated im-
proved user engagement on the JingDong platform.
(Wang et al., 2022) showed Fast Fine-grained Sen-
timent for Explainable Recommendation (FSER)
combined sentiment analysis of user reviews to
provide explanations for recommendations, high-
lighting positive attributes that resonated with user
preferences—particularly important in e-commerce
where opinions and emotional responses influence
purchases. These approaches generally require
user profiles or historical interaction data to gener-
ate explanations, potentially compromising privacy
while limiting flexibility across recommendation
systems.

Temporal and Dynamic Approaches: Recogniz-
ing that user preferences evolve over time, Chen
et al. (2019a) introduced a time-aware neural model
combining recurrent neural networks with attention
mechanisms to generate dynamic explanations that
adapt to recent user behavior. This approach im-
proved the sequential modeling of explainable user
preferences, capturing the temporal dynamics of
user-item interactions more effectively than static
models.

Despite significant advances, existing ap-
proaches have predominantly focused on user-
centric explanations that are contingent upon histor-
ical interactions and user profiles. This paradigm
presents two critical limitations: (1) privacy risks
associated with the extensive collection and use
of personal data, and (2) an inability to satisfy the
immediate, context-specific information needs ar-
ticulated in user queries.

Our proposed Query-Focused Explainable
Recommendation (QF-ER) framework addresses
these shortcomings by generating explanations that
respond directly to a user’s query, eliminating any
reliance on historical data. This design simultane-
ously preserves user privacy and delivers personal-
ization grounded in the immediate query context.
Our approach marks a paradigm shift in explana-
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tion generation, moving from a model based on
who you are to one driven by what you need. Be-
cause the method requires neither user history nor
proprietary ranking signals, it can be integrated
with any recommendation engine and is capable
of identifying and flagging commercially-driven
placements.

5.6 The Unaddressed Frontier

While the preceding analysis highlights substan-
tial advancements within each respective area, a
critical analysis reveals a persistent fragmentation.
Research has traditionally progressed in isolated si-
los: EXPLAINABLE RECOMMENDATION systems
focused on justification without deep emotional
context; OPINION SUMMARIZATION distilled sen-
timent polarity but often overlooked objective prod-
uct metadata and causal triggers; and EMOTION
ANALYSIS identified affective states without syn-
thesizing them into actionable, coherent narratives
for decision-making. This siloed methodology
fundamentally fails to capture the holistic, multi-
faceted nature of the consumer’s decision-making
journey in the e-commerce ecosystem.

This survey addresses this unaddressed frontier
by proposing a fundamental paradigm shift away
from disjointed, product-centric tasks towards an
integrated, human-centric synthesis. Our Mind,
Matter, and Markets framework provides the
conceptual backbone for this shift, and the five
pioneering research directions we formalize—QF-
CES, EAOS, EOT, M-0OS, and QF-ER—are not
merely incremental improvements. They represent
a new class of e-commerce NLP problems that
explicitly model the interplay between a user’s cog-
nitive and affective states (Mind), objective factual
information (Matter), and the practical contexts of
commercial platforms (Markets). Collectively, our
work pioneers a unified vision that no prior work
has articulated for the e-commerce space, one that
prioritizes contextual relevance, emotional nuance,
and causal reasoning to chart a clear course for the
next generation of truly human-centered systems.

6 Datasets

This section presents an overview of key datasets
utilized in LLM-based e-commerce information
processing research, including novel contributions
from proprietary industrial datasets that address
critical resource gaps in the field.



6.1 Flipkart Q2P Dataset:

The research directions discussed in this survey in-
troduce unique data requirements: large-scale col-
lections of real-world user queries directly mapped
to recommended products, accompanied by com-
prehensive multi-modal metadata for each prod-
uct. Prior to this work, no such comprehensive
resource existed, creating significant barriers to
research progress in query-focused e-commerce ap-
plications. To address this fundamental gap, we
introduce a foundational dataset that enables sys-
tematic investigation of user query understanding
and product recommendation in realistic settings.

Q2P Dataset Overview: This dataset represents
the first large-scale collection containing 7,500
unique, real-world user queries sourced from a ma-
jor e-commerce platform. Each query is systemati-
cally mapped to the top-3 products recommended
by the platform’s production recommendation sys-
tem, yielding a total of 22, 500 query-product pairs.
The dataset structure can be formally represented
as:

7500

D = {(qi; Pi) };21

where ¢; denotes the ¢-th user query and P; =
{p1,p2,p3} represents the set of top-3 recom-
mended products for that query.

Each product p; in the dataset contains excep-
tionally rich metadata spanning multiple informa-
tion modalities:

pj = {title,description, key_features,
price,rating_count, average_rating,

reviews, specifications} (6)

The dataset encompasses 10 diverse e-commerce
categories, including Mobile Phones, Clothing,
Electronics, Home & Kitchen, and Books, ensuring
broad domain coverage and cross-category gen-
eralizability. The distribution maintains balanced
representation across categories:

10
D] =) |Dx| = 7,500
k=1

where Dy, represents the query subset for cate-
gory k.
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Dataset Statistic Value
Unique user queries 7,500
Total products 22,500
Average reviews per product 10.0
Avg. specification length (tokens)  242.6
Avg. review length (tokens) 17.99
Avg. description length (tokens) 105.79
Avg. key features length (tokens) 24.64

Table 2: Statistical Overview of the Q2P Dataset

Data Quality and Annotation Standards: The
dataset undergoes rigorous quality control proce-
dures to ensure annotation consistency and reliabil-
ity. All queries represent genuine user search in-
tentions collected from production systems, while
product metadata is extracted directly from vendor-
provided information and user-generated content.
This approach ensures ecological validity and real-
world applicability of research findings derived
from this resource.

6.2 Multi-Domain Datasets and Sampling
Methodologies

For comprehensive cross-domain evaluation and
generalizability assessment, we leverage estab-
lished multi-domain datasets spanning diverse in-
dustries and user interaction patterns. These
datasets enable systematic analysis of how LLM-
based approaches perform across different domains,
user populations, and linguistic variations.

The Amazon Product Reviews dataset (Hou
et al., 2024) provides extensive coverage across
multiple product categories including Beauty,
Home & Garden, Electronics, Clothing, and Auto-
motive. This dataset offers rich user-generated con-
tent with temporal spans covering multiple years,
enabling longitudinal analysis of opinion evolution
and seasonal trends.

For product sampling within each domain, we
employ Simple Random Sampling Without Re-
placement (SRSWOR) to ensure unbiased selection
(Cochran, 1977):

Psample = SRSWOR(Pdomaina n)

where Pyomain represents all products in a spe-
cific domain and n denotes the desired sample size.
This sampling strategy ensures that each product



has equal probability of selection, eliminating po-
tential selection biases.

The TripAdvisor Reviews dataset (Li et al.,
2014) complements our analysis by providing
hospitality and travel domain perspectives, while
the Yelp Business Reviews dataset (Yelp Inc.,
2025) contributes local business and restaurant re-
view data. These datasets collectively enable
cross-domain validation of proposed methodolo-
gies across fundamentally different service cate-
gories.

Review Filtering and Quality Control: When pro-
cessing review texts, we apply systematic length-
based filtering to control for content quality and
informativeness (Kim and Lee, 2019; Herrando
et al., 2021; Xie and Lee, 2022):

Riltered = {T S Roriginal | Lpin < |T| < Lmax}

where |r| denotes the token count of review r,
and Ly and Ly, represent minimum and maxi-
mum length thresholds, respectively. Typical val-
ues are Ly, = 10 and L,x = 500 tokens to en-
sure meaningful content while excluding extremely
verbose reviews.

For temporal representation in longitudinal stud-
ies, we employ stratified sampling to maintain pro-
portional representation across time periods:

Ritratified = U SRSWOR(Rt, nt)
teT

where T represents the set of time periods, R

denotes reviews from period ¢, and ny = n - I J{Rf ‘I|
total
ensures proportional allocation.
This sampling approach provides several

methodological advantages: (1) uniform coverage
probability 7 = % across products, (2) temporal
representativeness through stratification, and (3)
statistical independence across domains for valid
cross-domain comparisons.

Data Quality Considerations and Limitations:
Researchers working with e-commerce datasets
should exercise caution when incorporating nu-
merical ratings (Mayzlin et al., 2014; de Langhe
etal., 2016; Guo et al., 2020) and helpfulness votes
(Yin et al., 2014; Lappas and Terzi, 2016; Deng
et al., 2020). These signals are subject to well-
documented biases including:
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* Fake Review Injection: Systematic manip-
ulation through incentivized positive reviews
and competitor-targeted negative reviews

* Rating Inflation: Temporal drift toward
higher ratings due to platform recommenda-
tion algorithms favoring highly-rated products

* Selection Bias: Non-random patterns in
which users choose to leave reviews, creat-
ing skewed representations of product quality

* Helpfulness Gaming: Strategic voting on re-
view helpfulness that may not reflect genuine
utility assessments

To mitigate these issues, we recommend fo-
cusing primarily on textual content analysis while
treating numerical signals as auxiliary features re-
quiring careful validation. Additionally, temporal
analysis of rating distributions can help identify
potential manipulation patterns and inform appro-
priate filtering strategies.

Ethical Considerations and Privacy: All datasets
used in this survey comply with platform terms
of service and applicable privacy regulations.
User-identifying information has been removed
or anonymized, and all analysis focuses on aggre-
gate patterns rather than individual user behaviors.
Researchers utilizing these datasets should ensure
compliance with institutional review board require-
ments and data protection regulations in their re-
spective jurisdictions.

7 Evaluation Metrics

Evaluating the quality of generated opinion sum-
maries is a critical and multifaceted task. The
methodologies for this assessment are broadly
categorized into two paradigms: reference-based
metrics, which compare system-generated sum-
maries against human-written ground truths, and
reference-free metrics, which evaluate summary
quality without requiring a gold-standard reference.
This section details the key approaches within each
paradigm.

7.1 Reference-Based Evaluation:

Reference-based evaluation has long been the stan-
dard for assessing summarization quality. This



approach encompasses three primary methods: au-
tomated metrics that quantify textual similarity, di-
rect human evaluation that captures subjective qual-
ity, and faithfulness metrics that measure factual
consistency.

7.2 Automatic Evaluation

These metrics provide scalable and reproducible
scores by algorithmically comparing a candidate
summary to one or more reference summaries.

ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) (Lin, 2004c) is a set of metrics based
on n-gram recall. It measures how many n-grams
from the human-written reference summaries are
found in the system-generated summary. The most
common variants are:

* ROUGE-N: Measures the overlap of n-
grams. For unigrams (N=1), the recall for-
mula is:

deR min(Count(g,C'),Count(g,R))
deR Count(g,R)
(7)

where R is the reference, C is the candidate,
and g represents each unigram. This formula-
tion computes recall-based overlap, which is
the standard ROUGE-1 metric. ROUGE-2
uses the same principle for bigrams.

ROUGE-1 =

ROUGE-L: Measures the longest common
subsequence (LCS) to evaluate structural sim-
ilarity, rewarding longer contiguous matches.
The score is calculated as a ratio of the LCS
length to the reference length.

BLEU (Bilingual Evaluation Understudy) (Pap-
ineni et al., 2002b) evaluates summaries based
on n-gram precision, measuring how many n-
grams in the candidate summary appear in the
reference. While unigram precision assesses ad-
equacy (content capture), higher n-grams assess
fluency. BLEU’s key feature is its Brevity Penalty
(BP), which penalizes candidate summaries that
are shorter than the reference, calculated as:

BP:{

where c is the candidate length and r is the refer-
ence length.

1
6(1—7’/0)

ife>r

8
ife<r ®
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BERTScore (Zhang et al., 2020c) moves beyond
lexical overlap by measuring the semantic similar-
ity between candidate and reference summaries us-
ing contextual embeddings from BERT. It computes
precision, recall, and an F1 score by matching to-
kens based on their cosine similarity. The recall is
calculated as:

_ 1 T
Reert = R] erR maXycc X'y 9

where x and y are the normalized embeddings for
tokens in the reference R and candidate C'. The
final score is the harmonic mean of this recall and
a similarly computed precision.

METEOR (Metric for Evaluation of Translation
with Explicit ORdering) (Banerjee and Lavie, 2005)
enhances simple precision and recall by incorpo-
rating stemming and synonym matching. Its score
is based on a harmonic mean of precision and re-
call (weighted towards recall) and a fragmentation
penalty that penalizes non-contiguous matches to
better assess fluency. The final score is computed
as:

M = Fiean - (1 — Penalty) (10)
where Fineqn represents the harmonic mean of pre-
cision and recall. This simplified formulation cap-
tures the essential components of METEOR ap-
propriate for survey-level discussion.

7.3 Human Evaluation

Direct assessment by human annotators remains
the gold standard for judging subjective qualities
like coherence and usefulness.

Best-Worst Scaling (BWS) (Flynn and Marley,
2014) is a robust comparative judgment method.
Annotators are shown a set of summaries (e.g.,
from 4 different models) and asked to identify the
single best and single worst summary. Scores are
aggregated across many judgments, providing a
more reliable preference ranking than traditional
rating scales (Kiritchenko and Mohammad, 2017).

Likert Scales (Likert, 1932) are widely used to rate
summaries on specific dimensions (e.g., fluency,
coherence, faithfulness) using an ordinal scale, typ-
ically from 1 to 5 (e.g., Very Poor to Excellent).
This allows for granular, multi-dimensional feed-
back on a summary’s performance.



7.4 Faithfulness Evaluation

Faithfulness, or factual consistency with the source
document, is a critical dimension of summary qual-
ity. Specialized metrics have been developed to
assess it:

e SummaC (Laban et al., 2022): An NLI-based
model designed to detect inconsistencies at
various levels of granularity between a sum-
mary and its source.

CTC (Deng et al., 2021): A framework that
evaluates information alignment to gauge both
consistency and relevance.

FactCC (Kryscinski et al., 2020): A BERT-
based classification model trained to verify
the factual consistency of a generated sum-
mary against its source article.

FactGraph (Ribeiro et al., 2022): Enhances
factuality evaluation by encoding both the
source and summary into structured graphs
and comparing their representations.

7.5 Metrics for Emotion and Opinion Trigger
Detection

Evaluating the joint task of Emotion and Opinion
Trigger Detection (EOT) requires assessing perfor-
mance on two distinct sub-tasks: the classification
of emotions and the extraction of their correspond-
ing trigger spans. Therefore, a combination of
classification and text-overlap metrics is employed:

Precision (P): For the emotion detection sub-task,
this measures the accuracy of the predicted
emotions. It is the fraction of correctly identi-
fied emotions (True Positives, TP) out of all
emotions predicted by the model (TP + False
Positives, FP).

TP

Precision = ————
TP + FP

an

Recall (R): This measures the model’s ability to
find all relevant emotions. It is the fraction
of correctly identified emotions (TP) out of
all actual emotions present in the ground truth
(TP + False Negatives, FN).

TP

Recall = ——
TP + FN

(12)
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F1-Score (F1): As the harmonic mean of Preci-
sion and Recall, the F1-score provides a sin-
gle, balanced measure of performance for the
emotion detection sub-task, which is partic-
ularly useful when dealing with imbalanced
emotion distributions (van Rijsbergen, 1979).

Precision - Recall

F1 =2 (13)

" Precision + Recall

For the opinion trigger extraction sub-task, this
is the most stringent metric. It requires that the
predicted text span is an identical character-for-
character match with the ground-truth trigger span.
A score of 1 is given for a perfect match, and 0
otherwise.

This is a more lenient metric for trigger extrac-
tion that considers token-level overlap. A match is
counted if the set of tokens in the predicted span has
a non-empty intersection with the set of tokens in
the ground-truth span, acknowledging cases where
the model correctly identifies the core trigger but
with slightly different boundaries.

Based on the metric from (Lin, 2004b), this eval-
uates trigger quality by measuring the recall of
unigrams (individual words) between the predicted
trigger (1r¢q) and the ground-truth trigger (7).

ZuGTgt min(count(u7Tp7>ed) 7C0unt(u7Tgt))

R1 = ZueTgt Count(u,Ty¢))

(14)

Also from (Lin, 2004b), this metric evaluates trig-
ger quality by identifying the longest common sub-
sequence (LCS) of words between the predicted
and ground-truth spans, rewarding structural simi-
larity and the preservation of word order.

_ LCS(Tprea,Tyt)
RL = —1eng§1(Tgt)g (15)

7.6 Reference-Free Evaluation

A significant limitation of reference-based metrics
is their dependency on a human-written "gold stan-
dard." These metrics often penalize summaries that
are semantically correct but use different wording
or phrasing, a common characteristic of advanced
LLMs. In fact, studies have shown that summaries
generated by models like GPT can be preferred by
humans over the original human-written references
(Luo et al., 2023Db).



This has spurred the development of reference-
free metrics, which evaluate summary quality
based on intrinsic characteristics or by using a
powerful LLM as a proxy for a human evalua-
tor (Liu et al., 2023b; Fu et al., 2023a). This ap-
proach allows for assessment across various di-
mensions—such as fluency, coherence, faithfulness
(to the source), and specificity—without the need
for a reference summary, offering a more scalable
and potentially more aligned evaluation paradigm
for modern generative models (Chiang and Lee,
2023Db).

7.7 Metrics for QF-CES

For a complex, query-focused task like QF-CES,
which generates multi-faceted outputs, a special-
ized set of reference-free metrics is required
for comprehensive evaluation. The following di-
mensions are crucial for assessing the quality of
such comparative summaries:

1. clarity (CL)- Clarity measures the degree
to which the information in the Comparative
Summary is clearly presented, avoiding am-
biguity and ensuring that comparisons are
easy to understand. The summary should
be clear, concise, and easy to comprehend,
using simple language and avoiding techni-
cal jargon whenever possible. It should be
well-structured and well-organized, present-
ing comparison of the three products in a
straightforward manner. The metric evaluates
the readability of the entire summary, ensur-
ing it is free from grammatical errors and has
a logical flow between different sections and
points. Additionally, the clarity of the tabular
data is assessed to ensure it clearly conveys
the comparisons between three products.

2. faithfulness (FL)- Faithfulness measures
the degree to which the information presented
in the Comparative Summary is accurate, ver-
ifiable, and directly supported by the input
data. The Comparative Summary must faith-
fully represent the content provided, ensur-
ing that all details, including the query and
attributes of each product are correct and in-
ferred directly from the input. Comparative
Summary will be penalized for any informa-
tion that cannot be verified from the input data
or if they make broad generalizations that are
not supported by the input data.
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3. informativeness (IF)-

Informativeness
evaluates the extent to which the Comparative
Summary comprehensively covers all relevant
aspects and attributes of the products being
compared. This metric assesses the presence
and completeness of essential attributes and
features in the comparison, including the
product title, base price, final price, key
attributes dynamically selected from the
product opinion summaries, pros, cons, and
average rating. The summary should ensure
that all majorly discussed aspects are covered
and any missing values are properly marked
as "N/A". Summaries should be penalized for
missing significant aspects and rewarded for
thorough coverage of the aspects from the
provided information.

. format adherence (FoA)- This metric evalu-

ates the extent to which the Comparative Sum-
mary follows the prescribed format. The Com-
parative Summary should consist of two main
parts: (/) A tabular comparison of the three
products. (2) A final verdict summary.

The tabular comparison should list products in
columns and attributes in rows,including dy-
namically selected attributes based on the user
query and essential attributes such as Base
Price, Final Price, Average Rating, Pros, and
Cons. It verifies that dynamically selected
attributes are appropriately named and not us-
ing placeholders. The final verdict summary
should provide a concise overview of the com-
parison among three products. The metric as-
sesses the presence, completeness, and proper
formatting of both these components (the tab-
ular comparison along with the final verdict),
as well as the overall organization and consis-
tency of the entire summary.

. query relevance (QR)- This metric evalu-

ates how well the Comparative Summary ad-
dresses the user’s query. It assesses two main
components: (1) The tabular comparison: En-
sures that only the most relevant information
and dynamic attributes are present, directly
addressing the user query without including
irrelevant details. (2) The final verdict sum-
mary: Verifies that the user query is explicitly
addressed, providing clear suggestions that
enable the user to make an informed buying
decision.
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The metric measures the overall relevance and
usefulness of the Comparative Summary in
helping the user make an informed decision
based on their specific query.

Metrics for EAOS

Evaluating the affective dimensions of a summary
requires a specialized set of metrics that go be-
yond standard linguistic quality. For a nuanced
task like EAOS, the following seven reference-free
dimensions provide a comprehensive framework
for assessment:

1.

fluency (FL)- Fluency measures the quality
of the summary in terms of grammar, spelling,
punctuation, capitalization, word choice, and
sentence structure. The summary should be
easy to read, follow, and comprehend without
any errors that hinder understanding.

coherence (CO)- Coherence measures the
collective quality of all sentences in the sum-
mary. The summary should be well-structured
and well-organized. It should not just be a
heap of related information, but should build
from sentence to sentence into a coherent body
of information about the product. This in-
cludes maintaining logical flow while transi-
tioning between different emotional tones and
product aspects.

faithfulness (FA)- Faithfulness measures
the extent to which every piece of informa-
tion mentioned in the summary is verifiable,
supported, present, or can be reasonably in-
ferred from the input. The input includes the
product title and reviews. Summaries should
be penalized if they contain information that
cannot be verified from the provided input or
if they make broad generalizations that are not
supported by the input data.

emotional accuracy (EA)- This metric eval-
uates how accurately the summary captures
and represents the emotional tones present in
the original reviews. It measures the sum-
mary’s ability to reflect:

1) The correct emotions: Accurately identify-
ing the emotions expressed in the reviews.

ii) Their intensity: Correctly representing the
strength or degree of the emotions.
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. emotional

iii) Their context: Accurately capturing the
situations or aspects of the product that evoked
these emotions.

Note: This metric focuses specifically on
whether the correct emotions are identified
and accurately represented in the summary,
including their intensity and the context in
which they appear in the reviews.

spectrum coverage (ESC)-
This metric assesses the range of emotions
captured in the summary compared to the di-
versity of emotions expressed in the reviews.
It measures:

i) The variety of distinct emotions represented
in the summary.

ii) How well the summary reflects the full
spectrum of emotions present in the reviews,
including both positive and negative emotions.

iii) The balance in representing both dominant
and less prevalent emotions from the reviews.

Note: This metric focuses specifically on
whether the summary captures the full range
of emotions present in the reviews, regard-
less of their frequency or intensity. The fo-
cus is not just on individual emotions, but on
whether the summary reflects the full diversity
of emotions present in the reviews.

. emotional bias mitigation (EBM)- This

metric assesses whether the summary fairly
represents all emotional perspectives present
in the reviews without exaggerating or down-
playing certain emotions. It measures:

1) The balance between positive and negative
emotions in the summary compared to the
reviews.

ii) The proportional representation of emo-
tions relative to their prominence in the re-
views.

iii) The fair representation of all emotional
perspectives, including minority views, with-
out exaggeration or minimization.

iv) The reflection of the relative strength of
emotional expressions.

Note: This metric focuses specifically on pre-
venting skewed emotional representations to
ensure fair and accurate summaries, especially
in cases where reviews show a mix of positive
and negative emotions.
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contextual emotional relevance (CER)-
This metric assesses whether the emotions
mentioned in the summary are relevant to the
specific context and product aspects discussed
in the reviews. It measures:

1) The accuracy of associating emotions with
specific product features or aspects.

i1) The relevance of emotional content to the
discussed product characteristics.

iii) The preservation of the context in which
emotions are expressed in the reviews.

iv) The summary’s ability to capture and con-
vey complex or nuanced emotional contexts
related to specific product features.

Note: This metric focuses on ensuring that
emotional content is pertinent to the product
aspects being discussed, enhancing the sum-
mary’s relevance and impact.

Metrics for M-OS

Evaluating summaries that fuse information from
multiple diverse sources—including objective
metadata and subjective reviews—requires a ro-
bust set of reference-free metrics. The following
seven dimensions are used to assess the quality and
utility of M-OS outputs:

1.

fluency (FL)- Fluency measures the quality
of the summary in terms of grammar, spelling,
punctuation, capitalization, word choice, and
sentence structure. The summary should be
easy to read, follow, and comprehend without
any errors that hinder understanding. Anno-
tators received specific guidelines on how to
penalize summaries based on fluency levels.

coherence (CO)- Coherence measures the
collective quality of all sentences in the sum-
mary. The summary should be well-structured
and well-organized. It should not just be a
heap of related information, but should build
from sentence to sentence into a coherent body
of information about the product.

relevance (RE)- Relevance measures the se-
lection of important information from the in-
put, including product title, description, key
features, specifications, reviews, and average
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rating. The summary should include only im-
portant and relevant information from the in-
put. Summaries should not contain redundan-
cies or excess information. Annotators were
instructed to penalize summaries if they con-
tained redundancies and excess/unimportant
information.

. faithfulness (FA)- Faithfulness measures

the extent to which every piece of informa-
tion mentioned in the summary is verifiable,
supported, present, or can be reasonably in-
ferred from the input. The input includes prod-
uct title, description, key features, specifica-
tions, reviews, and average rating. Summaries
should be penalized if they contain informa-
tion that cannot be verified from the provided
input or if they make broad generalizations
that are not supported by the input data.

. aspect coverage (AC)- Aspect Coverage

measures how completely a summary cap-
tures the major features, characteristics, or
attributes of a product that are prominently
discussed in the original product information.
Summaries should be penalized for missing
any major aspects and rewarded for covering
all important aspects thoroughly.

. sentiment consistency (SC)- Sentiment

Consistency measures how accurately the
summary reflects the consensus sentiment of
users for each aspect of the product as ex-
pressed in the reviews. The consensus sen-
timent (or majority sentiment) for an aspect
is determined by the M-OSt common senti-
ment expressed by users, categorized as very
positive, positive, neutral, negative, or very
negative. Summaries should be penalized if
they do not cover accurately the sentiment
regarding any aspect within the summary.

. specificity (SP)- Specificity measures the

level of detail and precision in the informa-
tion and opinions presented in the summary.
A specific summary provides concrete facts,
measurements, or detailed descriptions about
the product’s features, performance, and user
experiences. It avoids vague or general state-
ments and instead offers precise information
that gives readers a clear and thorough under-
standing of the product’s characteristics and
performance. Summaries should be penalized



for missing out details and should be awarded
if they are specific.

7.10 Metrics for QF-ER

The evaluation of query-focused explanations re-
quires a set of metrics that assess not only the lin-
guistic quality and factual accuracy of the text but
also its direct utility in answering a user’s specific
question. The following dimensions are used to
provide a holistic assessment of QF-ER systems:

1. clarity (CL)- Clarity measures how well
the explanation conveys information without
ambiguity or confusion. A clear explanation
presents product information relevant to the
query in a straightforward, easily understand-
able manner, avoiding vague language, unex-
plained technical terms, or confusing descrip-
tions. It ensures that users can immediately
grasp how specific product features relate to
their query requirements without having to
decipher complex or unclear statements.

2. fluency (FL)- Fluency measures the qual-
ity of the explanation in terms of grammar,
spelling, punctuation, capitalization, word
choice, and sentence structure. The expla-
nation should be easy to read, follow, and
comprehend without any errors that hinder un-
derstanding, while maintaining a natural flow
between query-specific information and prod-
uct details.

Note: When evaluating fluency, focus specifi-
cally on the linguistic quality and readability
of the explanation, not whether the informa-
tion is factually accurate or relevant to the
query (which are covered by other metrics).

3. coherence (CO)- Coherence measures how
well-structured and logically connected the
explanation is. A coherent explanation should
build from sentence to sentence, forming a uni-
fied and organized narrative that clearly relates
the product to the user’s query. It should avoid
contradictions, irrelevant details, or abrupt
jumps in reasoning, and instead present in-
formation in a smooth, logically progressive
manner that helps users follow the explanation
effortlessly.

4. faithfulness (FA)- Faithfulness measures
the extent to which every piece of information
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mentioned in the explanation is verifiable, sup-
ported, present, or can be reasonably inferred
from the product metadata. The explanation
should be grounded in the product’s meta-
data (including title, description, key features,
specifications, reviews, and average rating)
and should not introduce hallucinated or in-
correct information. When discussing how the
product relates to the user’s query, all claims
should be directly supported by the available
product information.

. informativeness (INF)- Informativeness

measures the depth, breadth, and utility of
product information provided in the expla-
nation. It evaluates how well the explana-
tion covers important product attributes and
presents decision-critical details that would
help a user make an informed choice, regard-
less of query specifics. High informativeness
means the explanation provides rich, useful
product insights.

. query relevance (QR)- Query relevance

evaluates how directly the explanation ad-
dresses the specific user query intent. It mea-
sures whether the explanation focuses on the
explicit and implicit requirements expressed
in the query, without introducing irrelevant
information. High query relevance means the
explanation precisely targets what the user
was asking for. A relevant explanation not
only addresses what was asked but provides
information that would genuinely help users
make better purchasing decisions based on
their specific needs.

. conciseness (CON)- Conciseness assesses

whether the explanation is succinct and
avoids unnecessary information, without be-
ing overly verbose. A concise explanation
provides all query-relevant information effi-
ciently, without redundancy, digressions, or
excessive detail that doesn’t contribute to ad-
dressing the user’s query. It balances brevity
with completeness, ensuring all necessary in-
formation is included without superfluous con-
tent.

. specificity (SP)- Specificity measures the

level of detail and precision in the information
presented in the explanation. A specific expla-
nation provides concrete facts, measurements,



or detailed descriptions about the product’s
features, performance, and user experiences
that are relevant to the query. It avoids vague
or general statements and instead offers pre-
cise information that gives readers a clear and
thorough understanding of how the product’s
characteristics relate to their specific query.

sentiment consistency (SC)- Sentiment
consistency measures how well the explana-
tion’s sentiment aligns with the sentiment ex-
pressed in the product reviews and ratings
while remaining appropriate for the query con-
text. The explanation should accurately reflect
the balance of positive, negative, and neutral
opinions from actual users’ experiences with
the product, particularly for aspects relevant
to the query. An explanation with high senti-
ment consistency will neither be overly posi-
tive when reviews express concerns nor overly
negative when reviews are predominantly pos-
itive.

8 Challenges and Open Problems

The integration of Large Language Models (LLMs)
into e-commerce applications has demonstrated
substantial potential for opinion mining and prod-
uct summarization. However, numerous critical
challenges and limitations persist across data acqui-
sition, model reliability, evaluation methodologies,
and deployment considerations. Resolving these
fundamental issues remains essential for advanc-
ing robust and responsible human-centered LLM
applications. This section systematically examines
the most pressing challenges confronting the field.

Data Quality and Privacy Constraints: The ef-
ficacy of contemporary systems fundamentally de-
pends on high-quality, large-scale data resources,
presenting multifaceted challenges across the de-
velopment pipeline.

Scarcity of Annotated Data: Gold-standard
training and evaluation require extensive human-
annotated datasets. However, developing such re-
sources demands substantial financial investment
and labor-intensive annotation processes, particu-
larly for fine-grained tasks such as Emotion and
Opinion Trigger Detection (EOT) or Emotion-
Aware Opinion Summarization (EAOS). Recent
benchmark developments including EOT-X and M-
OS-EVAL demonstrate significant contributions
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to the field, yet their creation highlights the con-
siderable effort required, potentially constraining
broader research community participation.

Synthetic Data Dependency: To mitigate hu-
man annotation costs, researchers increasingly em-
ploy LLMs for synthetic training data generation,
as exemplified by the EAOS-SUMM dataset. While
this methodology provides enhanced scalability, it
introduces risks of model-inherent biases and re-
duced linguistic diversity. Excessive reliance on
synthetic data may yield models that excel on self-
generated content while failing to generalize to the
inherently unpredictable and nuanced characteris-
tics of authentic human language use (Shumailov
et al., 2023; Siledar et al., 2023).

Privacy-Personalization Tension: Traditional
personalization approaches have relied extensively
on comprehensive user profiling and historical be-
havioral data, raising substantial privacy consid-
erations. While innovative methodologies such
as Query-Focused Customer Experience Summa-
rization (QF-CES) and Query-Focused Emotion
Recognition (QF-ER) demonstrate the viability
of query-based personalization strategies, broader
challenges persist. Systems requiring comprehen-
sive user understanding must carefully navigate the
fundamental tension between delivering personal-
ized experiences and preserving user privacy—a
consideration increasingly critical within contem-
porary privacy-conscious digital environments.

Factual Accuracy and Hallucination Mitiga-
tion: Ensuring factual correctness represents a
fundamental challenge across all generative appli-
cations. For Multi-perspective Opinion Summa-
rization (M-OS), this necessitates accurate repre-
sentation of technical specifications without fab-
ricating or omitting critical details. For EAOS
and EOT applications, it requires grounding all
emotional interpretations within source textual evi-
dence. LLMs demonstrate susceptibility to "hallu-
cination"—generating plausible yet factually in-
correct information. While structured prompt-
ing frameworks such as EOT-DETECT incorporating
built-in verification mechanisms can mitigate these
issues, maintaining complete faithfulness, particu-
larly with complex and contradictory source mate-
rials, remains an unresolved challenge.



Retrieval-Augmented Generation Complex-
ity: Modern e-commerce applications increas-
ingly adopt Retrieval-Augmented Generation
(RAG) architectures to access real-time product
information, dynamic pricing data, and evolving
inventory status (Lewis et al., 2020b; Guu et al.,
2020). However, RAG systems introduce substan-
tial complexity in maintaining retrieval quality and
relevance. The dynamic nature of e-commerce
data—where product specifications, availability,
and user reviews change continuously—poses sig-
nificant challenges for retrieval systems that must
balance recency, relevance, and computational ef-
ficiency. Furthermore, the integration of retrieved
information with generated summaries requires so-
phisticated fusion mechanisms to ensure coherence
and prevent contradictory information propagation
(Shuster et al., 2021; Yu et al., 2022).

Algorithmic Bias and Representational Fairness:
LLMs are trained on extensive internet text cor-
pora containing inherent societal biases (Bender
et al., 2021). These biases can manifest in gener-
ated summaries through mechanisms such as over-
representing majority perspectives while minimiz-
ing or excluding minority viewpoints (Sheng et al.,
2021). The EAOS framework’s incorporation of an
Emotional Bias Mitigation metric directly acknowl-
edges this risk. Ensuring these systems deliver fair,
equitable, and representative summaries constitutes
a critical ethical challenge requiring sustained re-
search attention and methodological vigilance.

Continual Pre-training and Model Adapta-
tion Challenges: E-commerce domains exhibit
rapidly evolving characteristics, including emerg-
ing product categories, shifting consumer pref-
erences, and evolving linguistic patterns in user-
generated content. Traditional static pre-training
approaches prove insufficient for capturing these
temporal dynamics (Qin et al., 2022; Ke et al.,
2022). Continual Pre-training (CPT) method-
ologies offer promising solutions but introduce sig-
nificant computational overhead and catastrophic
forgetting risks. The challenge lies in developing
efficient incremental learning strategies that can
incorporate new e-commerce knowledge—such as
novel product attributes, emerging brand terminol-
ogy, and evolving review patterns—without degrad-
ing performance on previously learned tasks (Jin
et al., 2023; Wang et al., 2023b). Additionally,
determining optimal update frequencies and data
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selection criteria for continual pre-training in dy-
namic e-commerce environments remains an open
research question.

Evaluation Complexity: As demonstrated
throughout this survey, traditional metrics includ-
ing ROUGE (Lin, 2004b) and BERTScore (Zhang
et al., 2020b) prove inadequate for evaluating
nuanced system outputs. The field increasingly
adopts multi-dimensional human evaluations and
LLM-based assessment approaches. However,
these methodologies introduce novel complexities.
Human evaluation exhibits inherent subjectivity
and limited scalability, while LLM-based evalu-
ation, despite demonstrating strong correlation
with human judgments, can manifest distinct
biases, including preferential treatment of sum-
maries generated by models within the same
architectural family. Developing robust, scalable,
and unbiased evaluation protocols represents a
substantial research challenge requiring dedicated
investigation.

Computational and Accessibility Barriers:
Training and deploying state-of-the-art LLMs de-
mands significant computational resources, typi-
cally requiring access to high-performance hard-
ware including NVIDIA A100 or H100 GPUs.
Moreover, the most capable models, including
OpenAl’s GPT-40 and Anthropic’s Claude 3.5
Sonnet, remain proprietary and accessible exclu-
sively through cost-prohibitive API services. These
requirements create substantial barriers for aca-
demic institutions and smaller organizations, po-
tentially limiting innovation across the research
community. While developing efficient, fine-tuned
models such as EOT-LLAMA provides promising al-
ternatives, performance gaps with frontier models
frequently persist.

Cross-Domain Generalization Limitations:
The surveyed research methodologies are predom-
inantly optimized for e-commerce applications.
The domain-specific linguistic patterns, spe-
cialized terminology, and information source
characteristics remain particular to product review
contexts. The generalizability of these frameworks
to alternative domains—including medical patient
feedback summarization, legal document analysis,
or financial report processing—remains an open
empirical question. Each novel domain would



likely necessitate substantial adaptation and
domain-specific fine-tuning procedures.

Limited Interactive Capabilities: The majority
of described systems operate through "single-shot"
generation paradigms, accepting input and produc-
ing static summaries. Truly human-centered sys-
tems would incorporate interactive and conversa-
tional capabilities, enabling users to pose follow-up
queries ("Provide additional details regarding bat-
tery performance"), refine scope parameters ("Ex-
clude price-focused reviews"), or resolve ambigu-
ities. Integrating the sophisticated summarization
capabilities demonstrated by these frameworks into
dynamic, conversational interfaces represents a sig-
nificant developmental step that remains largely
unexplored.

Information Volume and Processing Complex-
ity: Contemporary e-commerce platforms en-
compass millions of products, each associated with
numerous reviews and comprehensive specifica-
tions. Processing this information volume and
complexity presents substantial computational and
methodological challenges (Bagozzi et al., 1999;
Duan et al., 2008a).

User Preference Subjectivity and Diversity: In-
dividual users demonstrate varying preferences, pri-
orities, and information requirements, even when
evaluating identical products. Developing person-
alized summaries and explanations addressing this
diversity without extensive user profiling presents
ongoing challenges (Kim et al., 2019; Wang and
Benbasat, 2022).

Information versus Conciseness Trade-offs:
Delivering comprehensive information while main-
taining readability and relevance requires careful
optimization. Excessive detail can overwhelm
users, while insufficient information may impede
informed decision-making processes (Greifeneder
et al., 2007).

Privacy and Personalization Balance: Tradi-
tional personalization methodologies depend on
extensive user profiling, raising privacy concerns.
Developing approaches delivering personalized in-
formation based exclusively on current query con-
texts rather than historical behavioral data presents
both methodological challenges and research op-
portunities (Damasio, 2004; Lerner et al., 2015).
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Evaluation Framework Subjectivity: Evaluat-
ing summaries, comparisons, and explanations
involves inherently subjective and multidimen-
sional considerations. Developing robust evalu-
ation frameworks achieving alignment with human
judgment represents a significant methodological
challenge (Chiang et al., 2023; Fu et al., 2023b).

Domain and Linguistic Generalization: E-
commerce encompasses diverse product categories
featuring domain-specific terminology and contex-
tual considerations. Developing approaches that
generalize across domains and languages while cap-
turing domain-specific nuances presents substantial
methodological challenges (Li et al., 2020a).

Given these fundamental challenges, contin-
ued advancement of LLM-driven systems for e-
commerce applications will require both technical
innovation and principled design considerations.
We conclude this survey with a synthesis of key
insights and concluding observations.

9 Summary and Conclusion

The exponential growth of e-commerce has intro-
duced significant challenges in information pro-
cessing, confronting consumers with substantial
volumes of product information and user-generated
content. This survey has examined recent ad-
vancements in applying Large Language Models
(LLMs) to address information overload through
systematic transformation into actionable, user-
centered insights. The field has progressed from
traditional, isolated approaches toward integrated
systems that comprehensively address consumer
decision-making processes.

A primary contribution of this survey is the for-
malization of the Mind, Matter, and Markets
framework, a systematic conceptual structure for
categorizing and analyzing these developments.
This framework delineates innovations addressing
the Mind (cognitive and emotional dimensions of
user feedback), the Matter (factual and objective
product characteristics), and the Markets (prac-
tical deployment of insights in commercial sys-
tems). Through this analytical lens, we have con-
ducted comprehensive examination of five research
directions that demonstrate significant impact on
e-commerce applications.

These five methodological approaches—Multi-
Source Opinion Summarization (M-OS), Emotion-



Aware Opinion Summarization (EAOS), Query-
Focused Comparative Explainable Summarization
(QF-CES), Emotion and Opinion Trigger Detec-
tion (EOT), and Query-Focused Explainable Rec-
ommendation (QF-ER)—collectively represent a
fundamental methodological shift from product-
centric data processing toward human-centric in-
formation synthesis. Rather than exclusively ex-
tracting features or sentiment classifications, these
approaches generate summaries that demonstrate
factual completeness, emotional awareness, contex-
tual relevance, and transparent justification. Empir-
ical validation through user studies demonstrates
consistent preference for these enhanced summa-
rization approaches compared to baseline methods.

From a methodological perspective, this survey
has documented concurrent evolution in system
development and evaluation techniques. The field
has transitioned from basic zero-shot prompting
strategies to sophisticated, structured reasoning
frameworks incorporating self-reflection mecha-
nisms and multi-step analytical processes. Addi-
tionally, evaluation methodologies are undergoing
substantial transformation, moving from lexical-
overlap metrics such as ROUGE toward more ro-
bust, reference-free assessment approaches that uti-
lize LLLMs as evaluators, demonstrating improved
correlation with human judgment.

Future research directions emerging from this
analysis include several promising areas for inves-
tigation. The integration of these five distinct ap-
proaches into unified systems capable of generating
emotionally-aware, multi-source, comparative sum-
maries responsive to specific queries represents a
natural progression. Additional research opportuni-
ties include multimodal extensions incorporating
visual and audio data from video reviews, develop-
ment of interactive and conversational summary
interfaces, and investigation of cross-domain gen-
eralization of these frameworks to information-
intensive domains including healthcare and finan-
cial services.

In conclusion, the research developments sur-
veyed in this paper establish foundations for ad-
vanced e-commerce platforms that extend be-
yond data presentation to provide intelligent,
contextually-aware consumer assistance. Through
continued development of systems that align with
human cognitive and emotional processing patterns,
these approaches demonstrate potential to address
information complexity while supporting informed
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decision-making processes. The systematic appli-
cation of LLMs to consumer-facing summarization
tasks represents a significant step toward more ef-
fective human-computer interaction in commercial
environments.
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