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Abstract

Large language models (LLMs) have achieved
remarkable success across a wide range of natu-
ral language processing tasks, yet their outputs
often remain uncontrolled—failing to adhere
to explicit instructions, structural constraints,
or user-specified requirements. This limitation
is particularly critical in high-stakes applica-
tions such as code generation, structured sum-
marization, and interactive systems, where cor-
rectness and constraint satisfaction are essen-
tial. In this survey, we present a comprehensive
overview of decoding-time control methods for
LLMs, focusing on three core settings: con-
trolled generation for natural language tasks,
program synthesis and domain-specific code
generation, and lexically constrained decoding.
We analyze representative techniques includ-
ing schema-constrained decoding, static moni-
tors, grammar-based control, and constrained
beam search, highlighting their design princi-
ples, strengths, and trade-offs. We also review
recent benchmarks such as InfoBench, Follow-
Bench, and structured task suites—that provide
fine-grained evaluations of constraint adher-
ence. Despite growing progress, our analysis
shows that current models struggle with multi-
constraint satisfaction and compositional gener-
alization. We conclude by discussing open chal-
lenges and future directions for building mod-
ular, reliable, and interpretable control mecha-
nisms in large language generation systems.

1 Introduction

Large Language Models (LLMs) have emerged
as powerful tools for a wide range of generative
tasks such as summarization, machine translation,
question answering, code generation, and open-
domain dialogue. Their ability to produce fluent,
coherent, and contextually relevant text has led to
widespread adoption across academic and indus-
trial applications. However, despite their strengths,
these models often operate as black-box generators:
they produce outputs based on statistical correla-

tions in their training data without strong guaran-
tees on factuality, safety, structure, or adherence
to user intent. This lack of controllability limits
the deployment of LLMs in scenarios where spe-
cific constraints must be satisfied—whether due to
domain requirements, user preferences, or safety
concerns.

Recent work has explored a range of control
techniques across different problem settings. For
instruction-following evaluation, InfoBench [14]
proposes a fine-grained metric called the Decom-
posed Requirements Following Ratio (DRFR),
which decomposes each instruction into multiple
binary sub-requirements, allowing precise measure-
ment of adherence across content, style, format,
number, and linguistic constraints. In a comple-
mentary direction, FollowBench [7] introduces a
benchmark for compositional and multi-layered
constraint following, testing how models handle
instructions that combine content, situation, style,
format, and example-based constraints. Both stud-
ies show that even large models like GPT-4 of-
ten struggle when faced with simultaneous, struc-
tured constraints. Finally, [17] evaluate LLMs
across five controlled generation tasks—including
numerical planning, structured story generation,
and constraint-preserving paraphrasing—revealing
persistent gaps in models’ ability to satisfy global
semantic or structural conditions despite strong flu-
ency.

In the context of code generation, constrained de-
coding techniques are increasingly being used to
enforce structural correctness, execution validity,
or schema adherence. For example, Execution-
Guided Decoding [13] integrates real-time program
execution into the decoding loop to eliminate se-
mantically invalid completions. Other approaches
like Retrieval-Augmented Code Generation [1] con-
strain model behavior using retrieved code snippets
that serve as anchors for in-distribution output. In
more structured enterprise settings, schema-guided
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Figure 1: Illustration of shortcomings with fine-tuning
and DocPrompting [19] approaches with an example for
(a) NL to Bash task (uses GPT Neo 1.3B) and (b) NL-
to-YAML task (uses StarCoder2 3B) and the proposed
DocCGen method to overcome the limitations.

decoding techniques have been proposed to ensure
conformity to complex DSLs during code synthesis
[12].

Meanwhile, lexical constraints—such as forcing
the inclusion or exclusion of specific tokens—have
been addressed using algorithmic decoding mod-
ifications. Constrained Beam Search [10] main-
tains beam candidates that satisfy prefix-based con-
straints at each step, allowing fine-grained lexical
control. Grid Beam Search [2] generalizes this
to support complex, multi-span constraints and di-
verse token placements without excessive beam
expansion.

The need for controllable generation is especially
critical in industrial and enterprise applications. In
code generation, for instance, LLLMs are increas-
ingly used to assist with structured code synthesis
in configuration files, APIs, and domain-specific
languages. In such settings, generated outputs
must conform strictly to schemas, typing rules,
and toolchain compatibility. A minor violation
of syntax or a hallucinated field can lead to system
failure, security vulnerabilities, or downtime in pro-
duction systems. Similarly, in enterprise-scale con-
versational agents and documentation assistants,
factual inaccuracy or inappropriate phrasing may
compromise trust, introduce legal liabilities, or fail
to meet regulatory standards. Therefore, develop-

ing mechanisms to constrain, steer, and validate
model outputs is not merely a research curiosity
but a practical necessity for real-world deployment.

Despite these advances, enforcing con-
straints—particularly soft or abstract ones
such as factuality, logical consistency, or user
alignment—remains non-trivial. Hard constraints,
such as output formats or lexical restrictions,
are easier to impose through decoding-time
interventions but can degrade fluency or diversity.
Moreover, control strategies are often brittle or
domain-specific, failing to generalize across tasks
or scale with model size. Evaluation remains
another open challenge: traditional generation
metrics such as BLEU or ROUGE do not capture
constraint satisfaction, and constraint-specific
metrics often lack standardization or grounding in
human preference.

This limitation in interpretability and transparency
has broader implications beyond control. As Al
systems become increasingly integrated into high-
stakes domains—ranging from criminal justice to
healthcare to financial decision-making—the need
to understand why a model made a particular pre-
diction becomes paramount. For instance, models
used for intent classification in conversational Al
must not only be accurate but also explainable, es-
pecially when user trust or error diagnosis is in-
volved. In this context, recent work has proposed
feature attribution techniques that map model de-
cisions back to important input tokens—often us-
ing gradient-based or perturbation-based methods.
These explanations are critical for identifying mis-
leading patterns or ensuring that the model’s rea-
soning aligns with human expectations. More-
over, in tasks like intent classification, explana-
tions based on main verbs and semantic slots have
shown promise in providing concise and meaning-
ful rationales. By using curated datasets and hybrid
techniques like the FRESH pipeline, researchers
demonstrate how span-based explanations can sup-
port error analysis, improve model design, and fos-
ter greater transparency in LLM behavior.

To provide a unified perspective across these frag-
mented efforts, we present a comprehensive and
technically detailed survey of controlled genera-
tion approaches, organizing the space into three
core areas: natural language generation with factual
and safety constraints, constrained code generation
with structural and execution-oriented objectives,
and lexical constraint enforcement using decoding-



time methods. For each area, we identify the types
of constraints involved, the specific control mech-
anisms proposed, and the trade-offs observed in
empirical evaluations. Through detailed case stud-
ies, illustrative examples, and comparative tables,
this survey aims to provide a unified understanding
of the challenges and opportunities in controlled
generation, laying the foundation for more reliable,
verifiable, and purpose-aligned language technolo-
gies.

2 Controlled Generation for Natural
Language Tasks

Natural language generation (NLG) has reached
impressive fluency and generality with the rise of
large language models (LLMs), yet this generative
power comes with a lack of precise controllability.
In many downstream applications—summarization,
instruction following, paraphrasing, or story gener-
ation—practitioners often require models not just
to produce relevant text, but to follow explicit struc-
tural or semantic constraints. Controlled generation
in natural language settings is therefore an active
research area, where the central goal is to ensure
that outputs remain both faithful to the prompt and
aligned with user-defined conditions, without com-
promising coherence or diversity.

A systematic investigation into this challenge
is presented in the work of [17], who frame con-
trolled generation as a capability that can be rigor-
ously tested across diverse linguistic tasks. They
benchmark several prominent LLMs—including
GPT-3.5, GPT-4, and LLaMA 2—on a set of five
challenging generation tasks designed to capture
different control objectives. These tasks probe not
only how well models can follow constraints, but
also whether performance degrades under variation,
ambiguity, or complexity in the prompt.

Numerical Planning: Here we test the ability of
models to perform arithmetic reasoning or quantity
tracking while generating a text plan. For instance,
given a constraint like “Generate a travel plan that
spans exactly 3 days,” the model must ensure that
the output describes precisely three day-wise ac-
tivities, not more or fewer. Models often struggle
with this form of global constraint satisfaction, par-
ticularly under open-ended instructions.

Content-Controlled Generation: Here we ask
the model to include or exclude specified concepts.
For example, the prompt may ask for a paragraph

about environmental policy that includes “carbon
tax” but avoids “renewable energy.” Despite their
strong generation skills, many LLMs fail to reli-
ably satisfy such lexical and semantic constraints,
especially when the instruction is long or indirectly
phrased.

Story Generation: Here models are asked to pro-
duce narratives that obey a given high-level struc-
ture, such as beginning with a conflict and ending
with a resolution. This task requires not only main-
taining stylistic and structural consistency, but also
enforcing temporal coherence—something LL.Ms
often lose track of as generation length increases.

Rationale Generation: This requires a model
to generate explanations that justify a decision or
answer. For instance, given a multiple-choice ques-
tion and a selected answer, the model must generate
a plausible rationale that supports that answer based
on the provided information. The challenge here
lies in aligning reasoning chains with the target
label, without hallucinating or introducing contra-
dictions.

Controlled Paraphrase Generation It tests
whether models can generate paraphrases that pre-
serve meaning while satisfying constraints such as
length limits, formality level, or mandatory key-
words. This task combines semantic preservation
with surface-level variation, and highlights how
different models prioritize fluency versus control
when trade-offs emerge.

[17] evaluate these tasks using both automatic
metrics and human judgments, revealing significant
variance in performance across model types and
prompting strategies. Interestingly, while propri-
etary models like GPT-4 outperform open models
on average, none of the models consistently sat-
isfy all constraints across all tasks—indicating that
current LLMs still lack robust mechanisms for gen-
eralized control. Moreover, few-shot prompting
only modestly improves performance, suggesting
that prompting alone is insufficient for certain types
of control, such as global structure or multi-step
reasoning.

Other than this, two recent benchmarks ,Fol-
lowBench and InfoBench provide comprehensive
multi-dimensional evaluations across a wide vari-
ety of constraint types and generation settings.

FollowBench (Jiang et al., 2023) formulates the
problem of controlled generation as the ability to
satisfy multi-level fine-grained constraints embed-



ded in prompts. It categorizes constraints along
five types:

» Content constraints (e.g., “include the word
‘carbon tax’ but not ‘renewable energy’”),

* Stylistic constraints (e.g., “make it sound po-
etic”),

* Format constraints (e.g., “respond in bullet
points”),

* Situational constraints (e.g., “you are a chef
speaking to a child”),

* Example pattern constraints (e.g., “continue
the dialogue as shown above”).

A key finding from FollowBench is that no single
LLM consistently follows all constraint types, es-
pecially when multiple constraints are combined.
GPT-4 performs best overall, yet even it struggles
with format and content exclusion constraints under
compositional prompts. Instruction tuning and in-
context examples yield only partial improvements,
suggesting the need for more robust decoding-
level or planning-level mechanisms for fine-grained
control. Complementing this, InfoBench (Qin et
al., 2024) introduces a different yet synergistic
methodology by proposing a new evaluation met-
ric—Decomposed Requirements Following Ratio
(DRFR)—to assess instruction adherence at a fine-
grained, component level. Instead of holistic judg-
ment or scalar scoring, DRFR decomposes a single
instruction into multiple binary sub-requirements
(e.g., “Does the output contain exactly 10 hotel
reviews?”, “Is each review one sentence long?”).
This decomposition enables precise error localiza-
tion and better inter-annotator agreement compared
to traditional direct scoring methods. InfoBench
includes 500 instructions, decomposed into 2,250
sub-questions, and covers a rich set of constraints:
Content, Linguistic, Style, Format, and Number,
with more granular coverage and clarity than prior
datasets. It also provides two levels of complex-
ity—Easy and Hard sets—across 72 domains, in-
cluding science, arts, marketing, and law.

3 Controlling Language Models for Code
Generation

Language models are increasingly used to gener-
ate code across a wide range of domains—from
general-purpose languages like Python and

JavaScript to domain-specific languages (DSLs)
for infrastructure-as-code, data pipelines, and con-
figuration files. However, unlike natural language,
code generation demands strict adherence to syn-
tax, semantics, execution correctness, and often to
external schemas or APIs. Even small deviations
from expected output—such as a missing parame-
ter, misused field, or mismatched type—can result
in non-compiling code, runtime failures, or silent
logic bugs. As such, controlling language model
outputs in code generation is not just beneficial but
essential for industrial deployment.

One principled method to enforce correctness is
Constrained Semantic Decoding (CSD), introduced
as part of the SYNCHROMESH framework [13].
SYNCHROMESH augments pre-trained LLMs
with two key components: (1) Target Similarity
Tuning (TST) for better example retrieval during
prompting, and (2) CSD, which ensures syntactic
and semantic validity of generated programs at
decoding time without modifying the base model.
In CSD, a domain-specific completion engine
(CE) is used to determine the set of valid next
tokens at each decoding step. The CE incorporates
both context-free constraints (from the grammar)
and context-sensitive rules (like type-checking or
alias resolution). For example, in SQL generation,
CSD ensures that column names conform to
schema definitions and JOIN conditions respect
alias scopes—errors that typical LLMs frequently
make. CSD works with any target language, and is
demonstrated over SQL, Vega-Lite (JSON-based
data visualizations), and SMCalFlow (a Lisp-like
task-oriented dialog language), showing significant
improvements in both program validity (e.g., from
43% to 72% for GPT-3 in SQL) and execution
accuracy. SYNCHROMESH’s modular constraint
enforcement is a key advantage. Rather than
relying on sampling-and-rejection or post hoc
filtering, it dynamically restricts the model’s token
selection to those that lead to valid programs.
This alignment is computed via formal language
derivatives (Brzozowski, 1964) and regular ex-
pression completions, enabling tight and efficient
control. Experiments demonstrate that CSD and
TST are complementary: TST steers the generation
toward the correct conceptual structure, while CSD
eliminates common implementation errors (e.g.,
type mismatches, invalid JSON structures, or SQL
alias errors). In Vega-Lite, CSD prevents invalid
chart encodings like "aggregate": "average" (where
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"average" is not a valid keyword), correcting them
to "mean" by construction.

While SYNCHROMESH ensures internal consis-
tency within the generated code, Monitor-Guided
Decoding (MGD) [1] takes a complementary ap-
proach by enforcing external consistency between
the generated tokens and the evolving program state
within a broader software repository. MGD intro-
duces a decoding-time interface called a monitor,
which integrates static analysis into the token selec-
tion process of an LLM. The goal is to ensure that
code generation respects context-specific proper-
ties such as type constraints, class hierarchies, and
variable scopes—particularly in statically typed
languages. The core idea behind MGD is to in-
tervene at trigger points during decoding, such as
after a dot operator (.) or the invocation of an ob-
ject method. At these points, the monitor uses the
Language Server Protocol (LSP) to query a static
analyzer for the set of valid continuations. For in-
stance, if the object user is of type Customer, and
the model generates user., the monitor intercepts
and retrieves the list of fields and methods valid for
Customer. The set of invalid next tokens is then
masked from the output distribution, and only valid
identifiers are allowed to be sampled. This form
of control operates non-intrusively, requiring no
model retraining or architectural changes, and can

be applied to any decoder-based language model.
The core idea behind MGD is to intervene at trigger
points during decoding, such as after a dot opera-
tor (.) or the invocation of an object method. At
these points, the monitor uses the Language Server
Protocol (LSP) to query a static analyzer for the set
of valid continuations. For instance, if the object
user is of type Customer, and the model generates
user., the monitor intercepts and retrieves the list
of fields and methods valid for Customer. The
set of invalid next tokens is then masked from the
output distribution, and only valid identifiers are
allowed to be sampled. This form of control oper-
ates non-intrusively, requiring no model retraining
or architectural changes, and can be applied to any
decoder-based language model.

A third form of control comes from domain-
specific schema validation. [12] focuses on gener-
ating structured infrastructure-as-code (I1aC) snip-
pets such as Ansible YAMLs. These DSLs are
brittle and constrained: fields must match strict
schemas, including nested structure, required argu-
ments, value types, and field ordering 2. The au-
thors design a schema-aware constrained decoder,
which uses JSON schema parsing to dynamically
restrict the next valid tokens during generation.
This decoding-time validator ensures that each field
is syntactically valid and semantically adhere to the
given task schema—without modifying model pa-



rameters or using fine-tuning. On a proprietary
Ansible benchmark, this method reduced syntactic
and semantic errors by over 50%, and required 70%
fewer post-generation repairs 1.

A closely related yet broader solution is presented
in Grammar-Constrained Decoding (GCD), intro-
duced by [4] for structured NLP tasks. GCD frames
output control as a grammar enforcement problem,
where decoding is constrained by a context-free
or regular grammar that encodes the valid output
space. At each time step, a parser checks whether
a partial sequence is derivable under the grammar,
and prunes invalid continuations before sampling.
The framework is model-agnostic and does not re-
quire finetuning, enabling structured generation in
closed information extraction, constituency pars-
ing, and structured slot-filling tasks. Although orig-
inally developed for NLP, this method maps nat-
urally to code generation, where most target lan-
guages and DSLs already come with formal gram-
mars or schemas. For instance, a JSON schema
or BNF grammar for SQL or Terraform can be
directly translated into a constraint engine in the
GCD framework.

Taken together, these decoding-time constraint
mechanisms reflect a spectrum of approaches for
code control:

* SYNCHROMESH offers tight integration
with task-specific semantics via typed com-
pletion engines.

* Monitor-Guided Decoding brings in
repository-level awareness by coupling LLMs
with static analyzers.

* Schema-Constrained Decoding targets struc-
tured DSLs where adherence to schema is es-
sential.

¢ Grammar-Constrained Decoding provides
a general-purpose symbolic layer for declara-
tive control without finetuning.

These techniques are complementary. While
grammar-based methods are language-agnostic and
easy to implement, monitor-based methods of-
fer greater semantic precision through program-
state introspection. Schema-guided techniques are
highly effective in structured formats like YAML
or JSON, while completion engines like those in
SYNCHROMESH enable domain-specific logic en-
forcement. Across all methods, the common theme
is decoding-time modular control, which enables

constraint satisfaction without sacrificing the gener-
ality or scalability of pre-trained language models.
As code generation moves from prototype demos to
enterprise deployment, these constraint-based gen-
eration techniques will become increasingly neces-
sary to meet industrial expectations of correctness,
safety, and usability.

4 Controlling language models on input
side

ConCodeEval [8], a novel benchmark and study
evaluating how well large language models (LLMs)
adhere to and generate code constrained by struc-
tured schemas—critical for system-level program-
ming in enterprise environments. Unlike prior work
focused on natural language constraints, this study
explores constraints represented directly as code
in DSLs like JSON, YAML, XML, Python, and
natural language. The authors propose two eval-
uation dimensions: **format efficacy**, which
measures how input and output schema formats
affect performance, and **constraint efficacy**,
which assesses how well LLMs handle specific
types and positions of constraints. Using a syn-
thetic dataset of 602 schema samples across five
representations, the paper evaluates several LLMs,
including Granite, LLaMA, and CodeLLaMA, on
two tasks: generating schema-compliant data 3 and
validating whether given data adheres to schema
constraints 4.

Write a JSON sample with field values as per the
JSON format schema given below.

"type": "array"”,
"contains”: {
"type": "number”,
"multipleOf”: 2.66,
"exclusiveMinimum”: ©0.08231885995435284,
"exclusiveMaximum”: 5.1100233535478
3

,
"maxContains”: 10

3

JSON sample:

| [2.66, 5.22, 8.88, 11.54, 14.2]

Figure 3: The JSON sample generated (highlighted in
yellow) by the Granite 20B model does not adhere to the
exclusiveMaximum and multipleOf constraints specified
in the schema.

The results show that LLMs perform best when
constraints are presented in natural language for
data generation but perform better with struc-




Question:
Does the JSON sample {"tamil”: false, "baser"”: null
"paltriness”: "congue.”, "anisic"”: 1906.34, "

stingo”: "officiis tellus.

"exclusiveMinimum”: 27.65410407394338,
"maximum”: 93.85523810367313
3}
3,
"additionalProperties”:
"required”: []

false,
3}
Respond to yes or no.

Answer:

yes
[ “we

Figure 4: In the JSON sample, the values for fields
stingo and anisic do not adhere to schema constraints.
But the Granite 34B model gives the incorrect answer
(highlighted in yellow) as yes.

tured formats like JSON or YAML for validation.
Surprisingly, Python schemas performed worse,
likely due to interference from the model’s general-
purpose code generation tendencies. Additionally,
constraints located in the middle or beginning of
schema contexts are more frequently missed, em-
phasizing the impact of token position in LLM
comprehension. Models struggle particularly with
numerical constraints such as ‘multipleOf* or ‘ex-
clusiveMinimum®, suggesting token-level and train-
ing limitations. The study recommends placing crit-
ical constraints at the end of schema definitions and
highlights JSON and YAML as preferred formats
for enterprise applications. Overall, the paper ad-
vocates for better schema comprehension methods
and control strategies (e.g., constrained decoding)
to improve LLM utility in system-level code gener-
ation.

5 Lexically Constrained Generation

In many sequence generation scenarios, users or
downstream systems may require that certain words
or phrases must appear (or be excluded) in the out-
put. This requirement arises naturally in a vari-
ety of tasks including machine translation, sum-
marization, image captioning, and controlled text

)
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mattis nunc”, "pigheadedness”: 52.0} adhere to
all the constraints defined in JSON format
schema
{
"type": "object”,
"properties”: {
"tamil”: {"type": "boolean"},
"baser”: {"type": "null"},
"paltriness”: {3},
"anisic”: {"type”: "number”, "multipleOf”:
7.02},
"stingo"”: {"type”: "string", "maxlen": 203},
"pigheadedness”: {"type”: "number”,

generation. Known as lexically constrained gen-
eration, this task challenges language models to
maintain fluency and relevance while satisfying
hard constraints on the output vocabulary. Unlike
soft prompts or fine-tuning, which provide prob-
abilistic steering, lexically constrained decoding
allows for explicit, rule-based guarantees—an
essential property for interactive and safety-critical
applications.

A seminal approach to this problem is Con-
strained Beam Search (CBS) [? ]. CBS modifies
the decoding process by tracking constraint satis-
faction alongside the standard beam search. Let
C ={ci1,ca,...,cr} be aset of required phrases.
During generation, CBS partitions the beam based
on which subset of C has been satisfied so far. At
each decoding step ¢, the model selects the top-B
hypotheses from extended beams, considering only
those that:

* match a prefix of an unsatisfied constraint,
* complete a constraint,

* or proceed fluently if all constraints are al-
ready satisfied.

Formally, let y;.; be a partial sequence and
S(y1:t) € C the set of satisfied constraints. CBS
maximizes:

arg r;llajgi logp(y1.r | ) st S(yir) =C

That is, only sequences that satisfy all constraints
are considered valid.

While CBS offers control guarantees, it suffers
from scalability issues as the number of constraint
subsets grows. To address this, Grid Beam Search
(GBS) [? ] generalizes CBS by organizing beam
hypotheses into a lattice over the power set of C.
Each beam cell corresponds to a constraint subset
S C C and stores the top hypotheses satisfying .S.
At every step, beams are updated by:

1. extending hypotheses in Bg with next tokens,

2. moving them into Bg: if new constraints are
satisfied.

GBS enables efficient constraint tracking and
supports unordered, overlapping, or partial con-
straints. It was originally applied to open-
vocabulary image captioning, where object detec-
tion models produce keywords (e.g., zebra, skate-
board) that must appear in the generated captions.



More broadly, lexically constrained decoding
has enabled a wide range of applications:

e Interactive Machine Translation, where
domain-specific terms must appear in the out-
put;

* Controlled Summarization, preserving named
entities or sentiment markers;

* Image Captioning, with visual objects en-
forced as output phrases;

* Safety Enforcement, where harmful comple-
tions are explicitly blocked.

Despite its utility, hard-constrained decoding in-
troduces trade-offs:

* Search overhead: the beam size grows with
2% subsets of k constraints;

* Rigidity: it cannot handle synonyms or fuzzy
matches;

* Reduced diversity: hard constraints may hin-
der natural phrasing.

Recent works explore hybrid methods that blend
lexical constraints with soft penalties, sampling,
or post-editing, but these remain less stable and
require additional tuning.

In sum, lexically constrained decoding offers a
powerful mechanism for explicit control. Unlike
prompt engineering or model tuning, it provides
interpretable, enforceable constraints suitable for
high-precision generation. As LLMs are increas-
ingly deployed in structured applications, these
techniques form a critical part of the decoding-time
control toolkit.

6 Explainability in intent classification

Intent classification is done by 4 machine learning
methods. Two of them are statistical machine learn-
ing methods, namely Support Vector Machine and
Random Forest algorithms. Other two are deep neu-
ral network architectures . A simple feed-forward
neural network consisting of multiple layers and
Long-Short Term Memory (LSTM) based neural
networks is used for this classification task .

Raw dataset has been cleaned by typical pre-
processing steps for text sequence data . This is
done by converting data to lowercase, removing
punctuation, and special characters. Trivial stop

words like "is" and "the" are not removed to exper-
iment on the performance of explainability tech-
niques and check their robustness. Words in the
text sequences are converted to vectors of 300 di-
mensions by using word embeddings. For other
experiments, word embeddings are not used, but
words are converted using categorical feature en-
coding, which maps every word to a unique number.
Finally, every sequence is padded at the end with
blank space characters to convert all samples to an
equal length of 30.

Testing dataset has been improved by doing man-
ual perturbation of the text sequences. Perturbation
method followed is replacing nouns and adjectives
by their synonyms or antonyms. It has been en-
sured that the syntax and grammar of the text sam-
ple are intact while creating perturbation.

Support vector machine is a statistical machine
learning approach that classifies the points by sep-
arating them with a linear or non-linear decision
boundary and simultaneously ensuring that the de-
cision boundary is at maximum length from support
vectors to increase robustness of classification and
better generalization. Support vector machine can
be divided into the Hard margin and soft margin
approaches. Soft margin SVM allows one to allow
misclassification and better generalize the model,
especially when samples are not linearly separable.
Here we have used a soft margin Support vector
machine approach that uses fitting a polynomial
kernel of degree 3 to best generalize the model.

Another statistical machine learning technique
used is randomForest, which is one of the best and
common classification techniques. It is a bagging
technique to assemble a number of decision trees.
Decision trees classify the given sample based on a
series of questions based on multiple features. This
separates the samples by non linear decision bound-
ary. But a decision tree has a risk of overfitting the
data. Hence, the model ensembling technique is
used to combine multiple trees and divide the data
among them. This is done by the bagging tech-
nique, and as a result, we get the randomForest
classifiers.

Feedforward neural network architecture con-
sists of 2 deep neural layers, each consisting of 150
neurons and 100 neurons, with ReLU activation. It
is followed by a dense layer with 8 neurons with a
softmax activation function.

LSTM-based neural network consists of two
LSTM layers of 64 and 32 neurons each, with a re-



current dropout layer and ReLu activation function.
Similar to a FeedForward neural net, it is followed
by a dense layer of 8 neurons and a softmax activa-
tion function.

These four models have been combined with
4 explainability techniques . Two of them are
perturbation-based, namely LIME and Anchors;
the other two are gradient-based techniques, which
are Layer-wise Relevance Propagation.

LIME is a perturbation-based technique that ex-
plains the decisions of the model locally on a par-
ticular example. It is often impossible for an ex-
planation to be completely faithful globally unless
it describes the model itself but for an explanation
to be meaningful it must be locally faithful. This
means it should be precise in terms of explaining
the feature importance for a particular sample. The
features that are important locally may not be that
important globally. Lime is a model-agnostic tech-
nique.LIME define an explanation as a model g
G, where G is a class of potentially interpretable
models, such as linear models, decision trees etc.
It is ensured that model G should should be simple
in terms of complexity. This can be done by limit-
ing the depth of the decision tree or using a small
number of features in the linear regression model.
LIME creates a perturbation around the sample lo-
cally by masking some of the words/features in the
text sequence. The perturbation samples created
are at least a distance from the original sample.
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Figure 5

{(x) = argl;naxL(f,g,m) +Q9) D)

L(f, g, m) is a measure of how unfaithful g is in
approximating f in the locality defined by 7,.C2(g)
is complexity of the linear model g which is be ap-
proximation of our original model.So the equation

suggest that we have to increase the interpretability
of faithfulness of model with the restriction that
complexity of local model should be minimized.
[15]

L(f,g9:m) = Y ((f(z) = f(z))m. (@)

z,2!

7w weighs the sample according to it’s proximity
with original sample. This ensures to penalize the
perturbation for from sample.

Even if the Linear explanations by LIME are
local it’s coverage is not clear. Unclear coverage
can lead to low human precision, as users may think
an insight from an explanation applies to unseen
instances even when it does not. For example in
the task of sentiment analysis of movie reviews ,
"The movie is not bad" represents positive review
and the "The movie is not good" negative review.
The coverage of the word "not" is not clear here
unless it is combined with the phrases "bad" and
"good". This problem is solved by another model
agnostic technique which is based on if-then rules
called anchors.In other words, For the sample on
which the anchor holds, the prediction is always
the same. The explanation given by anchors in the
above example is "not bad" and "not good" instead
of just the word "not". [15]

If we want to explain the prediction f(x) of sam-
ple x to users then anchors uses following method
to explain prediction to user. Let A be a rule (set
of predicates) acting on such an interpretable repre-
sentation, such that A(x) returns 1 if all its feature
predicates are true for instance x.Let D(-|A) denote
the conditional distribution when the rule A applies
A is an anchor if A(x) = 1 and A is a sufficient
condition for f(x) with high probability.If a sam-
ple z from D(zlA) is likely predicted as Positive
(i.e. f(x) = f(z)) for all the perturbation of the sam-
ples then rule A is stated as sufficient condition for
explaining the decision of model.

Figure 6: Difference between LIME and anchors pre-
diction



Creating perturbations for techniques like LIME
and Anchors is challenging task when it comes
in the context of text sequence or language tasks.
Adding noise in the text data should not change
the meaning of the sentences and should be gram-
matically correct. This is achieved using various
tricks.Nouns and adjectives in the text are replaced
by there synonyms which are drawn from word-
net or word embeddings like word2vec. [6] Words
can also be replaced with other words similar POS
tags. In some cases words are replaced by creat-
ing small typo’s in it like "good" is replaced with
"god" to make model and explainability techniques
more robust. Many time in the sentiment anal-
ysis task some words play positive role in some
samples in others. For example the movie review
of a funny movie "The movie is was really funny
and dramatic" represents positive review but at the
same time is same review is given to tragic movie
then it represents negative review. [3] Words which
play roles in different labels of reviews can be used
to create perturbations. Here intent classification
text are changed with adding words which are im-
portant for other tags. [16] For example "Which
flight is from Mumbai to Pune" represents intent of
"ATIS Flight" and "what is cheapest rate of fight
from mumbai to banglore" represents intent "ATIS
Airfare" important words from both examples are
added to get the sample "What is the cheapest flight
form mumbai to banglore" which represents tag as
"ATIS flight" but model gets confused between
words cheapest and flights.

Perturbation based techniques are good at ex-
plaining the model decisions locally but they de-
pend on quality of perturbations and do not ex-
plore the gradient of the models in deep neural net-
works. Gradient based explainability techniques
such as Layer wise relevance propagation (LRP)
, Integrated gradients exploit that aspect and pro-
vides attribution scores by calculating gradient of
output with respect to input feature which can be
used to calculate attribution scores for input. [11]

in LRP relevance score of neuron k is distributed
in lower level neurons like neuron j using the rule
given below.

Zik

J

Rj=7) Ry 3)
A > j “ik

Numerator term z;;, acts as a measure of how

much the contribution of neuron j in forward propa-

gation and hence in decision making. Denominator

ensures that attribution score of higher-level neu-
rons is conserved while distribution. Hence total
attribution score in the network remains conserved
and the attribution scores of the input is equal to
attribution score of the output.

The gradients are generally noisy in the middle
layer and there is a need to emphasize on differ-
ent aspects in different layers and variations of ba-
sic LRP rules are applied throughout the network.
These rules are listed below.

1. Base LRP rule (LRP-0):

Ry, 4

* This rule distributes the relevance scores
of each neuron in its lower layers using
the conservation property.

 If the activation is zero or the edge
weight for some neuron, is zero then, the
relevance of neuron Rj will evaluate to
zero. This is correct because if weight is
zero for particular neurons then it’s not
contributing to output.

* LRP-0 rule is applied at the output layer
and relevance for outermost layer neu-
rons is activation value stored in it.

2. Epsilon Rule (LRP-¢):

Rj=>"

€t 2-0,j Wik

ajwjk

Ry, )

* Gradients in the middle hidden layers are
noisy and would tend to suppress impor-
tant features.

* To solve this problem small term € is
added in the denominator. The role of
€ is to absorb some relevance when the
contributions to the activation of neuron
k are weak. This leads to sparse and less
noisy explanations.

3. Gamma Rule (LRP-7):

Ry, (6)

a; - (wjk + Ww;%)
Rj=)_ "
k22059 (wjk + 7“%)
* For the input layer LRP-+ rule is applied

to highlight positive features over nega-
tive features.



* This helps in looking for explanations
more smoothly and hence easy to inter-
pret for humans. The contribution of pos-
itive features can be controlled by tuning
the hyperparameter.y

Many of the gradient-based techniques do not
follow important axioms sensitivity and invariance.
[18]

sensitivity : An attribution method satisfies Sen-
sitivity(a) if for every input and baseline that differ
in one feature but have different predictions, the
differing feature should be given a non-zero attri-
bution. [18]

LRP is easy to implement and can be applied
to any type of data which makes it flexible. Due
to this flexibility, LRP can be used in a wide vari-
ety of tasks including text, images, or tabular data.
Using the combination of LRP rules, good-quality
explanations are obtained in the output. Explana-
tions provided by LRP are stable and hence can
be trusted. LRP is also computationally less ex-
pensive compared to perturbation-based techniques
like LIME and anchors.

Here Deep Neural network is represented as a
function F' € [0, 1]. Input is represented as a list
of tokens x = (x1, x2, x3.....z,) € R"™. The base-
line input vector is represented as z’ and attribution
scores relative to the baseline for each token are
represented as ay, as, as....a, each a; is the impor-
tance of token z; for the model’s decision.

Ignorance towards sensitivity causes the explain-
ability technique to focus on non-important fea-
tures.LRP tackle the Sensitivity issue by employ-
ing a baseline and in some sense try to compute
gradients by including terms from the baseline in
the numerator and denominator instead of normal
gradients at the input but this approach breaks the
invariance axiom. [18]

Implementation invariance: Two networks are
functionally equivalent if their outputs are equal for
all inputs, despite having very different implemen-
tations. These axioms suggest that attributions for
input features should depend on only the gradient
of output with respect to the input.

Integrated Gradient combines the Implementa-
tion invariance of gradients along with the Sen-
sitivity of techniques like LRP or DeepLift. We
consider the straightline path from the baseline x’
to the input X, and compute the gradients at all
points along the path. Integrated gradients are ob-
tained by cumulating these gradients. Specifically,
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integrated gradients are defined as the path integral
of the gradients along the straightline path from the
baseline x’ to the input x. Baseline vector selected
for the intent classification is a zero embedding
vector. Integrated gradients aggregate the gradi-
ents along the inputs that fall on the straight line
between the baseline and the input. This allows
this method to compute attributions efficiently as
compared to other path gradient methods which cal-
culate gradients across multiple paths and average
out them at the end. [18] Expression for integrated
gradients is as follows

(N

Ui o+ B — o
1610 = (r— oy 32 L+ 5l =)

k=1 i

Z IntegratedGrads;(x)
1=1

F(x) — F(2') (8)

Equation (3) denotes practical implementation
of integrated gradients where m is the number of
steps instead of integration. Here the number of
steps have been taken as 50. Later integrated gradi-
ent computed for each feature Xi is added to obtain
to get the difference attribution score for sample x
for model and x’ for baseline model. Integrated gra-
dients satisfy completeness axiom which was states
that attributions add up to difference between the
output of F at the input x and the baseline x’. This
was stated by the authors of LRP as requirement
for explainability technique. [18] [11]

Text with highlighted words
what kinds of planes are used by american -

Figure 7: Explanation by anchors on sentence *What is
the destination of flight having arrival time 755 am in
san francisco’

All the techniques like integrated gradients, LRP,
LIME, and anchors are not required to be imple-
mented on the training routine. Specifically Inte-
grated gradient is easy to implement and here it is
implemented directly on the trained deep neural
network-based model using tensorflow/Pythorch
libraries.

But these post-hoc explanations are often not
reliable as these are third-party techniques and are



Text with highlighted words

What is the destination of flight having arrival time 755

am in san-

Figure 8: Explanation by anchors on sentence ’what is
the destination of flights having arrival time 755 am in
san francisco

often noisy. Hence it is stated that it is better that
explanation comes through the model itself after is
trained. Attention is one such method but it lacks
faithfulness and there has been quite a debate about
whether attention can be used as an explanation
or not. Hence there are other technique stated by
[9] which generates rationale in an unsupervised
manner by changing objective function. It also help
predictability at the same time using REINFORCE
method.

Method by [9] involves training a neural model
to make predictions, and then using a separate neu-
ral network to generate rationales for the predic-
tions. The rationale generation network takes the
input features and the predicted output as inputs,
and produces a set of binary masks that indicate
which input features were important for the predic-
tion.

This technique contains two models generator
and an encoder which are trained jointly to help
each other’s prediction. The generator finds ratio-
nale with maximum likelihood from a given piece
of text and it’s output is given to the encoder for
classification. Rationale extraction is a completely
unsupervised process.[9] Ground truth rationals are
never provided to model during training. Rational
extraction is done following two conditions, First,
the rationales should be short and coherent and the
second condition is it should be faithful for the
predicted label.[9] The generator is a sequence tag-
ging model where each word/feature is tagged to
be rational or not. This done using REINFORCE
methodology.

for given input sequence of length
...... xt) generator predicts (z1, 22 zt)
where z € [0, 1] which is decison for every word
for being rational. The predicted rational set is
denoted by (z,z) and it is given to the encoder.
prediction of each word is treated as independent
of each other in the generator. The generator is a

simple bidirectional RCNN model with a softmax
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layer to give a probability distribution of tags for
each word.[9]

Predicted rationale (z, ) is given to the encoder
model which encodes it and outputs the resultant
vector enc(z, x) After this generator and encoder
are trained jointly to improve each other’s predic-
tions. [9]

To follow the condition of the faithfulness of
explanation encoder is trained with the objective
function given by equation 6. This ensures that the
predicted label is closer to the gold label even if
rationales are given instead of complete input text.
The second condition specifies that explanations
must be short and continuous. The first term in
equation 6 penalize long length rationales. The
second term ensures that rationales are continu-
ous by penalizing the long distance between pre-
dicted rationale. Final training is done to minimize
the cost function expected value of cost function
L(z,z,y) + €2(z). Encoder model is chosen as
RCNN as it is better to get continuous n-gram than
RNN or LSTM. [9]

for given input sequence of
xt) generator predicts (z1, 22
where z € [0, 1] which is decison for every word
for being rational. The predicted rational set is
denoted by (z,z) and it is given to the encoder.
prediction of each word is treated as independent
of each other in the generator. The generator is a
simple bidirectional RCNN model with a softmax
layer to give a probability distribution of tags for
each word.

length

L(z,x,y) = |lenc(z,x) — yl|? 9)

Q(z) = Mll2ll + X2 |zt — 21| (10)
t

But REINFORCE method involves a lot of hy-
perparameters. Hence it becomes very costly to
experiment with these models. This also has a lot
of variance and produces unstable results. Many
times [9] produces complete input text or blank
rationale as well which doesn’t give any useful in-
formation. To solve this problem [5] propose to
decompose the generator and encoder model and
train them independently. This method is stated as
Faithful Rationale Extraction from Saliency thresh-
olding (FRESH). [5]



In FRESH, the generator generates the rationale
using heuristics that come from any post-hoc expla-
nation techniques which need not be faithful. Later
it trains an extractor model which performs a task
similar to part of speech tagging to assign a binary
mask to each token in the text sequence.

FRESH divides its approach into 3 stages. In
the first stage, a classifier model is trained on the
complete input text model. Then its rationale is con-
structed using any standard post-hoc explanation
methods like LIME, Attention or gradient-based
approaches. These explanations need not be faith-
ful. Rationale from the generator model is given to
the extractor model which performs the task to se-
quence labeling on input data using heuristics given
by the generator. This is termed as the extractor
model. It assigns binary tags to each token. hence
we have a corresponding 1/0 sequence for each text
sample. The third stage is again a classifier model.
It is trained on the output of the extractor model.
This output is set of rationale and not a complete
sentence. Hence it can be easily tested whether
the model’s explanations are faithful or not. Here
generator and encoder are entirely disconnected
and independent unlike [9]. This produces more
stable explanations and also lowers the number of
hyperparameters to be tuned. [5]

7 Summary, Conclusion and Future Work

This survey has reviewed recent advances in
decoding-time control of large language models
across natural language tasks, code generation,
and lexically constrained generation. We exam-
ined approaches that inject symbolic constraints,
schema validation, static analysis, and grammar-
based control directly into the decoding process,
allowing precise intervention without modifying
model parameters. These methods enable more
reliable adherence to task-specific requirements,
ranging from field-level correctness in structured
code to keyword inclusion and instruction follow-
ing in natural language. Despite this progress, cur-
rent models often fall short when confronted with
multi-constraint, compositional, or semantically
rich prompts. Evaluations on benchmarks such
as InfoBench and FollowBench demonstrate that
even the strongest models struggle to balance flu-
ency with strict constraint satisfaction, particularly
in scenarios requiring numeric planning, stylistic
control, or structural alignment. Looking ahead,
future research will benefit from combining sym-

bolic control mechanisms with learned represen-
tations, allowing models to adapt dynamically to
evolving constraints during generation. Developing
unified decoding frameworks that can incorporate
various control signals—while maintaining gener-
ality—remains an open challenge. Additionally, in-
terpretable and task-specific evaluation metrics will
be essential to track fine-grained control progress,
especially as models are deployed in safety-critical
and domain-sensitive settings. Controlled gener-
ation is becoming a necessary component of reli-
able language model deployment. As applications
grow more complex, decoding-time control offers
a scalable and modular path to bridge the gap be-
tween general-purpose modeling and precise, user-
aligned generation.
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