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Abstract

Large language models (LLMs) have achieved001
remarkable success across a wide range of natu-002
ral language processing tasks, yet their outputs003
often remain uncontrolled—failing to adhere004
to explicit instructions, structural constraints,005
or user-specified requirements. This limitation006
is particularly critical in high-stakes applica-007
tions such as code generation, structured sum-008
marization, and interactive systems, where cor-009
rectness and constraint satisfaction are essen-010
tial. In this survey, we present a comprehensive011
overview of decoding-time control methods for012
LLMs, focusing on three core settings: con-013
trolled generation for natural language tasks,014
program synthesis and domain-specific code015
generation, and lexically constrained decoding.016
We analyze representative techniques includ-017
ing schema-constrained decoding, static moni-018
tors, grammar-based control, and constrained019
beam search, highlighting their design princi-020
ples, strengths, and trade-offs. We also review021
recent benchmarks such as InfoBench, Follow-022
Bench, and structured task suites—that provide023
fine-grained evaluations of constraint adher-024
ence. Despite growing progress, our analysis025
shows that current models struggle with multi-026
constraint satisfaction and compositional gener-027
alization. We conclude by discussing open chal-028
lenges and future directions for building mod-029
ular, reliable, and interpretable control mecha-030
nisms in large language generation systems.031

1 Introduction032

Large Language Models (LLMs) have emerged033

as powerful tools for a wide range of generative034

tasks such as summarization, machine translation,035

question answering, code generation, and open-036

domain dialogue. Their ability to produce fluent,037

coherent, and contextually relevant text has led to038

widespread adoption across academic and indus-039

trial applications. However, despite their strengths,040

these models often operate as black-box generators:041

they produce outputs based on statistical correla-042

tions in their training data without strong guaran- 043

tees on factuality, safety, structure, or adherence 044

to user intent. This lack of controllability limits 045

the deployment of LLMs in scenarios where spe- 046

cific constraints must be satisfied—whether due to 047

domain requirements, user preferences, or safety 048

concerns. 049

Recent work has explored a range of control 050

techniques across different problem settings. For 051

instruction-following evaluation, InfoBench [14] 052

proposes a fine-grained metric called the Decom- 053

posed Requirements Following Ratio (DRFR), 054

which decomposes each instruction into multiple 055

binary sub-requirements, allowing precise measure- 056

ment of adherence across content, style, format, 057

number, and linguistic constraints. In a comple- 058

mentary direction, FollowBench [7] introduces a 059

benchmark for compositional and multi-layered 060

constraint following, testing how models handle 061

instructions that combine content, situation, style, 062

format, and example-based constraints. Both stud- 063

ies show that even large models like GPT-4 of- 064

ten struggle when faced with simultaneous, struc- 065

tured constraints. Finally, [17] evaluate LLMs 066

across five controlled generation tasks—including 067

numerical planning, structured story generation, 068

and constraint-preserving paraphrasing—revealing 069

persistent gaps in models’ ability to satisfy global 070

semantic or structural conditions despite strong flu- 071

ency. 072

In the context of code generation, constrained de- 073

coding techniques are increasingly being used to 074

enforce structural correctness, execution validity, 075

or schema adherence. For example, Execution- 076

Guided Decoding [13] integrates real-time program 077

execution into the decoding loop to eliminate se- 078

mantically invalid completions. Other approaches 079

like Retrieval-Augmented Code Generation [1] con- 080

strain model behavior using retrieved code snippets 081

that serve as anchors for in-distribution output. In 082

more structured enterprise settings, schema-guided 083
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Figure 1: Illustration of shortcomings with fine-tuning
and DocPrompting [19] approaches with an example for
(a) NL to Bash task (uses GPT Neo 1.3B) and (b) NL-
to-YAML task (uses StarCoder2 3B) and the proposed
DocCGen method to overcome the limitations.

decoding techniques have been proposed to ensure084

conformity to complex DSLs during code synthesis085

[12].086

Meanwhile, lexical constraints—such as forcing087

the inclusion or exclusion of specific tokens—have088

been addressed using algorithmic decoding mod-089

ifications. Constrained Beam Search [10] main-090

tains beam candidates that satisfy prefix-based con-091

straints at each step, allowing fine-grained lexical092

control. Grid Beam Search [2] generalizes this093

to support complex, multi-span constraints and di-094

verse token placements without excessive beam095

expansion.096

The need for controllable generation is especially097

critical in industrial and enterprise applications. In098

code generation, for instance, LLMs are increas-099

ingly used to assist with structured code synthesis100

in configuration files, APIs, and domain-specific101

languages. In such settings, generated outputs102

must conform strictly to schemas, typing rules,103

and toolchain compatibility. A minor violation104

of syntax or a hallucinated field can lead to system105

failure, security vulnerabilities, or downtime in pro-106

duction systems. Similarly, in enterprise-scale con-107

versational agents and documentation assistants,108

factual inaccuracy or inappropriate phrasing may109

compromise trust, introduce legal liabilities, or fail110

to meet regulatory standards. Therefore, develop-111

ing mechanisms to constrain, steer, and validate 112

model outputs is not merely a research curiosity 113

but a practical necessity for real-world deployment. 114

Despite these advances, enforcing con- 115

straints—particularly soft or abstract ones 116

such as factuality, logical consistency, or user 117

alignment—remains non-trivial. Hard constraints, 118

such as output formats or lexical restrictions, 119

are easier to impose through decoding-time 120

interventions but can degrade fluency or diversity. 121

Moreover, control strategies are often brittle or 122

domain-specific, failing to generalize across tasks 123

or scale with model size. Evaluation remains 124

another open challenge: traditional generation 125

metrics such as BLEU or ROUGE do not capture 126

constraint satisfaction, and constraint-specific 127

metrics often lack standardization or grounding in 128

human preference. 129

This limitation in interpretability and transparency 130

has broader implications beyond control. As AI 131

systems become increasingly integrated into high- 132

stakes domains—ranging from criminal justice to 133

healthcare to financial decision-making—the need 134

to understand why a model made a particular pre- 135

diction becomes paramount. For instance, models 136

used for intent classification in conversational AI 137

must not only be accurate but also explainable, es- 138

pecially when user trust or error diagnosis is in- 139

volved. In this context, recent work has proposed 140

feature attribution techniques that map model de- 141

cisions back to important input tokens—often us- 142

ing gradient-based or perturbation-based methods. 143

These explanations are critical for identifying mis- 144

leading patterns or ensuring that the model’s rea- 145

soning aligns with human expectations. More- 146

over, in tasks like intent classification, explana- 147

tions based on main verbs and semantic slots have 148

shown promise in providing concise and meaning- 149

ful rationales. By using curated datasets and hybrid 150

techniques like the FRESH pipeline, researchers 151

demonstrate how span-based explanations can sup- 152

port error analysis, improve model design, and fos- 153

ter greater transparency in LLM behavior. 154

To provide a unified perspective across these frag- 155

mented efforts, we present a comprehensive and 156

technically detailed survey of controlled genera- 157

tion approaches, organizing the space into three 158

core areas: natural language generation with factual 159

and safety constraints, constrained code generation 160

with structural and execution-oriented objectives, 161

and lexical constraint enforcement using decoding- 162
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time methods. For each area, we identify the types163

of constraints involved, the specific control mech-164

anisms proposed, and the trade-offs observed in165

empirical evaluations. Through detailed case stud-166

ies, illustrative examples, and comparative tables,167

this survey aims to provide a unified understanding168

of the challenges and opportunities in controlled169

generation, laying the foundation for more reliable,170

verifiable, and purpose-aligned language technolo-171

gies.172

2 Controlled Generation for Natural173

Language Tasks174

Natural language generation (NLG) has reached175

impressive fluency and generality with the rise of176

large language models (LLMs), yet this generative177

power comes with a lack of precise controllability.178

In many downstream applications—summarization,179

instruction following, paraphrasing, or story gener-180

ation—practitioners often require models not just181

to produce relevant text, but to follow explicit struc-182

tural or semantic constraints. Controlled generation183

in natural language settings is therefore an active184

research area, where the central goal is to ensure185

that outputs remain both faithful to the prompt and186

aligned with user-defined conditions, without com-187

promising coherence or diversity.188

A systematic investigation into this challenge189

is presented in the work of [17], who frame con-190

trolled generation as a capability that can be rigor-191

ously tested across diverse linguistic tasks. They192

benchmark several prominent LLMs—including193

GPT-3.5, GPT-4, and LLaMA 2—on a set of five194

challenging generation tasks designed to capture195

different control objectives. These tasks probe not196

only how well models can follow constraints, but197

also whether performance degrades under variation,198

ambiguity, or complexity in the prompt.199

Numerical Planning: Here we test the ability of200

models to perform arithmetic reasoning or quantity201

tracking while generating a text plan. For instance,202

given a constraint like “Generate a travel plan that203

spans exactly 3 days,” the model must ensure that204

the output describes precisely three day-wise ac-205

tivities, not more or fewer. Models often struggle206

with this form of global constraint satisfaction, par-207

ticularly under open-ended instructions.208

Content-Controlled Generation: Here we ask209

the model to include or exclude specified concepts.210

For example, the prompt may ask for a paragraph211

about environmental policy that includes “carbon 212

tax” but avoids “renewable energy.” Despite their 213

strong generation skills, many LLMs fail to reli- 214

ably satisfy such lexical and semantic constraints, 215

especially when the instruction is long or indirectly 216

phrased. 217

Story Generation: Here models are asked to pro- 218

duce narratives that obey a given high-level struc- 219

ture, such as beginning with a conflict and ending 220

with a resolution. This task requires not only main- 221

taining stylistic and structural consistency, but also 222

enforcing temporal coherence—something LLMs 223

often lose track of as generation length increases. 224

Rationale Generation: This requires a model 225

to generate explanations that justify a decision or 226

answer. For instance, given a multiple-choice ques- 227

tion and a selected answer, the model must generate 228

a plausible rationale that supports that answer based 229

on the provided information. The challenge here 230

lies in aligning reasoning chains with the target 231

label, without hallucinating or introducing contra- 232

dictions. 233

Controlled Paraphrase Generation It tests 234

whether models can generate paraphrases that pre- 235

serve meaning while satisfying constraints such as 236

length limits, formality level, or mandatory key- 237

words. This task combines semantic preservation 238

with surface-level variation, and highlights how 239

different models prioritize fluency versus control 240

when trade-offs emerge. 241

[17] evaluate these tasks using both automatic 242

metrics and human judgments, revealing significant 243

variance in performance across model types and 244

prompting strategies. Interestingly, while propri- 245

etary models like GPT-4 outperform open models 246

on average, none of the models consistently sat- 247

isfy all constraints across all tasks—indicating that 248

current LLMs still lack robust mechanisms for gen- 249

eralized control. Moreover, few-shot prompting 250

only modestly improves performance, suggesting 251

that prompting alone is insufficient for certain types 252

of control, such as global structure or multi-step 253

reasoning. 254

Other than this, two recent benchmarks ,Fol- 255

lowBench and InfoBench provide comprehensive 256

multi-dimensional evaluations across a wide vari- 257

ety of constraint types and generation settings. 258

FollowBench (Jiang et al., 2023) formulates the 259

problem of controlled generation as the ability to 260

satisfy multi-level fine-grained constraints embed- 261
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ded in prompts. It categorizes constraints along262

five types:263

• Content constraints (e.g., “include the word264

‘carbon tax’ but not ‘renewable energy’”),265

• Stylistic constraints (e.g., “make it sound po-266

etic”),267

• Format constraints (e.g., “respond in bullet268

points”),269

• Situational constraints (e.g., “you are a chef270

speaking to a child”),271

• Example pattern constraints (e.g., “continue272

the dialogue as shown above”).273

A key finding from FollowBench is that no single274

LLM consistently follows all constraint types, es-275

pecially when multiple constraints are combined.276

GPT-4 performs best overall, yet even it struggles277

with format and content exclusion constraints under278

compositional prompts. Instruction tuning and in-279

context examples yield only partial improvements,280

suggesting the need for more robust decoding-281

level or planning-level mechanisms for fine-grained282

control. Complementing this, InfoBench (Qin et283

al., 2024) introduces a different yet synergistic284

methodology by proposing a new evaluation met-285

ric—Decomposed Requirements Following Ratio286

(DRFR)—to assess instruction adherence at a fine-287

grained, component level. Instead of holistic judg-288

ment or scalar scoring, DRFR decomposes a single289

instruction into multiple binary sub-requirements290

(e.g., “Does the output contain exactly 10 hotel291

reviews?”, “Is each review one sentence long?”).292

This decomposition enables precise error localiza-293

tion and better inter-annotator agreement compared294

to traditional direct scoring methods. InfoBench295

includes 500 instructions, decomposed into 2,250296

sub-questions, and covers a rich set of constraints:297

Content, Linguistic, Style, Format, and Number,298

with more granular coverage and clarity than prior299

datasets. It also provides two levels of complex-300

ity—Easy and Hard sets—across 72 domains, in-301

cluding science, arts, marketing, and law.302

3 Controlling Language Models for Code303

Generation304

Language models are increasingly used to gener-305

ate code across a wide range of domains—from306

general-purpose languages like Python and307

JavaScript to domain-specific languages (DSLs) 308

for infrastructure-as-code, data pipelines, and con- 309

figuration files. However, unlike natural language, 310

code generation demands strict adherence to syn- 311

tax, semantics, execution correctness, and often to 312

external schemas or APIs. Even small deviations 313

from expected output—such as a missing parame- 314

ter, misused field, or mismatched type—can result 315

in non-compiling code, runtime failures, or silent 316

logic bugs. As such, controlling language model 317

outputs in code generation is not just beneficial but 318

essential for industrial deployment. 319

One principled method to enforce correctness is 320

Constrained Semantic Decoding (CSD), introduced 321

as part of the SYNCHROMESH framework [13]. 322

SYNCHROMESH augments pre-trained LLMs 323

with two key components: (1) Target Similarity 324

Tuning (TST) for better example retrieval during 325

prompting, and (2) CSD, which ensures syntactic 326

and semantic validity of generated programs at 327

decoding time without modifying the base model. 328

In CSD, a domain-specific completion engine 329

(CE) is used to determine the set of valid next 330

tokens at each decoding step. The CE incorporates 331

both context-free constraints (from the grammar) 332

and context-sensitive rules (like type-checking or 333

alias resolution). For example, in SQL generation, 334

CSD ensures that column names conform to 335

schema definitions and JOIN conditions respect 336

alias scopes—errors that typical LLMs frequently 337

make. CSD works with any target language, and is 338

demonstrated over SQL, Vega-Lite (JSON-based 339

data visualizations), and SMCalFlow (a Lisp-like 340

task-oriented dialog language), showing significant 341

improvements in both program validity (e.g., from 342

43% to 72% for GPT-3 in SQL) and execution 343

accuracy. SYNCHROMESH’s modular constraint 344

enforcement is a key advantage. Rather than 345

relying on sampling-and-rejection or post hoc 346

filtering, it dynamically restricts the model’s token 347

selection to those that lead to valid programs. 348

This alignment is computed via formal language 349

derivatives (Brzozowski, 1964) and regular ex- 350

pression completions, enabling tight and efficient 351

control. Experiments demonstrate that CSD and 352

TST are complementary: TST steers the generation 353

toward the correct conceptual structure, while CSD 354

eliminates common implementation errors (e.g., 355

type mismatches, invalid JSON structures, or SQL 356

alias errors). In Vega-Lite, CSD prevents invalid 357

chart encodings like "aggregate": "average" (where 358
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Figure 2: Overview of DocCGen. For a given user query, top k relevant library documentations are retrieved and
for which initial k templates are created. Static part of the template is shown in red, while the variable part is in
blue. The variable field with a fixed position in the code is enclosed in angle brackets, for instance <subcommand>,
as shown in the initial k templates block in the figure. The model is guided to follow one of the templates during
decoding. Each time step ti shows the step-by-step dynamic template evolution and constrained decoding output,
adhering to the time-step template leading to the final generated code at t3.

"average" is not a valid keyword), correcting them359

to "mean" by construction.360

361

While SYNCHROMESH ensures internal consis-362

tency within the generated code, Monitor-Guided363

Decoding (MGD) [1] takes a complementary ap-364

proach by enforcing external consistency between365

the generated tokens and the evolving program state366

within a broader software repository. MGD intro-367

duces a decoding-time interface called a monitor,368

which integrates static analysis into the token selec-369

tion process of an LLM. The goal is to ensure that370

code generation respects context-specific proper-371

ties such as type constraints, class hierarchies, and372

variable scopes—particularly in statically typed373

languages. The core idea behind MGD is to in-374

tervene at trigger points during decoding, such as375

after a dot operator (.) or the invocation of an ob-376

ject method. At these points, the monitor uses the377

Language Server Protocol (LSP) to query a static378

analyzer for the set of valid continuations. For in-379

stance, if the object user is of type Customer, and380

the model generates user., the monitor intercepts381

and retrieves the list of fields and methods valid for382

Customer. The set of invalid next tokens is then383

masked from the output distribution, and only valid384

identifiers are allowed to be sampled. This form385

of control operates non-intrusively, requiring no386

model retraining or architectural changes, and can387

be applied to any decoder-based language model. 388

The core idea behind MGD is to intervene at trigger 389

points during decoding, such as after a dot opera- 390

tor (.) or the invocation of an object method. At 391

these points, the monitor uses the Language Server 392

Protocol (LSP) to query a static analyzer for the set 393

of valid continuations. For instance, if the object 394

user is of type Customer, and the model generates 395

user., the monitor intercepts and retrieves the list 396

of fields and methods valid for Customer. The 397

set of invalid next tokens is then masked from the 398

output distribution, and only valid identifiers are 399

allowed to be sampled. This form of control oper- 400

ates non-intrusively, requiring no model retraining 401

or architectural changes, and can be applied to any 402

decoder-based language model. 403

A third form of control comes from domain- 404

specific schema validation. [12] focuses on gener- 405

ating structured infrastructure-as-code (IaC) snip- 406

pets such as Ansible YAMLs. These DSLs are 407

brittle and constrained: fields must match strict 408

schemas, including nested structure, required argu- 409

ments, value types, and field ordering 2. The au- 410

thors design a schema-aware constrained decoder, 411

which uses JSON schema parsing to dynamically 412

restrict the next valid tokens during generation. 413

This decoding-time validator ensures that each field 414

is syntactically valid and semantically adhere to the 415

given task schema—without modifying model pa- 416
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rameters or using fine-tuning. On a proprietary417

Ansible benchmark, this method reduced syntactic418

and semantic errors by over 50%, and required 70%419

fewer post-generation repairs 1.420

A closely related yet broader solution is presented421

in Grammar-Constrained Decoding (GCD), intro-422

duced by [4] for structured NLP tasks. GCD frames423

output control as a grammar enforcement problem,424

where decoding is constrained by a context-free425

or regular grammar that encodes the valid output426

space. At each time step, a parser checks whether427

a partial sequence is derivable under the grammar,428

and prunes invalid continuations before sampling.429

The framework is model-agnostic and does not re-430

quire finetuning, enabling structured generation in431

closed information extraction, constituency pars-432

ing, and structured slot-filling tasks. Although orig-433

inally developed for NLP, this method maps nat-434

urally to code generation, where most target lan-435

guages and DSLs already come with formal gram-436

mars or schemas. For instance, a JSON schema437

or BNF grammar for SQL or Terraform can be438

directly translated into a constraint engine in the439

GCD framework.440

Taken together, these decoding-time constraint441

mechanisms reflect a spectrum of approaches for442

code control:443

• SYNCHROMESH offers tight integration444

with task-specific semantics via typed com-445

pletion engines.446

• Monitor-Guided Decoding brings in447

repository-level awareness by coupling LLMs448

with static analyzers.449

• Schema-Constrained Decoding targets struc-450

tured DSLs where adherence to schema is es-451

sential.452

• Grammar-Constrained Decoding provides453

a general-purpose symbolic layer for declara-454

tive control without finetuning.455

These techniques are complementary. While456

grammar-based methods are language-agnostic and457

easy to implement, monitor-based methods of-458

fer greater semantic precision through program-459

state introspection. Schema-guided techniques are460

highly effective in structured formats like YAML461

or JSON, while completion engines like those in462

SYNCHROMESH enable domain-specific logic en-463

forcement. Across all methods, the common theme464

is decoding-time modular control, which enables465

constraint satisfaction without sacrificing the gener- 466

ality or scalability of pre-trained language models. 467

As code generation moves from prototype demos to 468

enterprise deployment, these constraint-based gen- 469

eration techniques will become increasingly neces- 470

sary to meet industrial expectations of correctness, 471

safety, and usability. 472

4 Controlling language models on input 473

side 474

ConCodeEval [8], a novel benchmark and study 475

evaluating how well large language models (LLMs) 476

adhere to and generate code constrained by struc- 477

tured schemas—critical for system-level program- 478

ming in enterprise environments. Unlike prior work 479

focused on natural language constraints, this study 480

explores constraints represented directly as code 481

in DSLs like JSON, YAML, XML, Python, and 482

natural language. The authors propose two eval- 483

uation dimensions: **format efficacy**, which 484

measures how input and output schema formats 485

affect performance, and **constraint efficacy**, 486

which assesses how well LLMs handle specific 487

types and positions of constraints. Using a syn- 488

thetic dataset of 602 schema samples across five 489

representations, the paper evaluates several LLMs, 490

including Granite, LLaMA, and CodeLLaMA, on 491

two tasks: generating schema-compliant data 3 and 492

validating whether given data adheres to schema 493

constraints 4. 494

Figure 3: The JSON sample generated (highlighted in
yellow) by the Granite 20B model does not adhere to the
exclusiveMaximum and multipleOf constraints specified
in the schema.

The results show that LLMs perform best when 495

constraints are presented in natural language for 496

data generation but perform better with struc- 497
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Figure 4: In the JSON sample, the values for fields
stingo and anisic do not adhere to schema constraints.
But the Granite 34B model gives the incorrect answer
(highlighted in yellow) as yes.

tured formats like JSON or YAML for validation.498

Surprisingly, Python schemas performed worse,499

likely due to interference from the model’s general-500

purpose code generation tendencies. Additionally,501

constraints located in the middle or beginning of502

schema contexts are more frequently missed, em-503

phasizing the impact of token position in LLM504

comprehension. Models struggle particularly with505

numerical constraints such as ‘multipleOf‘ or ‘ex-506

clusiveMinimum‘, suggesting token-level and train-507

ing limitations. The study recommends placing crit-508

ical constraints at the end of schema definitions and509

highlights JSON and YAML as preferred formats510

for enterprise applications. Overall, the paper ad-511

vocates for better schema comprehension methods512

and control strategies (e.g., constrained decoding)513

to improve LLM utility in system-level code gener-514

ation.515

5 Lexically Constrained Generation516

In many sequence generation scenarios, users or517

downstream systems may require that certain words518

or phrases must appear (or be excluded) in the out-519

put. This requirement arises naturally in a vari-520

ety of tasks including machine translation, sum-521

marization, image captioning, and controlled text522

generation. Known as lexically constrained gen- 523

eration, this task challenges language models to 524

maintain fluency and relevance while satisfying 525

hard constraints on the output vocabulary. Unlike 526

soft prompts or fine-tuning, which provide prob- 527

abilistic steering, lexically constrained decoding 528

allows for explicit, rule-based guarantees—an 529

essential property for interactive and safety-critical 530

applications. 531

A seminal approach to this problem is Con- 532

strained Beam Search (CBS) [? ]. CBS modifies 533

the decoding process by tracking constraint satis- 534

faction alongside the standard beam search. Let 535

C = {c1, c2, . . . , ck} be a set of required phrases. 536

During generation, CBS partitions the beam based 537

on which subset of C has been satisfied so far. At 538

each decoding step t, the model selects the top-B 539

hypotheses from extended beams, considering only 540

those that: 541

• match a prefix of an unsatisfied constraint, 542

• complete a constraint, 543

• or proceed fluently if all constraints are al- 544

ready satisfied. 545

Formally, let y1:t be a partial sequence and 546

S(y1:t) ⊆ C the set of satisfied constraints. CBS 547

maximizes: 548

argmax
y1:T

log p(y1:T | x) s.t. S(y1:T ) = C 549

That is, only sequences that satisfy all constraints 550

are considered valid. 551

While CBS offers control guarantees, it suffers 552

from scalability issues as the number of constraint 553

subsets grows. To address this, Grid Beam Search 554

(GBS) [? ] generalizes CBS by organizing beam 555

hypotheses into a lattice over the power set of C. 556

Each beam cell corresponds to a constraint subset 557

S ⊆ C and stores the top hypotheses satisfying S. 558

At every step, beams are updated by: 559

1. extending hypotheses in BS with next tokens, 560

2. moving them into BS′ if new constraints are 561

satisfied. 562

GBS enables efficient constraint tracking and 563

supports unordered, overlapping, or partial con- 564

straints. It was originally applied to open- 565

vocabulary image captioning, where object detec- 566

tion models produce keywords (e.g., zebra, skate- 567

board) that must appear in the generated captions. 568
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More broadly, lexically constrained decoding569

has enabled a wide range of applications:570

• Interactive Machine Translation, where571

domain-specific terms must appear in the out-572

put;573

• Controlled Summarization, preserving named574

entities or sentiment markers;575

• Image Captioning, with visual objects en-576

forced as output phrases;577

• Safety Enforcement, where harmful comple-578

tions are explicitly blocked.579

Despite its utility, hard-constrained decoding in-580

troduces trade-offs:581

• Search overhead: the beam size grows with582

2k subsets of k constraints;583

• Rigidity: it cannot handle synonyms or fuzzy584

matches;585

• Reduced diversity: hard constraints may hin-586

der natural phrasing.587

Recent works explore hybrid methods that blend588

lexical constraints with soft penalties, sampling,589

or post-editing, but these remain less stable and590

require additional tuning.591

In sum, lexically constrained decoding offers a592

powerful mechanism for explicit control. Unlike593

prompt engineering or model tuning, it provides594

interpretable, enforceable constraints suitable for595

high-precision generation. As LLMs are increas-596

ingly deployed in structured applications, these597

techniques form a critical part of the decoding-time598

control toolkit.599

6 Explainability in intent classification600

Intent classification is done by 4 machine learning601

methods. Two of them are statistical machine learn-602

ing methods, namely Support Vector Machine and603

Random Forest algorithms. Other two are deep neu-604

ral network architectures . A simple feed-forward605

neural network consisting of multiple layers and606

Long-Short Term Memory (LSTM) based neural607

networks is used for this classification task .608

Raw dataset has been cleaned by typical pre-609

processing steps for text sequence data . This is610

done by converting data to lowercase, removing611

punctuation, and special characters. Trivial stop612

words like "is" and "the" are not removed to exper- 613

iment on the performance of explainability tech- 614

niques and check their robustness. Words in the 615

text sequences are converted to vectors of 300 di- 616

mensions by using word embeddings. For other 617

experiments, word embeddings are not used, but 618

words are converted using categorical feature en- 619

coding, which maps every word to a unique number. 620

Finally, every sequence is padded at the end with 621

blank space characters to convert all samples to an 622

equal length of 30. 623

Testing dataset has been improved by doing man- 624

ual perturbation of the text sequences. Perturbation 625

method followed is replacing nouns and adjectives 626

by their synonyms or antonyms. It has been en- 627

sured that the syntax and grammar of the text sam- 628

ple are intact while creating perturbation. 629

Support vector machine is a statistical machine 630

learning approach that classifies the points by sep- 631

arating them with a linear or non-linear decision 632

boundary and simultaneously ensuring that the de- 633

cision boundary is at maximum length from support 634

vectors to increase robustness of classification and 635

better generalization. Support vector machine can 636

be divided into the Hard margin and soft margin 637

approaches. Soft margin SVM allows one to allow 638

misclassification and better generalize the model, 639

especially when samples are not linearly separable. 640

Here we have used a soft margin Support vector 641

machine approach that uses fitting a polynomial 642

kernel of degree 3 to best generalize the model. 643

Another statistical machine learning technique 644

used is randomForest, which is one of the best and 645

common classification techniques. It is a bagging 646

technique to assemble a number of decision trees. 647

Decision trees classify the given sample based on a 648

series of questions based on multiple features. This 649

separates the samples by non linear decision bound- 650

ary. But a decision tree has a risk of overfitting the 651

data. Hence, the model ensembling technique is 652

used to combine multiple trees and divide the data 653

among them. This is done by the bagging tech- 654

nique, and as a result, we get the randomForest 655

classifiers. 656

Feedforward neural network architecture con- 657

sists of 2 deep neural layers, each consisting of 150 658

neurons and 100 neurons, with ReLU activation. It 659

is followed by a dense layer with 8 neurons with a 660

softmax activation function. 661

LSTM-based neural network consists of two 662

LSTM layers of 64 and 32 neurons each, with a re- 663
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current dropout layer and ReLu activation function.664

Similar to a FeedForward neural net, it is followed665

by a dense layer of 8 neurons and a softmax activa-666

tion function.667

These four models have been combined with668

4 explainability techniques . Two of them are669

perturbation-based, namely LIME and Anchors;670

the other two are gradient-based techniques, which671

are Layer-wise Relevance Propagation.672

LIME is a perturbation-based technique that ex-673

plains the decisions of the model locally on a par-674

ticular example. It is often impossible for an ex-675

planation to be completely faithful globally unless676

it describes the model itself but for an explanation677

to be meaningful it must be locally faithful. This678

means it should be precise in terms of explaining679

the feature importance for a particular sample. The680

features that are important locally may not be that681

important globally. Lime is a model-agnostic tech-682

nique.LIME define an explanation as a model g683

G, where G is a class of potentially interpretable684

models, such as linear models, decision trees etc.685

It is ensured that model G should should be simple686

in terms of complexity. This can be done by limit-687

ing the depth of the decision tree or using a small688

number of features in the linear regression model.689

LIME creates a perturbation around the sample lo-690

cally by masking some of the words/features in the691

text sequence. The perturbation samples created692

are at least a distance from the original sample.693

Figure 5

ξ(x) = argmax
g

L(f, g, πx) + Ω(g) (1)694

L(f, g, π) is a measure of how unfaithful g is in695

approximating f in the locality defined by πx.Ω(g)696

is complexity of the linear model g which is be ap-697

proximation of our original model.So the equation698

suggest that we have to increase the interpretability 699

of faithfulness of model with the restriction that 700

complexity of local model should be minimized. 701

[15] 702

L(f, g, πx) =
∑
z,z′

((f(z)− f(z′))2πz (2) 703

π weighs the sample according to it’s proximity 704

with original sample. This ensures to penalize the 705

perturbation for from sample. 706

Even if the Linear explanations by LIME are 707

local it’s coverage is not clear. Unclear coverage 708

can lead to low human precision, as users may think 709

an insight from an explanation applies to unseen 710

instances even when it does not. For example in 711

the task of sentiment analysis of movie reviews , 712

"The movie is not bad" represents positive review 713

and the "The movie is not good" negative review. 714

The coverage of the word "not" is not clear here 715

unless it is combined with the phrases "bad" and 716

"good". This problem is solved by another model 717

agnostic technique which is based on if-then rules 718

called anchors.In other words, For the sample on 719

which the anchor holds, the prediction is always 720

the same. The explanation given by anchors in the 721

above example is "not bad" and "not good" instead 722

of just the word "not". [15] 723

If we want to explain the prediction f(x) of sam- 724

ple x to users then anchors uses following method 725

to explain prediction to user. Let A be a rule (set 726

of predicates) acting on such an interpretable repre- 727

sentation, such that A(x) returns 1 if all its feature 728

predicates are true for instance x.Let D(·|A) denote 729

the conditional distribution when the rule A applies 730

A is an anchor if A(x) = 1 and A is a sufficient 731

condition for f(x) with high probability.If a sam- 732

ple z from D(z|A) is likely predicted as Positive 733

(i.e. f(x) = f(z)) for all the perturbation of the sam- 734

ples then rule A is stated as sufficient condition for 735

explaining the decision of model. 736

Figure 6: Difference between LIME and anchors pre-
diction
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Creating perturbations for techniques like LIME737

and Anchors is challenging task when it comes738

in the context of text sequence or language tasks.739

Adding noise in the text data should not change740

the meaning of the sentences and should be gram-741

matically correct. This is achieved using various742

tricks.Nouns and adjectives in the text are replaced743

by there synonyms which are drawn from word-744

net or word embeddings like word2vec. [6] Words745

can also be replaced with other words similar POS746

tags. In some cases words are replaced by creat-747

ing small typo’s in it like "good" is replaced with748

"god" to make model and explainability techniques749

more robust. Many time in the sentiment anal-750

ysis task some words play positive role in some751

samples in others. For example the movie review752

of a funny movie "The movie is was really funny753

and dramatic" represents positive review but at the754

same time is same review is given to tragic movie755

then it represents negative review. [3] Words which756

play roles in different labels of reviews can be used757

to create perturbations. Here intent classification758

text are changed with adding words which are im-759

portant for other tags. [16] For example "Which760

flight is from Mumbai to Pune" represents intent of761

"ATIS Flight" and "what is cheapest rate of fight762

from mumbai to banglore" represents intent "ATIS763

Airfare" important words from both examples are764

added to get the sample "What is the cheapest flight765

form mumbai to banglore" which represents tag as766

"ATIS flight" but model gets confused between767

words cheapest and flights.768

Perturbation based techniques are good at ex-769

plaining the model decisions locally but they de-770

pend on quality of perturbations and do not ex-771

plore the gradient of the models in deep neural net-772

works. Gradient based explainability techniques773

such as Layer wise relevance propagation (LRP)774

, Integrated gradients exploit that aspect and pro-775

vides attribution scores by calculating gradient of776

output with respect to input feature which can be777

used to calculate attribution scores for input. [11]778

in LRP relevance score of neuron k is distributed779

in lower level neurons like neuron j using the rule780

given below.781

Rj =
∑
k

zjk∑
j zjk

Rk (3)782

Numerator term zjk acts as a measure of how783

much the contribution of neuron j in forward propa-784

gation and hence in decision making. Denominator785

ensures that attribution score of higher-level neu- 786

rons is conserved while distribution. Hence total 787

attribution score in the network remains conserved 788

and the attribution scores of the input is equal to 789

attribution score of the output. 790

791

The gradients are generally noisy in the middle 792

layer and there is a need to emphasize on differ- 793

ent aspects in different layers and variations of ba- 794

sic LRP rules are applied throughout the network. 795

These rules are listed below. 796

1. Base LRP rule (LRP-0): 797

Rj =
∑
k

ajwjk∑
0,j ajwjk

Rk (4) 798

• This rule distributes the relevance scores 799

of each neuron in its lower layers using 800

the conservation property. 801

• If the activation is zero or the edge 802

weight for some neuron, is zero then, the 803

relevance of neuron Rj will evaluate to 804

zero. This is correct because if weight is 805

zero for particular neurons then it’s not 806

contributing to output. 807

• LRP-0 rule is applied at the output layer 808

and relevance for outermost layer neu- 809

rons is activation value stored in it. 810

2. Epsilon Rule (LRP-ϵ): 811

Rj =
∑
k

ajwjk

ϵ+
∑

0,j ajwjk
Rk (5) 812

• Gradients in the middle hidden layers are 813

noisy and would tend to suppress impor- 814

tant features. 815

• To solve this problem small term ϵ is 816

added in the denominator. The role of 817

ϵ is to absorb some relevance when the 818

contributions to the activation of neuron 819

k are weak. This leads to sparse and less 820

noisy explanations. 821

3. Gamma Rule (LRP-γ): 822

Rj =
∑
k

aj ·
(
wjk + γw+

jk

)
∑

0,j aj ·
(
wjk + γw+

jk

)Rk (6) 823

• For the input layer LRP-γ rule is applied 824

to highlight positive features over nega- 825

tive features. 826
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• This helps in looking for explanations827

more smoothly and hence easy to inter-828

pret for humans. The contribution of pos-829

itive features can be controlled by tuning830

the hyperparameter.γ831

Many of the gradient-based techniques do not832

follow important axioms sensitivity and invariance.833

[18]834

sensitivity : An attribution method satisfies Sen-835

sitivity(a) if for every input and baseline that differ836

in one feature but have different predictions, the837

differing feature should be given a non-zero attri-838

bution. [18]839

LRP is easy to implement and can be applied840

to any type of data which makes it flexible. Due841

to this flexibility, LRP can be used in a wide vari-842

ety of tasks including text, images, or tabular data.843

Using the combination of LRP rules, good-quality844

explanations are obtained in the output. Explana-845

tions provided by LRP are stable and hence can846

be trusted. LRP is also computationally less ex-847

pensive compared to perturbation-based techniques848

like LIME and anchors.849

Here Deep Neural network is represented as a850

function F ∈ [0, 1]. Input is represented as a list851

of tokens x = (x1, x2, x3.....xn) ∈ Rn. The base-852

line input vector is represented as x′ and attribution853

scores relative to the baseline for each token are854

represented as a1, a2, a3....an each ai is the impor-855

tance of token xi for the model’s decision.856

Ignorance towards sensitivity causes the explain-857

ability technique to focus on non-important fea-858

tures.LRP tackle the Sensitivity issue by employ-859

ing a baseline and in some sense try to compute860

gradients by including terms from the baseline in861

the numerator and denominator instead of normal862

gradients at the input but this approach breaks the863

invariance axiom. [18]864

Implementation invariance: Two networks are865

functionally equivalent if their outputs are equal for866

all inputs, despite having very different implemen-867

tations. These axioms suggest that attributions for868

input features should depend on only the gradient869

of output with respect to the input.870

Integrated Gradient combines the Implementa-871

tion invariance of gradients along with the Sen-872

sitivity of techniques like LRP or DeepLift. We873

consider the straightline path from the baseline x’874

to the input x, and compute the gradients at all875

points along the path. Integrated gradients are ob-876

tained by cumulating these gradients. Specifically,877

integrated gradients are defined as the path integral 878

of the gradients along the straightline path from the 879

baseline x’ to the input x. Baseline vector selected 880

for the intent classification is a zero embedding 881

vector. Integrated gradients aggregate the gradi- 882

ents along the inputs that fall on the straight line 883

between the baseline and the input. This allows 884

this method to compute attributions efficiently as 885

compared to other path gradient methods which cal- 886

culate gradients across multiple paths and average 887

out them at the end. [18] Expression for integrated 888

gradients is as follows 889

IGi(x) = (x− x′)
m∑
k=1

∂f(x′ + k
m(x− x′))

∂xi
(7) 890

n∑
i=1

IntegratedGradsi(x) = F (x)− F (x′) (8) 891

Equation (3) denotes practical implementation 892

of integrated gradients where m is the number of 893

steps instead of integration. Here the number of 894

steps have been taken as 50. Later integrated gradi- 895

ent computed for each feature Xi is added to obtain 896

to get the difference attribution score for sample x 897

for model and x’ for baseline model. Integrated gra- 898

dients satisfy completeness axiom which was states 899

that attributions add up to difference between the 900

output of F at the input x and the baseline x’. This 901

was stated by the authors of LRP as requirement 902

for explainability technique. [18] [11] 903

Figure 7: Explanation by anchors on sentence ’What is
the destination of flight having arrival time 755 am in
san francisco’

All the techniques like integrated gradients, LRP, 904

LIME, and anchors are not required to be imple- 905

mented on the training routine. Specifically Inte- 906

grated gradient is easy to implement and here it is 907

implemented directly on the trained deep neural 908

network-based model using tensorflow/Pythorch 909

libraries. 910

But these post-hoc explanations are often not 911

reliable as these are third-party techniques and are 912
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Figure 8: Explanation by anchors on sentence ’what is
the destination of flights having arrival time 755 am in
san francisco

often noisy. Hence it is stated that it is better that913

explanation comes through the model itself after is914

trained. Attention is one such method but it lacks915

faithfulness and there has been quite a debate about916

whether attention can be used as an explanation917

or not. Hence there are other technique stated by918

[9] which generates rationale in an unsupervised919

manner by changing objective function. It also help920

predictability at the same time using REINFORCE921

method.922

Method by [9] involves training a neural model923

to make predictions, and then using a separate neu-924

ral network to generate rationales for the predic-925

tions. The rationale generation network takes the926

input features and the predicted output as inputs,927

and produces a set of binary masks that indicate928

which input features were important for the predic-929

tion.930

This technique contains two models generator931

and an encoder which are trained jointly to help932

each other’s prediction. The generator finds ratio-933

nale with maximum likelihood from a given piece934

of text and it’s output is given to the encoder for935

classification. Rationale extraction is a completely936

unsupervised process.[9] Ground truth rationals are937

never provided to model during training. Rational938

extraction is done following two conditions, First,939

the rationales should be short and coherent and the940

second condition is it should be faithful for the941

predicted label.[9] The generator is a sequence tag-942

ging model where each word/feature is tagged to943

be rational or not. This done using REINFORCE944

methodology.945

for given input sequence of length946

(x1, x2......xt) generator predicts (z1, z2........zt)947

where z ∈ [0, 1] which is decison for every word948

for being rational. The predicted rational set is949

denoted by (z, x) and it is given to the encoder.950

prediction of each word is treated as independent951

of each other in the generator. The generator is a952

simple bidirectional RCNN model with a softmax953

layer to give a probability distribution of tags for 954

each word.[9] 955

Predicted rationale (z, x) is given to the encoder 956

model which encodes it and outputs the resultant 957

vector enc(z, x) After this generator and encoder 958

are trained jointly to improve each other’s predic- 959

tions. [9] 960

To follow the condition of the faithfulness of 961

explanation encoder is trained with the objective 962

function given by equation 6. This ensures that the 963

predicted label is closer to the gold label even if 964

rationales are given instead of complete input text. 965

The second condition specifies that explanations 966

must be short and continuous. The first term in 967

equation 6 penalize long length rationales. The 968

second term ensures that rationales are continu- 969

ous by penalizing the long distance between pre- 970

dicted rationale. Final training is done to minimize 971

the cost function expected value of cost function 972

L(z, x, y) + Ω(z). Encoder model is chosen as 973

RCNN as it is better to get continuous n-gram than 974

RNN or LSTM. [9] 975

for given input sequence of length 976

(x1, x2......xt) generator predicts (z1, z2........zt) 977

where z ∈ [0, 1] which is decison for every word 978

for being rational. The predicted rational set is 979

denoted by (z, x) and it is given to the encoder. 980

prediction of each word is treated as independent 981

of each other in the generator. The generator is a 982

simple bidirectional RCNN model with a softmax 983

layer to give a probability distribution of tags for 984

each word. 985

L(z, x, y) = ||enc(z, x)− y||2 (9) 986

987

Ω(z) = λ1||z||+ λ2

∑
t

|zt − zt−1| (10) 988

989

But REINFORCE method involves a lot of hy- 990

perparameters. Hence it becomes very costly to 991

experiment with these models. This also has a lot 992

of variance and produces unstable results. Many 993

times [9] produces complete input text or blank 994

rationale as well which doesn’t give any useful in- 995

formation. To solve this problem [5] propose to 996

decompose the generator and encoder model and 997

train them independently. This method is stated as 998

Faithful Rationale Extraction from Saliency thresh- 999

olding (FRESH). [5] 1000
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In FRESH, the generator generates the rationale1001

using heuristics that come from any post-hoc expla-1002

nation techniques which need not be faithful. Later1003

it trains an extractor model which performs a task1004

similar to part of speech tagging to assign a binary1005

mask to each token in the text sequence.1006

FRESH divides its approach into 3 stages. In1007

the first stage, a classifier model is trained on the1008

complete input text model. Then its rationale is con-1009

structed using any standard post-hoc explanation1010

methods like LIME, Attention or gradient-based1011

approaches. These explanations need not be faith-1012

ful. Rationale from the generator model is given to1013

the extractor model which performs the task to se-1014

quence labeling on input data using heuristics given1015

by the generator. This is termed as the extractor1016

model. It assigns binary tags to each token. hence1017

we have a corresponding 1/0 sequence for each text1018

sample. The third stage is again a classifier model.1019

It is trained on the output of the extractor model.1020

This output is set of rationale and not a complete1021

sentence. Hence it can be easily tested whether1022

the model’s explanations are faithful or not. Here1023

generator and encoder are entirely disconnected1024

and independent unlike [9]. This produces more1025

stable explanations and also lowers the number of1026

hyperparameters to be tuned. [5]1027

7 Summary, Conclusion and Future Work1028

This survey has reviewed recent advances in1029

decoding-time control of large language models1030

across natural language tasks, code generation,1031

and lexically constrained generation. We exam-1032

ined approaches that inject symbolic constraints,1033

schema validation, static analysis, and grammar-1034

based control directly into the decoding process,1035

allowing precise intervention without modifying1036

model parameters. These methods enable more1037

reliable adherence to task-specific requirements,1038

ranging from field-level correctness in structured1039

code to keyword inclusion and instruction follow-1040

ing in natural language. Despite this progress, cur-1041

rent models often fall short when confronted with1042

multi-constraint, compositional, or semantically1043

rich prompts. Evaluations on benchmarks such1044

as InfoBench and FollowBench demonstrate that1045

even the strongest models struggle to balance flu-1046

ency with strict constraint satisfaction, particularly1047

in scenarios requiring numeric planning, stylistic1048

control, or structural alignment. Looking ahead,1049

future research will benefit from combining sym-1050

bolic control mechanisms with learned represen- 1051

tations, allowing models to adapt dynamically to 1052

evolving constraints during generation. Developing 1053

unified decoding frameworks that can incorporate 1054

various control signals—while maintaining gener- 1055

ality—remains an open challenge. Additionally, in- 1056

terpretable and task-specific evaluation metrics will 1057

be essential to track fine-grained control progress, 1058

especially as models are deployed in safety-critical 1059

and domain-sensitive settings. Controlled gener- 1060

ation is becoming a necessary component of reli- 1061

able language model deployment. As applications 1062

grow more complex, decoding-time control offers 1063

a scalable and modular path to bridge the gap be- 1064

tween general-purpose modeling and precise, user- 1065

aligned generation. 1066
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