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Abstract

Prompting has emerged as a powerful strat-
egy for building domain-task-language specific
models across several specialized applications.
In consumer grievance chatbots, prompting en-
ables task-oriented dialogue flows that guide
users through structured complaint filing and
redressal processes while ensuring domain rel-
evance and conversational consistency. Le-
gal decision assist tools leverage prompting
for multi-step legal reasoning, material sum-
marization, and retrieval of similar cases, of-
fering valuable support for legal profession-
als in analyzing complex case files. Question
Answering in Marathi presents unique chal-
lenges due to low-resource language settings,
where prompt-based techniques combined with
multilingual retrieval are employed to enable
accurate responses from regional government
datasets. Across all three tasks, prompting ad-
dresses key demands such as reasoning consis-
tency, domain-specific knowledge integration,
and multilingual adaptation, though challenges
like hallucination, low-resource data scarcity,
and prompt transferability remain active areas
of research.

1 Introduction

The advent of large-scale pre-trained language
models (LLM) such as GPT-3 (Brown et al., 2020a),
PalLM (Chowdhery et al., 2022) and GPT-4 (Ope-
nAl et al.,, 2024) has led to significant break-
throughs in natural language processing (NLP),
demonstrating strong capabilities across various
tasks ranging from text generation and summa-
rization to question answering and code synthe-
sis. These models achieve generalization by being
pretrained on massive amounts of web-scale cor-
pora, enabling them to acquire substantial world
knowledge and linguistic competence.

However, when deployed in specialized domains
such as law, medicine, finance, and scientific re-
search, general-purpose models often face chal-
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lenges due to the presence of domain-specific ter-
minology, knowledge gaps, regulatory constraints,
and complex reasoning requirements (Xu et al.,
2025; Bommasani et al., 2022). To address these
limitations, Domain-Specific Language Models
(DSLMs) have emerged, either by training mod-
els from scratch on domain-relevant corpora or by
adapting general models via continued pretrain-
ing or fine-tuning (Lee et al., 2019; Chalkidis et al.,
2020; Yang et al., 2020). These DSLMs are tailored
to handle specialized tasks, benefiting from expo-
sure to in-domain vocabulary, structured knowl-
edge, and nuanced reasoning patterns.

Despite the availability of domain-specific mod-
els, fully supervised fine-tuning remains costly and
impractical in many real-world settings due to lim-
ited labeled data, privacy concerns, and high com-
putational demands. In this context, prompting has
gained prominence as a lightweight and flexible
mechanism to adapt LLMs and DSLMs to down-
stream tasks without extensive retraining. Prompt-
ing allows models to condition their outputs based
on carefully designed instructions or exemplars, ef-
fectively converting a wide range of NLP problems
into text-to-text tasks (Liu et al., 2021).

1.1 Discrete and Continuous Prompting

Prompt technique can be broadly categorized into
two families: discrete prompting and continuous
prompting. These paradigms offer complementary
capabilities for steering DSLMs, each with unique
advantages, limitations, and applications in domain-
specific contexts.

1.1.1 Discrete Prompting

Discrete prompting, often referred to as textual
prompting, involves the manual or semi-automatic
construction of natural language instructions that
are fed directly to the model as input text. Early
works demonstrated the surprising capability of
LLMs to follow natural language instructions



when provided with zero-shot or few-shot exem-
plars (Brown et al., 2020a; Schick and Schiitze,
2021). Subsequent developments such as Chain-of-
Thought (CoT) prompting (Wei et al., 2023) further
improved performance on complex reasoning tasks
by encouraging models to generate intermediate
reasoning steps.

In domain-specific settings, discrete prompting
is particularly appealing due to its transparency and
interpretability. Domain experts can craft prompts
that explicitly specify task requirements, incorpo-
rate domain terminology, and impose task con-
straints. For instance, in legal document summa-
rization, prompts may request extraction of “case
facts, legal provisions applied, and relief granted”.
In biomedical applications, prompts may guide
models to extract “clinical findings, diagnosis hy-
potheses, and treatment recommendations” (Sing-
hal et al., 2022a).

However, discrete prompting is highly sensitive
to prompt phrasing, template design, and instruc-
tion format (Zhao et al., 2021; Lu et al., 2022).
Crafting effective prompts often requires domain
expertise and iterative experimentation, particularly
in highly specialized domains where incorrect in-
structions can lead to hallucinations, omissions, or
irrelevant outputs. Moreover, discrete prompts may
suffer from limited generalizability across tasks or
datasets, making large-scale deployment challeng-
ing.

1.1.2 Continuous Prompting

Continuous prompting, also known as soft prompt-
ing or prompt tuning, represents a complemen-
tary paradigm wherein continuous vector repre-
sentations are learned and prepended to model
embeddings during inference (Lester et al., 2021;
Li and Liang, 2021a,b). Rather than relying on
natural language instructions, continuous prompts
are optimized via gradient-based learning on small
amounts of task-specific data.

In domain-specific scenarios, continuous
prompting offers several attractive properties. First,
it enables parameter-efficient adaptation, requiring
updates to only a small set of prompt parameters
while keeping the vast majority of model weights
frozen (Lester et al., 2021). This is particularly
valuable for DSLMs, where retraining entire
models may be prohibitive due to computational or
privacy constraints. Second, continuous prompts
can capture fine-grained domain-specific task
information that may be difficult to express

explicitly via discrete natural language. Third,
continuous prompting can facilitate multi-task
or multi-domain adaptation by learning separate
prompt embeddings for different tasks (Vu et al.,
2022).

Nevertheless, continuous prompting introduces
trade-offs. Unlike discrete prompts, continuous
prompts are not human-interpretable, limiting trans-
parency and making debugging more difficult in
high-stakes domains such as healthcare or law. Fur-
thermore, continuous prompts may overfit to nar-
row task distributions if not carefully regularized or
if insufficient data is available (Wang et al., 2022).
Additionally, the learned prompt embeddings may
not easily transfer across models or domains, re-
ducing their reusability compared to well-designed
discrete templates.

1.2 Motivation

The widespread deployment of DSLMs across nu-
merous high-stakes domains necessitates a deeper
understanding of how prompting methods can be
adapted, optimized, and evaluated for domain-
specific tasks. While prompting has become a core
technique in general-purpose LLM applications,
its application to DSLMs presents new challenges:
handling long documents, ensuring factual consis-
tency, aligning with domain ontologies, and man-
aging domain-specific evaluation standards.

This survey aims to fill this gap by providing
a comprehensive review of prompting strategies
tailored for DSLMs. Specifically, our contributions
include:

* Presenting a unified taxonomy of both dis-
crete and continuous prompting approaches
for DSLMs.

* Systematically analyzing domain-specific
challenges in prompt design, robustness, and
evaluation.

* Reviewing state-of-the-art prompting methods
across major domains such as law, medicine,
finance, and scientific literature.

* Identifying emerging trends, open research
problems, and future directions in domain-
specific prompting research.

2 Background

Prompting has emerged as a central paradigm in
adapting large language models (LLMs) to down-
stream tasks, particularly when labeled training



data is scarce or costly to obtain. Unlike tradi-
tional supervised fine-tuning approaches, prompt-
ing leverages pretrained language models as con-
ditional generators, steering their outputs via care-
fully crafted input instructions or learned represen-
tations. In the context of domain-specific language
models (DSLMs), prompting provides an efficient
mechanism to leverage pretrained knowledge while
incorporating domain-specific constraints, reason-
ing patterns, and specialized knowledge.
Large language models such as GPT-3 (Brown
et al., 2020a), PaLM (Chowdhery et al., 2022), and
LLaMA (Touvron et al., 2023a) are trained on mas-
sive corpora using next-token prediction objectives,
enabling them to learn statistical patterns of lan-
guage, factual knowledge, and even rudimentary
reasoning capabilities. However, these models are
often trained on open-domain datasets, which may
not fully capture the linguistic nuances, specialized
vocabulary, or domain-specific knowledge required
for legal, biomedical, financial, or scientific appli-
cations.

Domain-specific language models (DSLMs) ad-
dress this gap by either:

* Pretraining from scratch on large domain-
specific corpora (e.g., PubMedBERT (Gu
et al., 2021) for biomedical literature, Legal-
BERT (Chalkidis et al., 2020) for legal text,
or FinBERT (Yang et al., 2020) for financial
reports).

¢ Continued pretraining or domain-adaptive
pretraining (DAPT) on top of existing general-
purpose models (Gururangan et al., 2020).

 Instruction tuning on domain-specific
datasets to align model behavior to domain-
specific tasks (Ouyang et al., 2022).

Even with DSLMs, explicit prompt design re-
mains crucial for downstream performance, partic-
ularly in low-resource domains where fine-tuning
data is limited. Before delving into the details
of different prompting strategies we discuss two
language models that we have applied in our appli-
cations.

3 Llama 3.1 and Gemma 2: Model
Overview

Llama 3.1 (Dubey et al., 2024), developed by Meta,
is the latest evolution in the Llama series, designed
for scalable, efficient, and adaptable large language

modeling. Building on its Transformer-based archi-
tecture, Llama 3.1 introduces improvements such
as long-context support up to 128,000 tokens, gra-
dient checkpointing, mixed-precision training, and
dynamic scaling for efficient learning. It is offered
in sizes ranging from 8§ billion to 405 billion param-
eters, making it accessible to both large research
labs and smaller organizations. The model per-
forms strongly in zero-shot and few-shot learning,
supports parameter-efficient fine-tuning methods
like LoRA, and is optimized for real-time inference
on diverse hardware. Its flexibility makes it well-
suited for tasks such as summarization, translation,
question answering, and multi-turn dialogue across
domains.

Gemma 2 (Team et al., 2024), developed by
Google Al is a versatile family of large language
models available in 2 billion, 9 billion, and 27
billion parameter sizes, with smaller models op-
timized for edge and mobile devices. Known for its
computational efficiency and fast inference capabil-
ities, Gemma 2 employs quantization and memory-
efficient transformer variants to support deploy-
ment in resource-constrained environments. It is
particularly strong in multilingual applications, es-
pecially for Indian languages, due to its diverse and
balanced training dataset. Gemma 2 is also ethi-
cally aligned, with proactive filtering to minimize
harmful content generation. Its ability to handle
tasks ranging from question answering and sum-
marization to code generation and creative writing
makes it highly adaptable for research, educational,
and real-world deployment scenarios.

In the next sections, we survey the literature in
three different applications of trinity models.

4 Consumer Grievance chatbot

Domain specialization of large language models
(LLMs) (Ling et al., 2024) is the process of cus-
tomizing general-purpose LLMs according to spe-
cific domain contextual data, enhanced by domain-
specific knowledge, optimized by the domain objec-
tive, and regulated by domain-specific constraints.
Domain specific models such as MedPalm (Sing-
hal et al., 2023a), saulLLM (Colombo et al., 2024)
and FinGPT (Yang et al., 2023) have created a
new paradigm through their comparative perfor-
mance as opposed to general purpose models like
GPT-3 (Brown et al., 2020b). Besides being a fam-
ily of Transformer-based neural language models
specialized for dialog, LaMDA (Thoppilan et al.,



2022) also paved the way for domain-grounding
using system prompts. Task-oriented dialogue
systems assist users in achieving specific domain-
related goals through interactive conversations (Yi
et al., 2024) which have made them quite popular.
The different models and techniques that helped
us in conceptualizing Grahaknyay (our consumer
grievance chatbot) range from GPT to Llama as
well as approaches in RAG and prompting. (Rad-
ford et al., 2019) suggested the importance of zero-
shot prompting, reducing our reliance on data and
giving importance to carefully crafted prompts.
Similar to the system prompt is ghost attention
(Touvron et al., 2023b), which came with Llama2,
a potent open source chat model even available in
small 7B version, easily tailoring to user needs. On
the other hand, LaMDA (Thoppilan et al., 2022)
gives enough evidence for using an external in-
formation retrieval system instead of increasing
model size for groundedness. Although models
like LawGPT (Zhou et al., 2024b) and Legal -
lama (Chalkidis et al., 2023) have achieved domain
specificity through finetuning, pre-trained models
have also been prompted for domain grounding in
few-shot settings as in SwitchPrompt (Goswami
et al., 2023). Prompting has been effective for so-
cial conversation synthesis (Chen et al., 2023) and
as a creator of high-quality conversational agents
(Lee et al., 2023) in low-resource situations. RAG
has also proved to be an effective mechanism for
building chatbots (Kulkarni et al., 2024) to answer
domain-specific questions.

We have tried to develop a domain-specific con-
sumer grievance redressal chatbot using a system
prompt and simple RAG-based framework. Taking
the efficacy of LLM as a judge into consideration
(Zheng et al., 2023) we have extensively performed
automatic evaluation considering the limited base-
lines and calculated their correlation with scores
given by human experts. For the decision assist
tool, for extracting useful information besides ef-
ficiently engineering the system prompt, methods
like self-discover (Zhou et al., 2024a) are quite
useful.

5 Decision Assist Tool

Legal summarization involves condensing complex
legal texts, such as court rulings, legislative docu-
ments, and contracts, into shorter, more accessible
versions without losing critical legal meaning. Ap-
proaches to legal summarization can be broadly

categorized into extractive, abstractive, and hy-
brid methods (Shukla et al., 2022a). Extractive
summarization selects important sentences directly
from the original text, while abstractive summa-
rization involves generating new sentences that
capture the essence of the original content (Zhang
et al., 2024). Hybrid methods combine both ap-
proaches to improve the quality of the summary.
Recent research has increasingly focused on us-
ing transformer-based models, which have shown
significant promise in improving summarization
accuracy, especially for complex legal documents
(Akter et al., 2025).

Predicting similar cases and using them as le-
gal precedents for easing has been explored quite
vividly as a challenging research problem (Wu
et al., 2023). Extracting legal elements from ju-
dicial documents helps enhance the interpretative
and analytical capacities of legal cases, thereby fa-
cilitating a wide array of downstream applications
in various domains of law (Zongyue et al., 2023).
The legal elements, which typically comprise key
facts in a specialized legal context, can improve the
relevance matching of legal case retrieval (Deng
et al., 2024). Unsupervised case retrieval methods
using event extraction have also been performed
recently (Joshi et al., 2023).

Prompt engineering has emerged as an indis-
pensable technique for extending the capabili-
ties of large language models (LLMs). This ap-
proach leverages task-specific instructions, known
as prompts, to enhance model efficacy without mod-
ifying the core model parameters (Sahoo et al.,
2024). Prompt techniques such as chain of thought
(Wei et al., 2023) pave the way for introducing in-
termediate reasoning steps that help to complete
the task better. Our approach uses a combination
of prompting, extraction of legal elements (specifi-
cally sector information), and sector identification
to obtain adequately and fluently drafted material
summaries of consumer case files.

The Llama models natively support coding, rea-
soning, tool usage, and various NLP generation
tasks. Being open source, it’s widely used by the
research community. Several studies emphasize
the importance of human evaluation in assessing
NLP models (Guzman et al., 2015; Gillick and Liu,
2010). However, challenges such as inconsistent
quality and limited reproducibility make human
evaluation complex (Clark et al., 2021). Moreover,
constructing large-scale reference-based datasets
can be costly. Recent research demonstrates the



potential of Large Language Models (LLMs) as
reference-free evaluators for Natural Language
Generation (NLG) tasks. For example, Liu et al.
(2023) introduced G-EVAL, which employs LLMs
with chain-of-thought (CoT) reasoning and a form-
filling approach, showing strong alignment with hu-
man judgments in summarization. Similarly, Chi-
ang and Lee (2023) found that LLM-based evalua-
tion produces results comparable to expert human
assessments. Zheng et al. (2023) reported that ad-
vanced LLMs, such as GPT-4, exhibit agreement
levels similar to human evaluators, and Siledar et al.
(2024) validated the effectiveness of LLMs in eval-
uating both proprietary and open-source models for
opinion summarization.

6 Enhancing transparency in OGD
systems

Recent years have seen a surge in Open Govern-
ment Data (OGD) initiatives worldwide, aiming
to increase transparency and accountability. This
section explores research on three key areas: OGD
fundamentals, similar applications in other gov-
ernment domains, and language models for Indic
languages. Researchers have defined OGD termi-
nology, explored its impact on citizen engagement,
and identified challenges in OGD implementation
(Attard et al., 2015). (Pena et al., 2023) focused
on using LLMs for topic classification in public
documents. For Indian languages, several studies
have provided datasets and pre-trained BERT mod-
els. (Dabre et al., 2022) highlighted the benefits
of script unification for low-resource languages,
while Haq et al. demonstrated the effectiveness
of machine-translated data for improving retriever
performance. Our work focuses on enhancing a
QA system for Marathi government orders. By
leveraging our carefully curated dataset, we aim
to improve the system’s ability to provide accurate
and informative answers.

7 Prompting Taxonomy for DSLMs

While general-purpose prompting methods have
achieved impressive success in open-domain NLP,
their direct application to domain-specific language
models (DSLMs) requires careful adaptation due to
several unique challenges. DSLMs operate under
specialized vocabularies, knowledge constraints,
task formats, and reasoning patterns that differ sig-
nificantly across domains such as law, medicine,
finance, and scientific research. In this section, we

present a taxonomy of prompting strategies specifi-
cally adapted to DSLMs but at the same time based
on the prompting hierarchy used in large language
models, organized along several key axes: task
complexity, supervision level, reasoning depth, and
domain constraints.

7.1 Zero-Shot Prompting in DSLMs

Zero-shot prompting remains a highly attractive
paradigm in DSLMs when labeled training data
is limited or unavailable. In zero-shot settings,
the model is conditioned purely through natural
language instructions, without any explicit task
demonstrations.

Unlike open-domain LLMs, DSLMs often re-
quire specialized task formulations that explic-
itly invoke domain-specific language, templates,
and evaluation criteria. For example, legal zero-
shot prompts may specify extraction of “par-
ties involved, case facts, legal statutes cited, and
judgment issued” (Chalkidis et al., 2021), while
biomedical prompts may request outputs following
clinical report structures (Lehman et al., 2021).

Several studies have demonstrated that carefully
engineered zero-shot prompts—often co-designed
with domain experts—can achieve surprisingly
strong performance in DSLMs (Zheng et al., 2021;
Nori et al., 2023; Singhal et al., 2022a). However,
zero-shot performance remains highly sensitive to
prompt phrasing and the model’s internal domain
knowledge.

7.2 Few-Shot Prompting in DSLMs

Few-shot prompting enhances zero-shot setups by
adding a small set of in-context examples to illus-
trate the desired input-output mappings (Brown
et al., 2020a). In domain-specific tasks, these few-
shot exemplars are often manually curated by do-
main experts to ensure high-quality coverage of
task formats, label definitions, and complex deci-
sion boundaries.

For example, (Singhal et al., 2022b) demonstrate
improved performance in biomedical question an-
swering using carefully constructed few-shot ex-
emplars highlighting clinical reasoning paths. Sim-
ilarly, in legal judgment summarization, domain
experts can provide few-shot demonstrations that
illustrate how statutory provisions and facts inter-
act to yield legal outcomes (Zheng et al., 2021;
Chalkidis et al., 2020).

One notable challenge in few-shot prompting
for DSLMs is the limited availability of diverse



and representative examples due to data privacy,
annotation cost, and legal restrictions—especially
in healthcare and finance.

7.3 Instruction Prompting in DSLMs

Instruction prompting leverages large instruction-
tuned models such as FLAN-TS (Chung et al.,
2022), InstructGPT (Ouyang et al., 2022),
and domain-adapted instruction models like
BioMedLM (Singhal et al., 2022a) or Med-PalLM 2
(Singhal et al., 2023b). Instruction-tuning enhances
DSLMs by directly optimizing models to follow
domain-specific natural language instructions.

In practice, instruction prompting helps align
DSLMs with professional guidelines, regulatory
policies, and ethical considerations. For instance,
financial instruction prompts may enforce risk dis-
closure rules, while medical instructions can re-
flect clinical guidelines or diagnostic protocols (Hu
et al., 2025).

Instruction prompting is increasingly viewed as
an effective middle ground between pure prompt-
ing and full fine-tuning for DSLMs, particularly
when domain-annotated instruction datasets are
available.

7.4 Reasoning-Augmented Prompting for
DSLMs

A major advantage of prompting is its ability to
elicit structured reasoning processes that closely
resemble expert decision-making. DSLMs benefit
substantially from reasoning-augmented prompting
strategies, several of which have emerged recently:

7.4.1 Chain-of-Thought (CoT)

As introduced in (Wei et al., 2023), CoT prompt-
ing elicits intermediate reasoning steps that im-
prove multi-step logical and arithmetic reasoning.
In DSLMs, CoT is particularly effective for model-
ing legal reasoning chains (e.g., statute application
sequences), clinical diagnostic flows, and financial
portfolio evaluations (Kojima et al., 2023; Wang
et al., 2023).

7.4.2 Tree-of-Thought (ToT)

Tree-of-Thought prompting (Yao et al., 2023) ex-
tends CoT by allowing exploration of multiple par-
allel reasoning branches with search and evaluation
mechanisms. ToT has shown strong potential in
complex multi-diagnosis generation, multi-party
legal case analysis, and policy simulations.

7.4.3 Graph-of-Thought (GoT)

Graph-of-Thought prompting (Besta et al., 2024)
models reasoning as a dynamic graph where nodes
represent partial solutions and edges denote tran-
sitions. This is highly aligned with tasks re-
quiring non-linear reasoning, such as legal multi-
jurisdictional conflicts or scientific hypothesis test-
ing across interrelated studies.

7.4.4 Buffer-of-Thought (BufT)

Buffer-of-Thought (Yang et al., 2024) introduces
external self-evaluation buffers that allow DSLMs
to pause, critique, and revise intermediate reason-
ing steps. This reflection-driven framework reduces
hallucinations and inconsistency, which is critical
in high-stakes domains like clinical medicine or
financial forecasting.

7.4.5 Self-Discovery and Self-Refinement

Self-discovery (Zelikman et al., 2022) and self-
refinement (Madaan et al., 2023) frameworks en-
able models to autonomously decompose tasks into
subtasks and iteratively refine their solutions, al-
lowing more robust problem solving when domain
knowledge is fragmented or partially uncertain.

7.5 Retrieval-Augmented Prompting for
DSLMs

DSLMS often operate in dynamic domains where
up-to-date knowledge is critical. = Retrieval-
Augmented Prompting (RAP) combines pretrained
models with retrieval mechanisms to dynamically
inject relevant knowledge into the prompt (Lewis
et al., 2021; Izacard and Grave, 2021).

In legal NLP, RAP retrieves case precedents,
statutes, and regulatory documents at inference
time (Shukla et al., 2022b); in biomedicine, RAP
retrieves recent publications and guidelines (Lee
et al., 2019); while in finance, RAP can inject real-
time market reports or compliance updates (Yang
et al., 2020).

Recent works combine RAP with CoT, ToT and
BufT frameworks to simultaneously ground model
reasoning and reduce hallucination (Fadeeva et al.,
2024; Shi et al., 2024).

7.6 Continuous Prompting for DSLMs

As discussed earlier, continuous prompting strate-
gies such as soft prompt tuning (Lester et al., 2021),
prefix tuning (Li and Liang, 2021a), and P-tuning
(Li and Liang, 2021b) enable efficient adaptation
of DSLMs without modifying the full model. In



domain-specific contexts, continuous prompting
allows DSLMs to absorb highly specialized task
structures and domain schemas in a parameter-
efficient manner (Tuan et al., 2022; Vu et al., 2022).

Hybrid approaches that combine continuous and
discrete prompts are increasingly being explored
for DSLMs to balance interpretability and perfor-
mance (Han et al., 2021).

8 Evaluation Methods for Prompted
DSLMs

Evaluation of prompted Domain-Specific Lan-
guage Models (DSLMs) remains one of the most
challenging aspects of applied NLP research. Un-
like general-purpose benchmarks, DSLMs often
operate in high-stakes, highly specialized domains
where correctness, factual grounding, and reason-
ing validity are essential. This section reviews both
traditional and emerging evaluation frameworks
applicable to DSLM:s.

8.1 General Evaluation Challenges in DSLMs

Prompted DSLMs introduce several unique evalua-
tion difficulties:

* Ambiguity of Gold Labels: Many domain
tasks (e.g., legal argumentation, medical diag-
nosis) have multiple valid solutions depending
on jurisdiction, guidelines, or expert interpre-
tation.

* Hallucination Detection: DSLMs are prone
to factual errors that may not be easily identi-
fied without expert knowledge (Maynez et al.,
2020).

* Multi-Hop Reasoning Verification: Reason-
ing chains must be evaluated stepwise, not
just based on final answers.

* Structured Output Comparison: Outputs
often include multiple fields (e.g., case facts,
statutes, relief granted) rather than simple
scalar labels.

* Expert Human Review: Ground truth cre-
ation often requires domain specialists, which
limits dataset size and consistency (Nori et al.,
2023).

8.2 Automatic Evaluation Metrics

While human evaluation remains the gold standard,
several automatic metrics have been employed
across domains:

8.2.1 Lexical Overlap Metrics

* ROUGE (Recall-Oriented Understudy for
Gisting Evaluation): For summarization and
content selection (lin).

* BLEU (Bilingual Evaluation Understudy):
For generation quality, though limited for
long-form outputs (Papineni et al., 2002).

8.2.2 Semantic Similarity Metrics

« BERTScore: Measures token-level seman-
tic similarity using contextual embeddings
(Zhang et al., 2020).

* BLEURT: Learned quality evaluation trained
on human judgments (Sellam et al., 2020).

8.2.3 Reasoning and Consistency Metrics

 Faithfulness Metrics: Entity-level correct-
ness for factual extraction tasks (Maynez et al.,
2020).

* Self-Consistency: Agreement across multiple
CoT reasoning samples (Wang et al., 2023).

* TruthfulQA: Specifically designed to capture
hallucination susceptibility (Lin et al., 2022).

8.2.4 Prompt-Specific Metrics

* Prompt Sensitivity Metrics: Evaluates
model stability across prompt variants (Zhao
et al., 2021; Webson and Pavlick, 2022).

e Calibration Error: Measures confidence
alignment for probabilistic predictions.

8.3 Domain-Specific Benchmarks

In recent years, domain-specific evaluation datasets
have been developed to better capture DSLM task
complexities:

8.3.1 Legal Domain Benchmarks

* LegalBench (Chalkidis et al., 2020): Compre-
hensive evaluation across statutory reasoning,
case summarization, and legal entailment.

* MultiEURLEX (Chalkidis et al., 2021): Mul-
tilingual legal document classification across
European legal corpora.



8.3.2 Biomedical Domain Benchmarks

e MedQA (Jin et al., 2020): Medical board
exam QA dataset evaluating clinical reason-
ing.

¢ PubMedQA (Jin et al., 2019): Biomedical
factual consistency benchmark.

* RadQA and RadGraph (Hu et al., 2025):
Radiology-specific report generation and rea-
soning.

8.3.3 Financial Domain Benchmarks

* FinQA (Chen et al., 2021): Multi-step finan-
cial reasoning with tables and texts.

e TAT-QA (Zhu et al., 2021): Financial table-
based QA.

8.3.4 Scientific Literature Benchmarks

* SciBench (Wang et al., 2024): Evaluates sci-
entific multi-hop reasoning, hypothesis chain-
ing, and cross-domain synthesis.

* NarrativeQA Science Subset (Kocisky et al.,
2018): Multi-document synthesis for scien-
tific narratives.

8.4 Human Evaluation Protocols

In many DSLM applications, automatic metrics
fall short, and expert human evaluation remains
necessary. Key considerations include:

* Accuracy: Does the model produce correct
answers under domain standards?

* Reasoning Validity: Are intermediate rea-
soning steps logical and legally or medically
valid?

* Factual Grounding: Does the output rely on
verifiable domain knowledge or invent facts?

» Safety and Ethics: Particularly for medical
and financial outputs, adherence to guidelines
and risk disclosures is critical.

* Inter-Annotator Agreement: Measuring re-
liability across expert annotators.

While human evaluation ensures high-quality
assessments, it remains costly, slow, and difficult
to scale across domains. Recent efforts combine
human-in-the-loop pipelines with automatic heuris-
tics to balance scalability and expert oversight
(Madaan et al., 2023; Shi et al., 2024).

9 Future Directions

While prompting for Domain-Specific Language
Models (DSLMs) has achieved significant progress,
several important research avenues remain open.
This section outlines key future directions that can
advance the field both theoretically and practically.

9.1 Unified Multi-Domain Prompting
Frameworks

Current DSLMs are often trained for isolated do-
mains (law, medicine, finance), limiting cross-
domain reasoning capacity. Future work should
explore:

e Joint multi-domain
pipelines.

instruction-tuning

* Unified meta-prompting architectures capable
of adapting to task specifications across legal,
biomedical, scientific, and financial domains.

* Transfer learning strategies where reasoning
chains discovered in one domain are leveraged
to bootstrap others.

Such unified models may also reduce model pro-
liferation and facilitate regulatory oversight.

9.2 Automated Prompt Engineering and
Optimization

Manual prompt design remains time-consuming
and heavily reliant on domain expertise. Auto-
mated solutions include:

* Neural prompt search algorithms for domain-
specific instruction discovery.

* Reinforcement Learning with Human Feed-
back (RLHF) pipelines tailored for DSLMs.

* Self-generated demonstrations and CoT self-
discovery mechanisms (Zelikman et al.,
2022).

* Gradient-based soft prompt optimizers for
low-resource domains (Lester et al., 2021; Li
and Liang, 2021a).

Reducing human dependency in prompt design
will enable more scalable DSLLM deployment.



9.3 Causal and Trustworthy Reasoning
Chains

A critical open question is how to enforce reliable
multi-step reasoning:

* Verifiable CoT pipelines that produce formally
checkable intermediate steps.

* Domain-specific logic constraints embedded
into reasoning paths.

* Hybrid symbolic-neural models to enforce le-
gal, medical, or financial regulations.

* Certification of reasoning chains via external
expert validators or programmatic verifiers
(Madaan et al., 2023).

Such architectures will be essential for Al de-
ployment in safety-critical systems.

9.4 Continual Domain Adaptation

DSLMS must keep pace with evolving regulations,
guidelines, and discoveries. Future research should
explore:

* Retrieval-augmented continual learning
pipelines with dynamically updated corpora.

» Few-shot continual learning techniques that
require minimal retraining.

¢ Lifelong prompt adaptation frameworks that
allow DSLMs to track policy changes, legal
amendments, or scientific breakthroughs.

Dynamic DSLMs will better serve real-world
practitioners who operate in constantly shifting
knowledge environments.

9.5 Benchmark Development and Evaluation
Standards

Robust evaluation remains a bottleneck across
DSLM prompting research. Needed improvements
include:

* Expansion of existing benchmarks to cover
reasoning, fairness, and cross-domain tasks.

» Expert-annotated evaluation corpora for edge-
case assessment.

* Development of model-agnostic reasoning
verifiers to measure CoT validity (Wang et al.,
2023; Guha et al., 2023).

* Public leaderboards and open-source DSLM
benchmarks to drive reproducible research.

Community-wide evaluation standards will pro-
mote transparency, replicability, and reliable
DSLM development.

9.6 Policy-Aware DSLM Governance

Finally, future prompting research must actively
engage with emerging Al governance frameworks:

* Regulatory compliance enforcement via
policy-constrained prompting.

* Explainability mechanisms to allow regulators
to audit DSLM outputs.

* Bias detection pipelines tailored to domain-
specific fairness metrics.

* Multi-stakeholder governance involving Al
researchers, domain experts, legal scholars,
and policymakers.

Responsible prompting innovation will require
both technical and institutional safeguards.

10 Conclusion

Prompting has emerged as a powerful and flexible
paradigm for adapting large language models to
specialized domains where traditional supervised
fine-tuning remains costly or impractical. In this
survey, we presented a comprehensive review of
prompting strategies tailored for Domain-Specific
Language Models (DSLMs), covering both discrete
and continuous prompting, reasoning-augmented
frameworks such as Chain-of-Thought, Tree-of-
Thought, Graph-of-Thought, Buffer-of-Thought,
and recent self-reflective architectures.

We systematically examined domain-specific
prompting applications across legal, biomedical,
financial, scientific, and industrial domains, high-
lighting unique challenges in prompt design, hal-
lucination mitigation, long-context reasoning, and
evaluation. We further discussed emerging trends
such as retrieval-integrated prompting, soft prompt
compression, automated prompt discovery, and
self-consistency frameworks, which collectively
point toward increasingly sophisticated and trust-
worthy DSLM architectures.

While DSLMs offer tremendous potential for
high-stakes domains, significant challenges remain
regarding prompt stability, safety, factual ground-
ing, and regulatory compliance. We advocate for



continued research that integrates domain expertise,
automated prompt optimization, reasoning verifia-
bility, and multi-stakeholder governance to ensure
responsible and impactful deployment of domain-
specific language models.

We hope that this survey serves as both a refer-
ence and a roadmap for researchers, practitioners,
and policymakers working at the intersection of
prompting, domain adaptation, and trustworthy Al
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