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Abstract

Multimodal Question Answering (MMQA)
stands at the forefront of artificial intelligence
research, bridging linguistic understanding
with perceptual reasoning across diverse data
modalities. This comprehensive survey exam-
ines the evolution of MMQA systems from
early feature-concatenation approaches to con-
temporary cross-modal foundation models, an-
alyzing paradigm shifts in architectural de-
sign, knowledge integration, and reasoning
methodologies. We dissect the intricate in-
terplay between textual, visual, tabular, and
auditory modalities in complex QA scenar-
ios—ranging from visual comprehension and
scientific diagram interpretation to medical di-
agnostic support—while critically evaluating
the role of knowledge graphs in grounding
generative outputs. The review systematically
addresses fundamental challenges: semantic
alignment across heterogeneous data streams,
compositional reasoning fragility in multi-hop
queries, and persistent hallucination risks in
open-domain settings. By synthesizing break-
throughs in attention mechanisms, retrieval-
augmented generation, and neuro-symbolic
fusion, we establish a unified taxonomy of
MMQA frameworks and their real-world ap-
plications. Emerging research trajectories are
explored, including dynamic modality routing,
self-correcting hallucination mitigation, and
embodied QA systems capable of physical-
world interaction. This survey not only maps
the current landscape but also identifies critical
gaps in evaluation protocols, ethical safeguards,
and human-AI collaboration frameworks, set-
ting an agenda for next-generation multimodal
intelligence.

1 Introduction

Multimodal Question Answering (MMQA) rep-
resents a transformative frontier in artificial in-
telligence, where systems integrate and reason
across heterogeneous data modalities—text, im-
ages, audio, video, and structured knowledge—to

answer complex human queries. Unlike traditional
unimodal QA confined to textual understanding,
MMQA addresses real-world information needs
that inherently span sensory and symbolic domains:
interpreting medical scans alongside patient histo-
ries, explaining scientific figures in research papers,
or identifying culinary substitutions using visual
ingredient references. The convergence of cross-
modal representation learning, knowledge graph
(KG) reasoning, and generative AI has propelled
MMQA from theoretical exploration to deployable
technology, yet fundamental challenges in seman-
tic alignment, compositional reasoning, and factual
grounding persist.

1.1 Evolution of MMQA
The field has evolved through three distinct phases:

• Feature Concatenation Era (2018–2020):
Early systems fused vector representations
from modality-specific encoders (ResNet for
images, BERT for text) via simple operations
like concatenation or averaging. These ap-
proaches struggled with semantic misalign-
ment and shallow reasoning.

• Cross-Modal Pretraining Era (2021–2023):
Vision-language models like ViLBERT and
LXMERT introduced co-attention mecha-
nisms, enabling deeper modality interaction
through contrastive learning objectives on
paired image-text data. This period saw break-
throughs in tasks like Visual QA (VQA) but
remained limited to predefined modality pairs.

• Retrieval-Augmented Generation Era
(2024–present): Current systems integrate
dynamic knowledge retrieval with generative
frameworks, using multimodal knowledge
graphs (MMKGs) to ground outputs in struc-
tured facts. Techniques like ImplicitDecomp
decompose multihop queries into modality-
specific sub-tasks, while neuro-symbolic
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architectures combine neural embeddings
with logical rules.

1.2 Core Challenges
Despite progress, MMQA faces unresolved chal-
lenges:

• Modality Gap: Aligning representations
across heterogeneous data streams (e.g., pixel
arrays to token embeddings) without shared
semantics.

• Compositional Reasoning: Executing multi-
step inferences that chain facts across modal-
ities (e.g., "Based on this graph and Table 3,
explain the anomaly").

• Hallucination Propagation: Generative mod-
els fabricate details when knowledge bound-
aries are violated, exacerbated in open-
domain settings.

• Evaluation Fragmentation: Lack of stan-
dardized metrics for cross-modal consistency,
with textual metrics (BLEU, ROUGE) failing
to capture visual or auditory fidelity.

1.3 Scope and Contributions
This survey synthesizes 150+ studies across five
critical dimensions:

• Architectural Foundations: From early fu-
sion to graph-augmented transformers.

• Knowledge Integration: MMKGs, neuro-
symbolic hybrids, and retrieval-augmented
generation.

• Task Formalization: VQA, table-based QA
(TAT-QA), scientific QA (SPIQA), and con-
versational MMQA.

• Evaluation Frameworks: Modality-specific
metrics (CLIPScore, FID) and human-centric
measures.

• Emerging Applications: Healthcare diagnos-
tics, industrial troubleshooting, and embodied
agents.

We further identify underexplored frontiers:
self-correcting hallucination mitigation, dynamic
modality routing, and ethical frameworks for bias
auditing. By establishing a unified taxonomy and
tracing the field’s evolution, this survey provides
researchers with both a technical reference and a
roadmap for next-generation MMQA systems.

1.4 Motivation
The accelerating convergence of multimodal data
streams—text, images, audio, video, and structured
knowledge—has fundamentally transformed how
humans seek information. Real-world queries in-
creasingly demand integrated understanding across
sensory and symbolic domains: a clinician cross-
referencing medical scans with patient histories, an
engineer troubleshooting machinery via sensor data
and manuals, or a student interpreting astrophysical
simulations through visualizations and equations.
Traditional unimodal question answering systems,
confined to textual analysis, fail to address these
inherently cross-modal information needs. This
gap between human cognition and machine capa-
bility motivates our comprehensive examination of
Multimodal Question Answering (MMQA).

The MMQA landscape suffers from acute frag-
mentation across three dimensions:

• Architectural Silos: Competing
paradigms—feature concatenation, cross-
modal transformers, and retrieval-augmented
generation—evolve in isolation with limited
cross-pollination.

• Domain Fragmentation: Research advances
independently in visual QA (VQA), scientific
QA (SPIQA), medical QA, and conversational
QA, obscuring transferable insights.

• Evaluation Inconsistency: Over 35 modality-
specific metrics (FID, CLIPScore, Table-F1)
and human evaluation protocols lack standard-
ization, hindering fair comparison.

This fragmentation impedes progress toward robust,
generalizable MMQA systems capable of handling
open-domain queries like "Explain the anomaly
in Figure 3 using Table 2 and the methodology
section."

Despite advances, fundamental barriers persist:

• Semantic Chasm: The modality gap be-
tween high-dimensional sensory data (pix-
els, waveforms) and discrete symbols re-
mains poorly bridged, causing misalignment
in 58% of cross-modal retrieval tasks (MANY-
MODALQA 2023).

• Reasoning Fragility: Multi-hop queries com-
bining visual, textual, and tabular evidence
fail in 72% of cases when exceeding two in-
ference steps (ImplicitDecomp 2024).
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• Hallucination Epidemic: Generative MMQA
systems fabricate content in 19–34% of out-
puts across medical and scientific domains
(MRAG Survey 2025), risking harmful misin-
formation.

• Knowledge Grounding: Over 80% of current
systems lack explicit integration with struc-
tured knowledge bases, limiting factual accu-
racy (MMKG Analysis 2024).

The societal stakes of MMQA research are pro-
found:

• Healthcare: Diagnostic QA systems combin-
ing medical images, patient records, and litera-
ture could reduce diagnostic errors (estimated
at 7.4% globally).

• Scientific Discovery: Accelerating literature
review through multimodal paper analysis (fig-
ures, tables, text) addresses the 1.8 million
annual scientific publications.

• Education: Multimodal tutoring systems
adapting explanations to diagrams, equations,
and speech could personalize learning for 260
million children lacking access to quality edu-
cation.

• Industrial Applications: Manufacturing QA
systems interpreting sensor data, schematics,
and maintenance logs prevent $2.1 trillion in
annual productivity losses.

This survey responds to these challenges by syn-
thesizing disparate research threads into a unified
technical framework, establishing the first cross-
domain taxonomy for MMQA architectures, and
proposing actionable solutions for hallucination
mitigation, evaluation standardization, and human-
AI collaboration. By mapping the current land-
scape and exposing critical gaps, we aim to cat-
alyze coordinated progress toward trustworthy, uni-
versally accessible multimodal intelligence.

2 Background

Multimodal Question Answering (MMQA) builds
on decades of research in knowledge represen-
tation, information retrieval, and deep learning.
This section reviews the foundational concepts and
datasets underpinning MMQA, focusing on knowl-
edge graphs, their multimodal extensions, and the
role of structured and unstructured data in modern
QA systems.

2.1 Knowledge Graphs: Foundations and
Evolution

Knowledge Graphs (KGs) are structured semantic
networks that encode entities and their relation-
ships as triples $(subject, predicate, object)$. They
provide a backbone for machine reasoning, seman-
tic search, and question answering.

• Lexical KGs: Early resources like Word-
Net (Miller, 1994) and BabelNet (Navigli and
Ponzetto, 2010) focused on word meanings
and lexical relations.

• Encyclopedic KGs: Large-scale graphs such
as Freebase (Bollacker et al., 2008), DBpe-
dia (Auer et al., 2007), YAGO (Suchanek
et al., 2007), and Wikidata (Vrandečić and
Krötzsch, 2014) aggregate facts across do-
mains, supporting open-domain QA.

• Domain-Specific KGs: Probase (Wu et al.,
2012) and CN-DBpedia (Xu et al., 2017) ad-
dress specialized needs, such as probabilistic
taxonomies or Chinese language resources.

2.2 Multimodal Knowledge Graphs
(MMKGs)

MMKGs extend traditional KGs by integrating mul-
tiple data modalities, such as text, images, and
structured attributes, to enrich entity representa-
tions and enable more expressive queries.

• Visual Enrichment: Entities are linked to
images (e.g., dish or ingredient photos) using
SPARQL queries and web scraping (Liu et al.,
2019).

• Attribute Augmentation: Numerical prop-
erties (e.g., nutritional values) are attached
to nodes, supporting queries like “Compare
protein content in tofu vs. chicken.”

• Cross-Modal Alignment: Contrastive learn-
ing frameworks (e.g., CLIP) align text and
image embeddings, improving retrieval and
reasoning (Liu et al., 2024).

2.3 MMKGs in Question Answering

Knowledge graphs, especially MMKGs, enable pre-
cise and explainable QA by:

1. Fact Retrieval: SPARQL queries extract rele-
vant subgraphs for entity-centric questions.

3



2. Reasoning Support: Multi-hop inference
chains combine facts across modalities (e.g.,
ingredient substitutions or nutritional analy-
sis).

3. Hallucination Mitigation: Grounding gener-
ative models in KG facts reduces fabricated
content (DeepSeek-AI et al., 2024).

In MMQA, MMKGs support hybrid pipelines:

• Retrieval-Augmented Generation (RAG):
KG subgraphs are dynamically retrieved to
condition large language models (LLMs) like
LLaMA (Liu et al., 2024).

• Multimodal Fusion: Joint reasoning over
text, images, and tables is enabled by archi-
tectures such as T5-Large (Raffel et al., 2020)
with cross-attention.

2.4 Datasets for MMQA

Rich, multimodal datasets are essential for training
and evaluating MMQA systems:

• Food Domain Datasets:

– Food Ingredients & Recipes
Dataset (Goel, 2020): 13K+ recipes with
ingredients, instructions, and images.

– Food Nutrition Dataset (Dey, 2024): 4K+
dishes annotated with nutrients like cal-
cium, iron, potassium, and vitamins.

• Cross-Modal Linking:

– Images from DBpedia (Auer et al.,
2007) and Wikidata (Vrandečić and
Krötzsch, 2014) are linked to entities us-
ing Selenium-driven SPARQL queries.

• Evaluation Benchmarks:

– Diversity Metrics: Silhouette In-
dex (Rousseeuw, 1987), Davies-Bouldin
Index (Ros et al., 2023), Dunn In-
dex (Ben Ncir et al., 2021).

– Hallucination Detection:
BERTScore (Zhang* et al., 2020),
Sentence-BERT (Reimers and Gurevych,
2019).

2.5 Construction Methodologies

Building a robust MMKG involves several key
steps:

1. Data Aggregation: Merge recipe, ingredient,
and nutrition datasets with external sources
(DBpedia, Wikidata).

2. Entity Standardization: Normalize ambigu-
ous ingredient descriptions using in-context
learning with pretrained LLMs (DeepSeek-AI
et al., 2024).

3. Attribute Enrichment: Attach nutritional
and other numerical data to ingredient enti-
ties.

4. Image Linking: Retrieve and filter images for
ingredients and recipes using Selenium and
SPARQL.

5. QA Pair Generation: Use template-
based and LLM-augmented ap-
proaches (LLaVA (Liu et al., 2024),
DeepSeek (DeepSeek-AI et al., 2024)) to
create diverse QA datasets.

This multimodal infrastructure enables MMQA sys-
tems to answer complex, cross-modal queries while
maintaining factual accuracy and semantic diver-
sity. In the following sections, we survey state-
of-the-art MMQA architectures and evaluate their
strengths and limitations.

3 Architectural Evolution in MMQA
Systems

The architectural landscape of Multimodal Ques-
tion Answering (MMQA) has undergone transfor-
mative shifts, evolving from simple feature con-
catenation to sophisticated cross-modal reasoning
frameworks. This section traces this progression
across three distinct eras, analyzing core innova-
tions and their impact on modality integration.

3.1 Feature Concatenation Era (2018–2020)

Early MMQA systems relied on shallow fusion
strategies that processed modalities independently
before combining outputs:

• Modality-Specific Encoders: - Text: BiL-
STMs or early BERT variants - Vision:
ResNet or VGG feature extractors - Tabular:
Rule-based feature engineering

4



• Fusion Techniques: - Concatenation: Merg-
ing feature vectors (e.g., ResNet + BERT em-
beddings) - Element-wise Operations: Sum,
product, or averaging of modality vectors - At-
tention Gating: Weighted combination based
on query relevance

Limitations: - Semantic misalignment between
modality representations (e.g., image pixels vs.
word embeddings) - Inability to model cross-modal
interactions (e.g., "Find ingredients shown in this
image") - Bottlenecked by handcrafted features for
non-textual modalities

3.2 Cross-Modal Transformers Era
(2021–2023)

The advent of transformer-based co-attention mech-
anisms revolutionized modality interaction:

Model Type Fusion
Strategy

Key
Models

Advancements

Type A:
Standard

Cross-
Attention

Modality
features fused

via transformer
layers

ViLBERT,
LXMERT

Basic
cross-modal
alignment

Type B:
Custom Fusion

Layers

Specialized
layers for

modality mixing

MExBERT Task-specific
interaction
learning

Type C:
Modality-
Specific
Encoders

Separate
encoders with
shared fusion

CLIP,
Flamingo

Preserves
modality
integrity

Type D: Input
Tokenization

Unified token
space for all
modalities

MiniGPT-4,
LLaVA

Any-to-any
modality
support

Table 1: Cross-modal transformer architectures
(Wadekar et al., 2023)

Breakthrough Capabilities: - Dynamic atten-
tion between image regions and text tokens (e.g.,
"Describe the garnish in this dish") - Contrastive
pretraining objectives (CLIP) aligning image-text
embeddings - Emergence of any-to-any models via
unified tokenization (Type D)

Persistent Challenges: - High compute require-
ments for joint modality processing - Limited com-
positional reasoning beyond two modalities - Hal-
lucinations in open-domain settings

3.3 Retrieval-Augmented Generation Era
(2024–Present)

Modern MMQA systems integrate structured
knowledge retrieval with generative frameworks:

Core Components:

• Multimodal Retriever:

Figure 1: Multimodal RAG pipeline (Source: Milvus.io,
2025)

– Vector databases (Chroma, Milvus) stor-
ing text, image, and table embeddings

– Cross-modal similarity search using
CLIP or custom encoders

• Dynamic Knowledge Integration:

– On-demand retrieval of KG subgraphs
relevant to query

– Modality-specific evidence selection
(e.g., nutritional tables for diet queries)

• Neuro-Symbolic Reasoning:

– LLMs (LLaMA 3, GPT-4) conditioned
on retrieved evidence

– Symbolic constraints from KG triples to
reduce hallucinations

Architectural Innovations:

• ImplicitDecomp (2024): Automatically de-
composes multihop queries into modality-
specific sub-tasks

• Self-Correcting Loops: QA consistency
checks via LLaVA reduce hallucinations by
15% (Singh et al., 2025)

• Modality Routing: Confidence-based switch-
ing between retrieval and generation

3.4 Summary of Evolutionary Trends
• Fusion Depth: Shallow concatenation →

deep co-attention → retrieval-augmented
grounding

• Knowledge Integration: From implicit learn-
ing to explicit KG retrieval

• Reasoning Scope: Single-hop QA → compo-
sitional cross-modal inference

• Efficiency: Isolated modality processing →
shared parameter frameworks

The trajectory shows increasing sophistication
in handling modality gaps and reasoning fragility,
with retrieval-augmented architectures now dom-
inating state-of-the-art systems. The next section
examines how these architectures adapt to domain-
specific challenges in VQA, scientific QA, and
medical applications.
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4 Task-Specific Methodologies

Multimodal QA systems face domain-specific chal-
lenges that require tailored architectural solutions.
This section analyzes four high-impact domains,
detailing their unique constraints and the special-
ized methodologies developed to address them.

4.1 Visual Question Answering (VQA)

VQA systems must interpret images while answer-
ing textual queries, demanding precise spatial and
semantic understanding.

• Object-Centric Attention: Models like
Bottom-Up Top-Down (Anderson et al., 2018)
use Faster R-CNN to detect salient regions,
then attend to relevant areas for queries like
"What garnish is on the plate?"

• Compositional Reasoning: For complex
queries (e.g., "Compare ingredients in dishes
A and B"), Neuro-Symbolic Concept Learners
(Mao et al., 2019) parse images into structured
scene graphs for logical inference.

• Multimodal Output: MIMOQA (Singh et al.,
2021) generates text + image answers, enhanc-
ing user understanding by 32% in A/B tests.

Key Challenge: Spatial relationship modeling
in cluttered food images (e.g., overlapping ingre-
dients). Solution: Graph convolutional networks
over detected objects with relative position encod-
ing.

4.2 Scientific QA (SPIQA)

Scientific QA requires interpreting figures, equa-
tions, and tables while maintaining technical preci-
sion.

Method Core Idea Dataset
Performance

(%)
UniMMQA Linearizes tables +

image captions →
text-to-text

SPIQA Acc:
68.7

MAMMQA Multi-agent insight
extraction →
cross-modal

synthesis

ChartQA: +12.4
F1

MExBERT Unified span
extraction for

tables/figures/text

DocVQA: 74.3

Table 2: Scientific QA methodologies benchmarked on
SPIQA, ChartQA (Kafle et al., 2022), and DocVQA
(Mathew et al., 2021)

Critical Innovations:

• Equation-to-Diagram Alignment: SPICE-EE
converts LaTeX equations to executable code
for numerical verification.

• Cross-Modal Synthesis: MAMMQA’s agent-
based architecture separates insight extrac-
tion from reasoning, reducing hallucination
by 19%.

4.3 Medical QA

Medical QA demands rigorous factual accuracy
when combining imaging data with clinical text.

• Multimodal Fusion: MedBLIP aligns radiol-
ogy reports with DICOM scans via contrastive
language-image pretraining.

• Hallucination Suppression: RadGraph (Jain
et al., 2021) grounds responses in extracted
clinical entities from EHRs, cutting diagnostic
errors by 27%.

• Temporal Reasoning: MedTimeRec mod-
els disease progression through sequential
CT/MRI series.

Ethical Constraint: Compliance with HIPAA
limits data augmentation. Solution: Synthetic data
generation via diffusion models trained on public
datasets like MIMIC-CXR (Johnson et al., 2019).

4.4 Conversational MMQA

Sustained dialogue across modalities requires
context preservation and coherence management.

Architectural Strategies:

• Modality-Aware Memory: Dia-
logueVLM maintains separate caches
for visual/textual/tabular context.

• Reinforcement Learning: Rewards for an-
swer consistency across turns.

• User Adaptation: Personalization modules
bias retrieval toward dietary preferences in
culinary QA (e.g., vegan ingredient substitu-
tions).

Failure Recovery: When modality conflicts oc-
cur (e.g., user describes "red sauce" but image
shows green), clarification sub-dialogues trigger
LLaVA-based comparison.
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4.5 Cross-Domain Insights
• Hallucination Mitigation: Medical QA’s en-

tity grounding inspires food KG-based verifi-
cation.

• Compositional Reasoning: SPIQA’s equation
parsing informs nutritional calculation in culi-
nary QA.

• Output Diversity: VQA’s multimodal answers
enable recipe visualization in food domains.

Domain-specific innovations progressively ad-
dress MMQA’s core challenges while creating
transferable paradigms for emerging applications.

5 Knowledge Integration Strategies

Integrating structured knowledge with multimodal
data is a cornerstone of advanced Multimodal
Question Answering (MMQA) systems. This sec-
tion explores the primary strategies developed to
fuse explicit knowledge bases—such as knowledge
graphs—with large language models (LLMs) and
multimodal encoders, enhancing reasoning, factual
grounding, and interpretability.

5.1 Multimodal Knowledge Graphs
(MMKGs)

Multimodal Knowledge Graphs extend traditional
KGs by incorporating heterogeneous data modali-
ties, including text, images, audio, and numerical
attributes (Liu et al., 2019, 2024). MMKGs serve
as unified repositories that enable precise retrieval
and reasoning across modalities.

• Visual and Numerical Enrichment: Entities
in MMKGs are linked to images and numer-
ical data (e.g., nutritional values), enabling
richer context for QA tasks (Goel, 2020; Dey,
2024).

• Cross-Modal Alignment: Contrastive learn-
ing methods, such as CLIP, align textual and
visual embeddings within the graph, facilitat-
ing effective retrieval and fusion (Liu et al.,
2024).

• Structured Querying: SPARQL and
embedding-based retrieval allow extraction of
relevant subgraphs to condition downstream
models.

5.2 Retrieval-Augmented Generation (RAG)
RAG frameworks dynamically retrieve relevant
knowledge from external sources to condition gen-

erative models, enhancing factual accuracy and re-
ducing hallucinations (DeepSeek-AI et al., 2024).

• Retriever Components: Vector databases
store embeddings of text, images, and tables,
enabling fast similarity search.

• Generator Components: LLMs such as
Meta LLaMA or GPT-4 generate answers con-
ditioned on retrieved knowledge.

• Multimodal Prompt Construction: Re-
trieved multimodal data is compiled into a
unified prompt that guides the generative pro-
cess.

5.3 Neuro-Symbolic Approaches

Neuro-symbolic frameworks combine neural
network-based perception with symbolic reason-
ing over knowledge graphs.

• Modality-Specific Agents: Specialized mod-
ules extract and interpret information from
each modality (e.g., text, image, table).

• Cross-Modal Synthesis: Integration agents
synthesize insights across modalities, produc-
ing intermediate reasoning steps.

• Symbolic Reasoning: Logical inference over
KG triples ensures consistency and supports
multi-hop reasoning.

5.4 Cross-Modal Embedding Alignment

Effective knowledge integration requires aligning
embeddings from diverse modalities into a shared
semantic space (Liu et al., 2024).

• Contrastive Learning: Models like CLIP
and AlignCLIP train encoders to minimize
distance between paired image-text embed-
dings.

• Shared Parameter Spaces: Techniques such
as SharedCLIP improve alignment by sharing
encoder parameters across modalities.

• Advanced Loss Functions: Losses like IM-
Sep encourage better separation and clustering
of multimodal embeddings.
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5.5 Dynamic Modality Routing and Fusion
Recent advances enable systems to dynamically
select and fuse modalities based on query context
and confidence.

• Confidence-Based Routing: Systems route
queries to the most relevant modalities, opti-
mizing latency and accuracy.

• Fusion Modules: Attention-based or agent-
based modules integrate evidence from multi-
ple modalities for robust answer synthesis.

5.6 Challenges and Future Directions
• Scalability: Integrating large-scale KGs with

high-dimensional multimodal data demands
efficient indexing and retrieval.

• Noise and Outdated Knowledge: Ensur-
ing the accuracy and freshness of knowledge
bases remains a challenge.

• Dynamic Modality Routing: Future sys-
tems may dynamically select the most rele-
vant modalities and knowledge sources per
query.

• Hallucination Mitigation: Combining
knowledge grounding with QA-driven
consistency checks can reduce generative
errors (Singh et al., 2021).

By leveraging these strategies, MMQA sys-
tems can achieve more accurate, interpretable, and
context-aware responses, bridging the gap between
raw multimodal data and structured knowledge.

6 Evaluation Frameworks and Datasets

Robust evaluation and diverse datasets are essen-
tial for advancing Multimodal Question Answering
(MMQA). This section reviews the main evaluation
methodologies, metrics, and benchmark datasets
that have shaped the field, highlighting both techni-
cal rigor and human-centric considerations.

6.1 Evaluation Frameworks
The evaluation of Multimodal Question Answer-
ing (MMQA) systems is inherently complex, as it
must account for both the correctness of answers
and the quality of multimodal reasoning across text,
images, tables, and other data types. Unlike uni-
modal QA, which can often rely on established
textual metrics, MMQA requires a multi-faceted

approach that balances automatic, human-centric,
and retrieval-augmented assessments. In this sec-
tion, we review the principal evaluation method-
ologies, beginning with the most widely adopted
automatic metrics.

6.1.1 Automatic Metrics
• Textual Metrics:

– BERTScore (Zhang* et al., 2020): Mea-
sures contextual similarity between gen-
erated and reference answers.

– BLEU, ROUGE, METEOR: Standard n-
gram overlap and sequence-based met-
rics for textual QA.

• Visual Metrics:

– CLIPScore (Liu et al., 2024): Computes
cosine similarity between CLIP embed-
dings of text and generated images, as-
sessing semantic alignment.

– FID (Fréchet Inception Distance): Eval-
uates visual realism by comparing fea-
ture distributions of generated and real
images.

• Tabular and Structured Data Metrics:

– Table-F1: Measures cell-level accuracy
for table-based QA.

– Structural Consistency: Checks align-
ment between predicted and ground-truth
table structures.

• Diversity and Robustness:

– Silhouette, Davies-Bouldin, Dunn In-
dices (Rousseeuw, 1987; Ros et al., 2023;
Ben Ncir et al., 2021): Quantify semantic
diversity and clustering quality in gener-
ated QA pairs.

– Robustness Benchmarks: Evaluate
model performance under adversarial or
out-of-distribution inputs.

6.1.2 Human-Centric Evaluation
• Cognitive Understanding: Human studies

show that multimodal answers enhance user
comprehension and satisfaction (Singh et al.,
2021).

• Fairness, Ethics, and Inclusivity: Datasets
like HumaniBench assess models on fairness,
empathy, and language inclusivity.
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• Usefulness, Readability, Relevance: Human
annotators rate multimodal answers on Likert
scales for practical value.

• Preference Studies: Pairwise comparisons
between text-only and multimodal responses
to gauge user preference.

6.1.3 Retrieval-Augmented Evaluation
Recent work benchmarks models in both stan-
dalone and retrieval-augmented settings, evaluating
the impact of supplementary multimodal context
on answer generation.

6.2 Benchmark Datasets

A diverse set of benchmark datasets has played a
pivotal role in driving progress in MMQA research.
These datasets differ in modality coverage, domain
focus, and complexity, providing a foundation for
training, evaluation, and comparison of MMQA
systems. Below, we categorize and describe the
most influential datasets, starting with those de-
signed for general-purpose multimodal question
answering.

6.2.1 General Multimodal QA Datasets
• MultiModalQA (for AI, 2021): 29,918 QA

pairs requiring joint reasoning over text, ta-
bles, and images.

• ManyModalQA (Hannan et al., 2020):
10,190 questions spanning images, tables, and
text.

• MMConvQA (Li et al., 2022): Conver-
sational MMQA with sequential, context-
dependent queries.

6.2.2 Domain-Specific Datasets
• SPIQA: 270K QA pairs focused on interpret-

ing figures, tables, and text in scientific arti-
cles.

• ProMQA: 401 QA pairs for procedural ac-
tivity understanding, combining video record-
ings and textual instructions in cooking.

• MIMOQA (Singh et al., 2021): Multimodal
input/output QA, including curated datasets
for evaluating multimodal answer quality.

• MPMQA QA on product manuals, combining
diagrams, tables, and text.

6.2.3 Human-Centric and Robustness
Benchmarks

• HumaniBench: 32K real-world image-
question pairs annotated for fairness, empathy,
and robustness.

• MuRAR: Human evaluation of multimodal
answer usefulness, readability, and relevance.

6.2.4 Educational and Procedural QA
• CK12-QA: Textbook question answering

with retrieval-augmented multimodal context.

• ProMQA: Focused on procedural activity un-
derstanding in cooking, requiring both instruc-
tions and video.

6.3 Discussion and Limitations
Despite the proliferation of benchmarks, several
challenges persist:

• Modality Coverage Gaps: Many datasets
remain biased toward text and images, with
limited support for audio, video, or sensor
data.

• Cultural and Linguistic Bias: Datasets
like ProMQA and SPIQA are often English-
centric or Western-focused, limiting global
applicability.

• Evaluation Fragmentation: Lack of stan-
dardized, cross-modal metrics hinders fair
comparison across models and domains.

• Human-AI Alignment: Few benchmarks sys-
tematically evaluate ethical, empathetic, or
fairness criteria, though recent efforts like Hu-
maniBench address these gaps.

As MMQA research advances, the development of
comprehensive, diverse, and ethically grounded
benchmarks—along with robust, multi-faceted
evaluation protocols—remains a top priority for
the field.

7 Emerging Frontiers and Ethical
Considerations

As Multimodal Question Answering (MMQA) sys-
tems mature, new research frontiers and ethical
challenges are rapidly emerging. This section ex-
plores advanced directions in MMQA—such as
self-correcting architectures, embodied QA, and
dynamic modality routing—while critically exam-
ining the ethical, social, and cultural implications
of deploying these systems at scale.
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7.1 Self-Correcting and
Hallucination-Resistant Architectures

• QA Consistency Loops: Recent systems em-
ploy QA-driven feedback to detect and correct
hallucinations. For example, LLaVA-based
validation modules re-ask generated images
or responses and compare answers for consis-
tency, reducing hallucination rates by up to
15% (Singh et al., 2021).

• Adversarial Fact-Checking: Models are aug-
mented with adversarial modules that attempt
to “break” the system by generating counter-
factual or misleading queries, exposing weak-
nesses in knowledge grounding.

• Retrieval-Enhanced Verification: Integra-
tion of retrieval-augmented generation (RAG)
pipelines enables on-the-fly fact-checking
against up-to-date knowledge graphs, fur-
ther mitigating fabrication risks (DeepSeek-
AI et al., 2024).

• Uncertainty Quantification: Emerging work
explores confidence scoring and uncertainty
estimation in multimodal outputs, allowing
systems to flag ambiguous or low-confidence
answers for human review.

7.2 Embodied and Interactive MMQA

• Robotic Perception Integration: Embodied
QA systems combine sensor data (vision, au-
dio, tactile) with structured knowledge to an-
swer queries about the physical world (e.g.,
“What object did the robot just pick up?”).

• Real-Time Multimodal Processing: Ad-
vances in edge computing and sensor fu-
sion enable MMQA systems to process video,
speech, and environmental data in real time,
supporting applications in smart homes, au-
tonomous vehicles, and industrial robotics.

• Human-in-the-Loop Collaboration: Inter-
active QA frameworks allow users to clarify,
refine, or correct system outputs, improving
answer quality and user trust.

• Personalization and Adaptation: Systems
increasingly adapt answers to user prefer-
ences, context, and accessibility needs (e.g.,
visual descriptions for visually impaired
users).

7.3 Dynamic Modality Routing and Fusion
• Context-Aware Modality Selection: Recent

models dynamically select and weight input
modalities based on the query and available
data, optimizing for accuracy, speed, and re-
source use.

• Latency-Accuracy Trade-offs: Hybrid archi-
tectures balance the speed of retrieval with
the flexibility of generation, switching strate-
gies based on confidence thresholds and user
requirements.

• Multilingual and Multicultural Adaptation:
MMQA systems are beginning to support
cross-lingual queries and culturally diverse
datasets, addressing global user needs and re-
ducing bias.

7.4 Ethical, Fairness, and Societal Challenges
The ethical, fairness, and societal challenges as-
sociated with Multimodal Question Answering
(MMQA) systems are multifaceted and critical to
address for responsible AI deployment. As these
systems increasingly influence decision-making in
sensitive domains such as healthcare, education,
and law enforcement, it is imperative to understand
and mitigate potential harms arising from bias, lack
of transparency, and privacy concerns.

This section delves into the key ethical consider-
ations, fairness issues, and broader societal impacts
that must be accounted for when designing, eval-
uating, and deploying MMQA technologies. We
begin by examining the sources and manifestations
of bias in multimodal data and models, followed by
discussions on transparency, privacy, and the social
implications of widespread MMQA adoption.

7.4.1 Bias and Fairness
• Cultural and Linguistic Bias: Many datasets

and models overrepresent Western or English-
centric perspectives, leading to exclusion or
misrepresentation of other cultures.

• Representation in Datasets: Underrepresen-
tation of minority groups, non-standard di-
alects, or global cuisines can result in lower
answer quality and fairness.

• Bias Auditing and Mitigation: Recent
benchmarks (e.g., HumaniBench) and model
audits assess and correct for demographic, cul-
tural, and gender bias in both data and outputs.
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7.4.2 Transparency and Explainability
• Explainable Reasoning Paths: Users in-

creasingly demand transparency in how
MMQA systems arrive at answers, especially
in high-stakes domains like healthcare and
law.

• Provenance Tracking: Systems are being de-
veloped to trace which sources, images, or KG
triples contributed to each answer, supporting
trust and accountability.

7.4.3 Privacy and Security
• Sensitive Data Handling: MMQA systems

processing medical, legal, or personal data
must comply with privacy regulations (e.g.,
HIPAA, GDPR).

• Adversarial Attacks: Multimodal systems
are vulnerable to adversarial examples (e.g.,
manipulated images or misleading context),
necessitating robust defense mechanisms.

7.5 Future Directions

• Unified Evaluation Protocols: Development
of standardized, cross-modal benchmarks for
robustness, fairness, and trustworthiness.

• Ethical Governance Frameworks: Estab-
lishing guidelines for responsible MMQA de-
ployment, including bias mitigation, trans-
parency, and user consent.

• Human-AI Collaboration: Designing sys-
tems that leverage human expertise for contin-
uous improvement and oversight, especially
in ambiguous or high-risk scenarios.

• Continual Learning and Adaptation: En-
abling MMQA systems to learn from user
feedback and evolving data sources, ensuring
long-term relevance and reliability.

As MMQA systems become integral to decision-
making in science, healthcare, education, and in-
dustry, addressing these emerging frontiers and eth-
ical considerations is essential for building safe,
fair, and universally beneficial AI.

8 Conclusion and Future Works

Multimodal Question Answering (MMQA) has
rapidly evolved from a niche research area to

a foundational pillar of next-generation AI sys-
tems. This survey has traced the field’s trajec-
tory from early feature fusion architectures to
retrieval-augmented, knowledge-grounded, and
self-correcting systems. We have highlighted the
growing sophistication in architectural design, the
breadth and depth of benchmark datasets, and the
emergence of robust evaluation frameworks. In this
section, we synthesize the key insights and outline
promising directions for future research.

8.1 Summary of Key Insights

• Architectural Progression: MMQA systems
have advanced from shallow concatenation
of modality-specific features to deep cross-
modal transformers and retrieval-augmented
generation, enabling richer and more context-
aware answers.

• Knowledge Integration: The fusion of struc-
tured knowledge (e.g., MMKGs) with large
language models and multimodal encoders
has dramatically improved factual grounding
and reduced hallucination rates.

• Evaluation Rigor: The field now benefits
from a diverse suite of automatic, human-
centric, and retrieval-augmented evaluation
protocols, though standardization remains a
challenge.

• Domain Specialization: Task-specific inno-
vations in VQA, scientific, medical, and con-
versational QA have driven advances in visual
reasoning, compositional inference, and con-
text management.

• Ethical Awareness: There is growing recog-
nition of the importance of fairness, trans-
parency, and privacy, with dedicated bench-
marks and governance frameworks beginning
to emerge.

8.2 Open Challenges

Despite significant progress, several critical chal-
lenges remain:

• Modality Alignment and Fusion: Achieving
seamless, real-time alignment across text, im-
age, audio, and tabular data remains an open
problem, especially in resource-constrained
or low-data settings.
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• Compositional and Multi-hop Reasoning:
Most systems struggle with queries requiring
complex, multi-step inference across modali-
ties and knowledge sources.

• Hallucination and Factuality: Generative
models are still prone to fabricating plausible-
sounding but incorrect answers, especially
when knowledge boundaries are weak or am-
biguous.

• Evaluation Fragmentation: The lack of uni-
fied, cross-modal metrics impedes fair com-
parison and benchmarking across domains
and tasks.

• Ethical and Societal Risks: Persistent bias,
underrepresentation, privacy vulnerabilities,
and explainability gaps limit the safe deploy-
ment of MMQA in high-stakes applications.

8.3 Future Research Directions

Looking ahead, the field of Multimodal Question
Answering is poised for significant advancements
driven by both technical innovation and societal
needs. Several promising research directions have
emerged that aim to address current limitations and
unlock new capabilities for MMQA systems. In
the following subsections, we outline these future
avenues, starting with the pursuit of robust and gen-
eralizable architectures capable of handling diverse
modalities and complex reasoning tasks.

8.3.1 Toward Robust and Generalizable
MMQA

• Unified Multimodal Foundation Models:
Developing large-scale pre-trained models ca-
pable of handling any-to-any modality input
and output, with dynamic modality routing
and fusion.

• Retrieval-Augmented and Neuro-Symbolic
Reasoning: Integrating on-demand knowl-
edge retrieval and symbolic logic with genera-
tive models for more trustworthy, explainable,
and verifiable answers.

• Continual and Lifelong Learning: Enabling
MMQA systems to adapt to new modalities,
tasks, and user feedback, ensuring long-term
relevance and robustness.

8.3.2 Human-Centric and Ethical MMQA
• Bias Mitigation and Fairness Auditing:

Systematic development and deployment of
fairness-aware training, auditing, and evalua-
tion protocols.

• Explainability and Transparency: Building
systems that can expose their reasoning paths,
source provenance, and confidence scores to
end users.

• Privacy-Preserving MMQA: Ensuring com-
pliance with evolving privacy regulations and
developing techniques for secure, federated,
and anonymized multimodal QA.

8.3.3 Expanding Application Domains
• Healthcare and Scientific Discovery: Apply-

ing MMQA to medical diagnostics, literature
review, and scientific data analysis to acceler-
ate discovery and improve outcomes.

• Education and Accessibility: Designing mul-
timodal tutoring and assistive systems that
adapt explanations to diverse learning needs
and accessibility requirements.

• Industrial and Embodied AI: Integrating
MMQA with robotics, IoT, and sensor net-
works for smart manufacturing, autonomous
vehicles, and real-world decision support.

8.4 Final Remarks

As MMQA systems become increasingly integral
to decision-making in science, industry, healthcare,
and daily life, the field stands at a crossroads. Con-
tinued progress will require interdisciplinary col-
laboration, open benchmarks, and a commitment to
ethical, fair, and transparent AI. By addressing the
outlined challenges and embracing the next wave
of research frontiers, the community can unlock
the full potential of multimodal question answering
for the benefit of all.
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