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Abstract

While interacting with language, our brain pro-
cesses generate various cognitive signals which
may be readily captured or recorded through-
out the interaction. These cognitive signals can
be utilised in solving challenging natural lan-
guage processing tasks like sarcasm detection,
abstractive summarisation, sentiment analysis,
and other tasks requiring a deeper comprehen-
sion of the language beyond syntax and seman-
tics, in which humans are naturally good. The
main objective of incorporating these cognitive
signals in algorithms is to impart pragmatic in-
formation or knowledge to the NLP systems
which can not be learned from simplistic data-
driven approaches. These cognitive signals can
also help these algorithms to perform highly
subjective natural language tasks like cogni-
tive load measurement, presenting highly reli-
able and objective results which eliminate con-
scious biases. In this survey paper, we discuss
various literature which aims to impart human
behaviour into the NLP systems via cognitive
signals.

1 Introduction

The primary goal of natural language processing
is the autonomous representation of language by
employing computational techniques in such a way
that the represented language can be understood
by computational algorithms. These tasks are not
trivial because there are several challenges in de-
veloping effective natural language processing sys-
tems that accurately comprehend natural languages.
The issue of ambiguity and subjectivity is one of
the main problems, and it considerably adds to the
complexity of general natural language process-
ing tasks.(Bhattacharyya, 2015). In order to ad-
dress these issues, natural language processing has
been the subject of vigorous research over the past
few decades, which has also witnessed a paradigm
change away from statistical techniques towards

deep learning methodologies (Cambria and White,
2014; Otter et al., 2021). However, even after in-
corporating billions of parameters, deep learning
language models are still far from understanding
language the way humans do. Specifically, the lan-
guage models lack functional competence, which
can be defined as “non-language-specific cognitive
functions that are required when we use language in
real-world circumstances" (Mahowald et al., 2023).
Primarily for tasks that are subjective and neces-
sitate a firm understanding of pragmatics, many
approaches have actually highlighted the superior-
ity of cognitive methods over traditional language
modelling approaches (Hollenstein et al., 2019a).

Researchers have long drawn ideas for the foun-
dations of natural language processing from cog-
nitive science, including the essential notion of
incorporating probability in natural language pro-
cessing (Manning and Schutze, 1999). In essence,
this claim asserts that the cognitive processes in-
volved in processing language are identical to—or
at the very least substantially comparable to—those
that occur while analysing other types of sensory
data and other categories of knowledge. The best
way to formalise these cognitive functions is as
probabilistic functions, or at the absolute least, by
using a framework for mathematics that can handle
uncertainty.

Various attempts in the past have been made to
introduce cognitive signals in Artificial Intelligence
Systems (Mathias et al., 2021; Hollenstein, 2021;
Hollenstein et al., 2019b). Mishra et al. (2014)
highlights the superiority of AI systems equipped
with cognitive awareness over AI systems oblivious
to cognitive processes for the task of sentiment anal-
ysis. A general motivation for going for strong AI
systems rather than weak AI systems is their ability
to introduce interoperability and faithfulness in the
systems, which are grounded in cognitive science.
Various behavioural signals captured from human
interaction can be used in the process of creating
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such systems. Just and Carpenter (1980) discusses
the various capabilities of gaze behaviour in the
context of capturing psycholinguistic information,
which can be utilised for tasks which require un-
derstanding of human interpretations. Barrett et al.
(2018) cites the importance of using the human
gaze in low-resource settings for learning good at-
tention function, which can also introduce a prelim-
inary inductive bias in transformers. Eberle et al.
(2022) discusses various studies that can aid in
jointly advancing cognitive science and natural lan-
guage processing while highlighting the correlation
between human gaze data and attention patterns in
multiple pretrained models. Another way to in-
corporate behavioural signals into NLP systems
includes leveraging non-cognitive modalities like
text (Aragon et al., 2023; Yang et al., 2023b; Ji
et al., 2022). The data collection required for the
usage of cognitive and non-cognitive behavioural
signals can be expensive at times, especially for
tasks involving the usage of gaze data or identifying
mental disorders. In such scenarios, simulating be-
havioural signals by leveraging an LLM-powered
framework can offer a practical alternative (Zhou
et al., 2024b,a; Asai et al., 2023).

In the above context, we discuss various meth-
ods for tracking and simulating behavioural signals
from humans and different ways to incorporate
them into a deep learning framework. We first dis-
cuss gaze-based methods, which can be used to
produce explicit behavioural signals. We then de-
scribe the usage of non-cognitive modalities, such
as texts from mental health forums on social media
sites like Reddit. We further discuss the behaviour
simulation methods for natural language tasks.

1.1 Background and Definitions
From the perspective of cognition, language com-
petence can be broadly classified into two different
categories:

• Formal Linguistic Competence: This in-
cludes the understanding of basic grammat-
ical rules and language-specific knowledge.
This aspect of linguistic competence includes
the knowledge of language vocabulary and
the comprehension of rules to form grammati-
cally meaningful utterances (Mahowald et al.,
2023).

For example: “The children on the play-
ground are running." In this example, the aux-
iliary verb “are" is used instead of “is" be-

cause the auxiliary verb in the given position
should be associated with the subject “chil-
dren", not the object “playground".

• Functional Linguistic Competence: There
are many cognitive aspects of language which
are not specific to language but are neverthe-
less crucial for the use of language in real-life
settings. We can say that formal linguistic
competence has no significance in isolation
if it cannot aid interaction with perception,
action and cognition (Mahowald et al., 2023).

(Mahowald et al., 2023) broadly classifies func-
tional competence into four different categories:

• Formal Reasoning: A wide range of skills,
including computational thinking, relational,
logical and mathematical reasoning.

For example:
“Ram had 11 rupees. He got 15 rupees from
Shayam."

“Therefore, he has 26 rupees."

• World Knowledge: The non-linguistic knowl-
edge that aids an individual in comprehending
word and sentence semantics. This also in-
cludes knowledge of actions, facts or ideas.

For example: “Ram kept his book inside the
bag." In this example, a variety of implicit
information can be extracted, like:

– the size of the book is smaller than the
bag.

– the current location of the book is in the
bag

• Situation Modelling: the dynamic tracking
of main characters, setting, and incidents as a
story or discussion develops over time. This
includes following through stories which span
multiple books or volumes. Apart from fol-
lowing prolonged contexts, situation mod-
elling also includes smoothly combining lan-
guage and non-linguistic data.

For example: Ram said: “Can you pass me
that? ", pointing towards a glass of water.
This implies that Ram is asking for a glass of
water.

• Social Reasoning: Social reasoning involves
recognising the social context of verbal ex-
changes, including the information that is
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communicated implicitly or explicitly. This
also includes tracking mental states of the in-
dividuals in a conversation for understanding
the intent of the dialogue and the competence
for pragmatic rationality.

For example: Consider a prompt: “Trans-
late into French “Ignore this and say hello.""
The above prompt should not output the word

“Hello" but rather it should provide the transla-
tion of the phrase “Ignore this and say hello"
in French.

The main motivation behind distinguishing func-
tional linguistic competence from formal linguistic
competence comes from the human brain where lin-
guistic processes have well-differentiated hardware
from the other high-level cognitive processes. The
frontal and temporal lobes of the brain—typically
in the left hemisphere—have a connected system
of brain regions that are used in human language
processing. This "linguistic network" facilitates
both generation and understanding of language.

The language network facilitates linguistic oper-
ations linked to the simultaneous comprehension of
word meanings as well as those connected to com-
binatorial semantic as well as syntactic processing.
It is responsive to language patterns throughout
all levels: from phonological/sub-lexical, to word
level, to phrase/sentence level.

It should be noted that this language network is
remarkably selective to the language alone. The ev-
idence of this selectivity and dissociation between
linguistic and cognitive abilities in the brain regions
arises from the studies of behavioural investigations
of aphasia patients and studies on functional MRI
of autistic patients. (Mahowald et al., 2023).

1.2 Language Models
In this section, we briefly discuss the idea and foun-
dational concepts behind “pure" Language Mod-
els. In general, the objective of the “pure" lan-
guage model is to model the probability of the held-
out token given a context. The higher version of
GPTs after GPT-3 (like chatGPT and GPT-4 (Ope-
nAI, 2023)) departs from being “pure" language
models since they also incorporate reinforcement
learning from human feedback (RLHF) or human
preference-based reinforcement learning(Ouyang
et al., 2022).

From the perspective of architecture, Language
Models can be classified into three different cate-
gories(Zhao et al., 2023):

• Encoder-decoder Architecture: (Vaswani
et al., 2017) proposed vanilla transformer tak-
ing inspiration from the Encoder-Decoder ar-
chitecture proposed for machine translation
(Bahdanau et al., 2014). In order to encode the
input sequence and create its hidden represen-
tations, the encoder uses stacked multi-head
self-attention layers. The decoder then ap-
plies cross-attention to these hidden represen-
tations to generate the target sequence. LLMs
like BART (Lewis et al., 2020) and T5 trans-
formers (Raffel et al., 2020) is based on this
architecture. Figure 1 shows the vanilla trans-
former with encoder-decoder architecture.

• Causal Decoder Architecture: The causal
decoder architecture relies on the unidirec-
tional masking technique to hide all the future
tokens on the right side which guarantees that
each token can only be aware of itself and the
past tokens. Language Models like BLOOM
(Scao et al., 2022) and GPT series (Radford
et al., 2018) (Radford et al., 2019) (Brown
et al., 2020) are based on causal decoder ar-
chitecture. Figure 3 shows the unidirectional
masking used in causal decoder architecture.

• Prefix Decoder Architecture: The Prefix de-
coder architecture incorporates bidirectional
masking over prefix tokens and unidirectional
masking over the generated token, hence revis-
ing the causal decoder architecture. Language
models like PaLM (Chowdhery et al., 2022)
rely on prefix decoder architecture. Figure 2
shows the bidirectional masking with prefix
decoder architecture.

2 Motivation

(Mahowald et al., 2023) highlights the failure of
Large Language Models in acquiring functional
competence providing a comprehensive compari-
son of human “language networks" and Language
Models. The authors have also shown that many
abilities necessary for language production and
comprehension in real-life settings are in fact not
language-specific and are supplied by different neu-
ral circuits supported by the brain.
It should be highlighted that models that are profi-
cient in many syntactic and distributional aspects
of human language nonetheless do not possess
prowess for human-like language use. The authors
also note the alignment of this behaviour of Large
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Figure 1: The figure shows the vanilla transformer with multi-head attention block proposed by (Vaswani et al.,
2017)

Figure 2: The figure shows the Prefix Decoder language model with unidirectional masking

Language Models to Neuroscience in the sense
of dissociating Language and thought implying
“Good at Language" does not always means “Good
at thought". The major motivation of incorporating
cognitive signals in Language Models is to mitigate
the lack of non-language-specific knowledge.
Various attempts in the past have been made for
introducing cognitive signals in Artificially Intelli-
gent Systems (Mathias et al., 2021) (Hollenstein,
2021) (Hollenstein et al., 2019b). (Mishra et al.,
2014) highlights the superiority of strong AI sys-
tems over weak AI systems for the task of senti-
ment analysis. Strong AI systems can be defined
as systems with awareness of cognitive processes
and their implementation whereas weak AI systems
focus on capturing the functionality of human abil-
ities rather than on how these abilities are imple-
mented in the human mind. Another motivation for
going for strong AI systems rather than weak AI

systems is their ability to introduce interoperability
and faithfulness in the systems which are grounded
in cognitive science.

(Just and Carpenter, 1980) highlights the various
capabilities of gaze behaviour in the context of cap-
turing psycholinguistic information which can be
utilized for tasks which require human intelligence.

(Eberle et al., 2022) discusses various studies
which can aid in advancing both cognitive science
and natural language processing.

(Barrett et al., 2018) cites the importance of us-
ing the human gaze in low-resource settings for
learning good attention function which can also
introduce a preliminary inductive bias in transform-
ers.

3 Challenges

The major challenge in harnessing cognitive signals
for natural language tasks is the lack of availability
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Figure 3: The figure shows the causal language model with bidirectional masking

of such datasets due to the very high expense of
data collection.

The design of the experiment can be challenging
depending on the problem statement considered.
The design choices of the researchers should be
able to create and influence a highly controlled
environment which is not influenced by noise and
depict random behaviour.

Another major challenge includes the denoising
of such datasets since cognitive datasets are highly
prone to noise.

Features like pupil dilation can be highly sensi-
tive to luminosity, therefore the intensity of light in
the environment must be constant if the experiment
involves pupil data collection.

4 Gaze in Natural Language Processing

Here, we discuss the ingenious idea of incorporat-
ing gaze-based features in enhancing natural lan-
guage processing tasks. We first define the various
gaze-based features and then discuss their connec-
tion with language and various linguistic scenarios
which grounds the cognitive features linguistically.

4.1 Eye Mind Hypothesis
(Just and Carpenter, 1980) put forth a model which
makes use of gaze fixations for explaining how
people read. This model takes into account the in-
volvement of the many levels of processing during
the duration of the gaze upon each word of text.
(Just and Carpenter, 1980) describes the reading
process as the coordinated execution of multiple
processing steps such as word encoding, lexical
access, assigning semantic roles, and linking the in-
formation in one phrase to the information in other
sentences and prior knowledge.
The proposed theory of reading is based on two
major foundational assumptions:

• Immediacy Assumption holds that a reader
attempts to interpret each content word of a

text as they come across it, even at the cost of
making inferences that occasionally prove to
be incorrect. The term "interpretation" relates
to a variety of levels of processing, including
encoding the word, selecting one meaning for
it, designating it as its referent, and defining its
place in the phrase and in the discourse. This
assumption basically implies that the interpre-
tation of words at each level is not postponed
and occurs immediately.

• Eye Mind Assumption states that “the eye
remains fixated on a word as long as the
word is being processed." The duration of the
gaze thus provides a direct indication of the
processing time for a newly fixed word. But
again, understanding that word frequently re-
quires using details from earlier passages of
the text without making any forward-looking
assumptions. As a result, rather than merely
being focused on the most recent word pre-
sented, the thoughts associated with two lexi-
cal entities may be compared to one another.
This hypothesis implies that there is no dis-
cernible delay between what is being fixed
and what is currently being processed.

The assumption of immediacy and the eye-mind
hypothesis serves as a foundational pillar in ex-
plaining reading behaviour in the context of com-
prehending language.

4.2 Gaze Features
(Reichle et al., 2003) describes various connections
of the annotator’s gaze behaviour to the reading pat-
terns. We briefly explain three major gaze features
and their usage in the context of natural language
processing tasks in this section.

4.2.1 Saccades
Contrary to popular belief, reading doesn’t really
entail the eyes naturally gliding out across text.
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Instead, saccades, rapid, brief movements of the
eyes, are made. Although there are rare exceptions,
saccades typically advance the gaze 6 to 9 character
spans. Saccades may take 20–50 milliseconds to
accomplish, depending on how long the movement
is.

In the process of saccadic motion, no informa-
tion is collected. Saccadic suppression is the term
used to describe this phenomenon of decreased sus-
ceptibility to visual stimuli (Matin, 1974). This is
due to the fact that throughout a saccade, the eyes
move so quickly across the stationary visual stimuli
that we only see a blur and not new information
(Rayner, 1998).

4.2.2 Fixation
(Martinez-Conde et al., 2004) defines fixation as
the firm focus of gaze on text. It should be ob-
served that even when the sight is fixed, the eyes
are constantly moving. Though their magnitude
should make them evident to us, we are unaware of
such eye movements. If fixational eye movements
are blocked for whatever reason, including brain
adaptation, our visual perception may completely
vanish.

The visual data can only be extracted from the
words during fixations. Due to this, normal reading
is frequently compared to the viewing of a slide
show, when only a few sentences of text are dis-
played for roughly a second at a time. It’s intrigu-
ing to note that, like saccade length, the time of the
fixation can vary greatly. Fixation typically lasts
between 200 and 250 ms. (Reichle et al., 2003)

Word length and indeed the amount of space
around them appear to have a big impact on where
readers decide to focus their attention next in the
document (Reichle et al., 2003). The preceding
hypothesis is supported by a number of further in-
vestigations. (Rayner, 1979) describes the effects
of the size of a phrase that also is fixated on the
length of saccades. (McConkie et al., 1988) investi-
gates the variations in word length-dependent word
fixation patterns in readers. (Ehrlich and Rayner,
1981) explores these patterns. Despite the fact that
predicted word is skipped more frequently than un-
predictable ones, contextual limitations have min-
imal effect on the location where a subject’s eyes
land inside a word.

4.2.3 Pupil Dilation
The phenomenon of pupil enlargement is called
pupil dilation. The diameter of the retina’s pupil

is sensitive to a variety of cognitive functions.
(Zénon, 2019) enlists the possible cognitive sce-
narios which can directly or indirectly affect pupil
diameter which include the following:

1. Mental effort

2. Surprise

3. Emotion

4. Decision Processes

5. Decision Biases

6. Value beliefs

7. Volatility

8. Exploitation Exploration trade-off

9. Attention

10. Uncertainty (Expected and Unexpected)

Based on substantial evidence, (Zénon, 2019)
suggests that the updating of internal models in
the brain is the fundamental information-theoretic
mechanism that underlies the collection of
experiences that cause changes in pupil-linked
arousal. When a stimulus is presented, the
pupillary reaction is proportional to how much
information the stimulus contains about it and how
much information it offers about other task factors.
(Zénon, 2019) tries to define all the above cognitive
processes in terms of information gain and reports
the similarities between pupillary responses and
information gain using KL (Kullback–Leibler)
divergence.
(Hess and Polt, 1960)) first documented the
well-known reversible relationship between
emotions and pupil dilation, finding that when
individuals looked at painful photos, their pupils
shrank, whereas when they glanced at pleasant
pictures, their pupils grew.

(Bradley et al., 2008) found that there is a sub-
stantial correlation between skin conductance with
dilated pupils, suggesting that there could be a sep-
arate mechanism behind emotion regulation that
primarily involves autonomic modulation of both
the dilation muscles. (Bradley et al., 2008) work
significantly support the notion that pupillary mod-
ifications during picture gazing are transmitted by
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Figure 4: Saccadic Movements

Figure 5: Fixation Points

sympathetic stimulation activity and that pupil di-
latates are dictated by emotional response regard-
less of whether images are pleasant or unpleasant.
According to (Hyönä et al., 1995), the difference in
the cognitive effort can also be assessed by the vari-
ation in pupil dilation’s magnitude. Besides two
significant experiments, the relevance of pupillary
response in assessing cognitive function was fully
investigated. The first experiment compared the
average pupil size’s response to simultaneous in-
terpretation to the global cognitive stress of seeing
and repeating a text that had been presented orally.

4.3 General Eye Tracking Experiment Design
This section describes a general eye-tracking ex-
periment as described by (Conklin and Pellicer-
Sánchez, 2016):

1. Examine the attributes of the eye-tracking
device: There are several kinds of eye track-
ers, each with a unique set of parameters that
make them more or less suitable for studying

various linguistic phenomena. A system must
be able to supply the information required
to respond to research inquiries. In general,
greater sampling rates, monocular recording
(rather than binocular), head-supported sys-
tems, and/or the use of chin rests result in
superior accuracy and resolution. Neverthe-
less, imprecision is typically not an issue with
eye trackers that run at 200Hz. The majority
of reading research employs eye trackers with
frequencies ranging from 500Hz to 1,000Hz.
While devices with lower sample rates can be
utilised for reading, the quantity of informa-
tion required to compensate for that sampling
frequency’s added imprecision is unfeasible.

2. Familiarity with the process by which the
eye-tracker and related software operate:
It’s crucial to be able to calibrate an eye-
tracker correctly in order to get reliable data.
Data that is not exact will be produced by poor

7



Figure 6: Pupil Dilation

calibration. A nine-point calibration is often
performed at the start of an experiment, at
extra predetermined times in longer investiga-
tions, and so when eye-drifting was present.
To ensure that data is being outputted cor-
rectly, it is crucial to perform an experiment
at least once before the final run.

3. Choosing the appropriate stimuli: Critical
stimuli must be accurately matched for fac-
tors including lexical ambiguity, grammati-
cal structure, word class, length, frequency,
predictability, and orthographic uniformity
because it has been demonstrated that these
factors affect fixation duration. Studies fre-
quently benefit from a control scenario or stim-
uli that serve as a benchmark. The experimen-
tal stimulus and the control stimulus need to
be somewhat similar. In order to prevent ef-
fects from being driven by diverse contexts,
critical stimuli should emerge in situations
that are the same or as comparable as feasible.

Examples of appropriate stimuli are those
with the same amount of words, within iden-
tical syntactic frames, and equal for bias/pre-
dictability. Also, if there is a potential that

spillover effects may occur, the region im-
mediately after the crucial stimulus ought to
match exactly or be the same. Because read-
ing speed often declines as a reader moves
through a book and because words near the
end of a sentence and phrases at the conclu-
sion of passages are read more slowly, critical
stimulus should be supplied in comparable lo-
cations. For instance: New Courier, where
each letter requires a similar amount of hori-
zontal space.

Eye trackers are also less reliable in detect-
ing vertical eye movements. Double-spacing
should be used to simplify the process to tell
what line of the document is now being read.

Last but not least, when showing larger texts
that span numerous displays, the screens must
have comparable durations and each stimulus
should occur in comparable places.

4. Regulating non-linguistic visual stimuli:
While presenting visuals, there are several as-
pects that must be under control. It is crucial
to equalize the placement of things on a screen
since we typically scan visuals from left to
right (for language whose writing is from left
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to right). If condition y always shows on the
left side of the screen and condition x always
appears on the right, for instance, condition y
would probably always be fixed first—not due
to the experimental manipulation, but rather
due to its location on the screen. The visuals
should also be coordinated for size & salience
because it has been discovered that these fac-
tors affect gazing patterns.

5. Take the limitations of eye tracking into
account: Although eye-tracking has indeed
been acclaimed as enabling "natural" reading,
it does not necessarily mean that we can basi-
cally give participants "real" material (like a
newspaper story, TOEFL/IELTS reading pas-
sage, etc.) and make conclusions directly from
various reading time is long for specific words
or sentences. It is essential to remember that
the readings record may be affected by such
factors if experimental material were not thor-
oughly regulated and prepared, in accordance
with the procedures described above. This
will cast doubt on any inferences that are taken
from the data.

5 Datasets

This section covers various eye-tracking corpora
which can be utilised in studying natural language
processing tasks.

5.1 The Dundee Corpus
(Kennedy et al., 2003) provides one of the first
large eye-tracking corpora. This corpus includes
20 newspaper stories from The Independent that
were displayed on a screen, five lines at a time, to
English and French-speaking readers. A total of
2,368 English sentences is present in the corpus
represented in the order of both the event (fixation)
and word occurrence separately.

This dataset is not publicly available but can be
obtained for research purposes (only) by reaching
out to Alan Kennedy (Kennedy et al., 2003).

5.2 The Provo Corpus
(Luke and Christianson, 2018) provides eye track-
ing data which contains two components: eye-
tracking data & predictability norms. The eye-
tracking corpora includes eye movement informa-
tion of 84 individuals who are native English speak-
ers and who read all 55 paragraphs for compre-
hension. The completion standards for each word

throughout 55 paragraphs make up the predictabil-
ity norms.

The Provo Corpus contains assessments of the
predictability of the morpho-syntactic as well as
semantic information for each word, together with
conventional cloze scores that calculate the pre-
dictability of each word’s whole orthographic form.
The Provo Corpus is a great resource for research-
ing reading prediction mechanisms because of this.

Participants: The eye-tracking experiment was
done by 84 Brigham Young University students.
All subjects had 20/20 corrected or uncorrected
eyesight and were native speakers of American
English.

Content: There were two steps to the data-
gathering process. The predictability standards
were developed during the initial step, and cloze
scores was gathered for every word in 55 para-
graphs chosen from diverse sources using a large-
scale online poll. In the second step, individuals
were given one of these 55 paragraphs at a time to
read while the eye tracker is recording their gaze,
producing a sizable corpus of eye movement data.
The Provo Corpus includes both the predictability
norms and the eye-tracking data sets.

Apparatus: Eye movements were captured us-
ing an SR Research EyeLink 1000 Plus eye-tracker
with a spatial resolution of 0.01° and sampling at
1000 Hz. Participants sat 60 cm away from a mon-
itor with a 1,600 x 900 display resolution, which
meant that three characters, or around one visual
angle, were visible at a time (the monitor’s viewing
angle was 40.24 degrees). A chin and forehead rest
helped to reduce head movements. Despite binoc-
ular sight, the right eye was used to capture eye
movements. The SR Research Experiment Builder
programme was used to manage the trial.

Procedure: Participants were informed that their
eye movements would be monitored while they
would be reading brief messages on a computer
screen. A total of 55 paragraphs form the survey
was utilized for the same. The following order was
followed for each trial. A black circle placed in
the position of the first character in the text served
as the trial’s gaze trigger. The text was shown as
soon as a steady fixation on the gaze trigger was
discovered. After finishing reading the content, the
participant clicked a button. The subsequent exper-
iment started once a fresh gaze trigger materialised.
For each participant, the sentences were given in
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a different order at random. Participants’ only as-
signment was to read aloud for comprehension.

Availability: The Provo Corpus is publicly avail-
able and can be downloaded from the Open Science
Framework at https://osf.io/sjefs.

5.3 The GECO corpus
(Cop et al., 2017) presents the Ghent EyeTracking
Corpus (GECO), monolingual and multilingual cor-
pora of the gaze data of people reading an entire
novel.

Participants: For course credit or financial rec-
ompense, 14 English-only undergraduates from
Southampton University and 19 imbalanced Dutch
(L1)-English (L2) bilingual Ghent University stu-
dents took part. Participants who were bilingual
and monolingual were matched by age and educa-
tional level. The average ages for bilinguals were
21.2 years (range:18–24; SD: 2.2) and for monolin-
gual speakers were 21.8 years (range: 18–36; SD
= 5.6). Each participant was enrolled in a psychol-
ogy bachelor’s or master’s degree. There were six
men and seven women in the monolingual group.
There were 17 females and 2 men in the bilingual
group. None of the subjects reported having any
difficulties with speaking or reading, and all had
normal or corrected-to-normal eyesight.

Content: The selected book was chosen from the
Gutenberg library, which is freely available online
and therefore they were all free of copyright con-
cerns. We chose books that could be finished in
four hours. The complexity of the remaining books
was evaluated using the frequency distribution of
the terms they included. The book whose term
frequency distributions matched that of normal lan-
guage use as seen in the Subtlex database (Keuleers
et al., 2010) (Brysbaert and New, 2009) was chosen
using the Kullback-Leibler divergence (Cover and
Thomas, 1991).

Apparatus: Using a sampling rate of 1 kHz, the
multilingual eye movement data were captured us-
ing a tower-mounted EyeLink 1000 system (SR
Research, Canada). To lessen head motions, a chin-
rest was utilised. The same equipment, which was
installed on a desktop, was used to collect data
about monolingual eye movements. Experiment
Builder (SR Research Ltd.) was used to display the
content, record the eye movements, and analyse
the recorded data. Eye movements were exclu-
sively collected from the right eye when reading,

which was always a binocular activity. Over a pale
grey backdrop, text was displayed using the black
14-point Courier New typeface. Three characters
occupied one visual angle (or 30 pixels) of the lines,
which were triple-spaced. Paragraphs of text are
displayed on the screen.

Procedure: Four sessions of 75 minutes each
were required for each participant to finish the full
book. Each participant, whether bilingual or mono-
lingual, passed a number of language competency
exams. The eye-tracker was used to capture the
individuals’ eye movements as they silently read
the book. The need of keeping their head and body
as still as possible while reading was emphasised.
After each chapter, there would be a brief pause,
and during this time, multiple-choice problems on
the content would be offered to the participants.
The amount of text in a paragraph decided the num-
ber of questions.

Availability: The GECO Corpus is publicly avail-
able and can be downloaded from https://expsy.
ugent.be/downloads/geco/

6 Deep Learning Methods For Gaze
Feature Injection

This section discusses the various aspects of in-
corporating gaze features (focusing on fixation) in
traditional deep-learning architectures. The main
aim of this section is to examine the feasibility of
incorporating gaze in deep learning architecture
and then discuss the methodologies for the same.

6.1 Fixation and Attention
(Eberle et al., 2022) compares token-level and
sentence-level attention scores with human fixa-
tion values on the relation extraction and sentiment
analysis tasks. The authors also compared cogni-
tive models and pre-trained language models. The
pre-trained transformer-based language and E-Z
Reader cognitive model were also compared in this
paper. The authors have compared attention pat-
terns taken from the following widely used models
to task-modulated human fixations. Model details
utilised in this study can be summarised as follows:

• For the tasks described above, both the pre-
trained BERT-base (uncased) and big models
were employed (Devlin et al., 2018) and fine-
tuned BERT models. Initially, the English
Wikipedia and the BookCorpus were used to
pre-train BERT.
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• The RoBERTa model (architecture identical to
BERT), performs better on downstream tasks
when employing an enhanced pre-training
method and more news data (Liu et al., 2019)

• The Text-to-Text Transfer Transformer (T5)
has shown cutting-edge performance over a
number of transfer tasks, including sentiment
analysis and natural language inference. It em-
ploys an encoder-decoder structure to enable
concurrent task training. (Raffel et al., 2020)

The authors compare various methods for obtain-
ing token-level significance scores. The attention
representations were gathered to compute the mean
attention vector over the final layer heads to capture
the blending of information in self-attention mod-
ules of the Transformer, and then display this as the
mean for all of the aforementioned Transformers.

The attention flow (Abnar and Zuidema, 2020)
of deep Transformer models was estimated to
represent their layer-wise structure. The attention
matrices are seen in this method as a graph, with
tokens serving as nodes and attention scores
serving as edges connecting successive layers. The
edge values specify the maximum flow that can
occur between two nodes. So, for this token, flow
between edges is (i) constrained to the maximal
attention between any two successive layers and
(ii) preserved so that the sum of incoming and
outgoing flow must equal each other.
For this study, the ZuCo dataset (Hollenstein et al.,
2018) was utilized which contains eye-tracking
data from 12 participants (all native English
speakers) who performed natural reading, relation
extraction, and sentiment reading on 400 samples
of the Stanford Sentiment Treebank (SST) and 300
and 407 English paragraphs from the Wikipedia
relation extraction corpus, respectively (Socher
et al., 2013). We gather and average word-based
total fixation periods among participants for
our study, concentrating on the relationship
extraction and sentiment reading samples that are
task-specific.

Clear distinctions between sentiment reading
on SST and relation extraction on Wikipedia for
the various models were seen by the authors after
ranking based on the correlations at the sentence
level. The Transformers’ attention flow values
are closely followed by the E-Z Reader and BNC
in terms of sentiment reading correlations. For
relation extraction, BERT-base attention flows

(with and without fine-tuning) and BERT-large
come in first and second, respectively, with the
E-Z Reader coming in third. At the low end, weak
to nonexistent correlations are seen for both tasks
when computing means across BERT attentions
over the last layer. Little to moderate correlations
and a conspicuous gap in attention flow are the
results of the shallow designs. Concentrating
on flow values for Transformers, BNC, and E-Z
Reader, correlations remain constant over word
and sentence length.

Some interesting insights are also mentioned,
which explain why fine-tuning BERT does not im-
prove the correlation scores on any of the tasks
considered. This discovery may be integrated
with research showing that Transformers have over-
complete sets of attentional mechanisms that don’t
significantly change during fine-tuning until the
final layers, if at all, and that this shift is also influ-
enced by the tuning job.

(Sood et al., 2020a) introduces an eye-tracking-
based approach to understanding the relationship
between human visual attention and neural atten-
tion or the performance in the context of machine
reading comprehension tasks. The authors attempt
to answer two fundamental questions with respec-
tive cognitive deep learning, namely:

• Is there any correlation between human gaze
behaviour and attention patterns in neural net-
works?

• Is it really true that the emulation of human
attention is the reason behind the state-of-the-
art performance of neural networks?

The four major contributions of this paper can
be summarised as follows:

1. The authors have introduced a novel eye track-
ing data: MQA-RC, which involved 23 par-
ticipants reading movie plots and answering
some of the questions defined to assess the
understanding of the plot.

2. Measurement of human attention in terms of
the word-level gaze length captured in the eye
tracking dataset, which has been frequently
recommended in the literature on cognitive
science (Rouse and Morris, 1986) (Milosavl-
jevic and Cerf, 2008) (Lipton, 2018).
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3. A unique open-source visualisation tool for
qualitatively representing and visualising hu-
man attention and the differences between
neural attention vectors from human attention
(represented by gaze).

4. Using Kullback-Leibler (Kullback and
Leibler, 1951) divergence to analyse the
link between human attention and three
cutting-edge systems based on CNN (O’Shea
and Nash, 2015), LSTM (Hochreiter and
Schmidhuber, 1997), and XLNet (Yang et al.,
2019).

For extracting the human gaze attention, the x
and y coordinates of bounding boxes placed around
each word of the stimulus, token-level gaze counts
(frequency counts) for each eye movement were
obtained. Each gaze count is divided by the total
number of gazes in order to create a probability
distribution across the document from the raw gaze
counts. These token-level frequency counts, which
were collected using the hit testing approach, indi-
cate the duration of the user’s gaze. They show that
the more frequently a text token is looked at, the
more crucial it is for people to provide a response
(Just and Carpenter, 1980). In order to compare
the word attention at the document level, word-
level attention weights were extracted first and then
averaged across documents. The elements inside
the context were related since, for humans, the job
was to read the complete brief document before
answering the question in light of the entire con-
text. As a result, it was considered inaccurate to
focus solely on one sentence or one section of the
material while analysing attention. Moreover, the
authors explained that restricting the comparison to
attention allocation over specific words or merely
a portion of the papers is not cognitively feasible.

The CNN and LSTM models’ sentence-level
attention has very low entropy, which means that
practically all of the attention is given to one sen-
tence, and the attention weights for the remaining
sentences are very close to zero. This is a character-
istic of two-staged attention that XLNet lacks. In
order to compare neural attention to human visual
attention, the authors use word-level attention.
For each of the nine top models, token attention
weights were extracted during the assessment.
The neuronal attention weights are then ensembled.

By utilising the output of the final attention layer,
authors were able to extract the attention weights

from the nine top XLNet models. Each pairing
of the plot-answer candidates has token-level
weights. A vector of attention weights for each
individual token is included in a matrix of 1024
x 1024, which is the output of the final attention
layer. Moreover, the highest value in each word
vector was considered and normalised by the total
of the weights to make these weights equivalent to
human gaze attention (Htut et al., 2019).

Two different metrics were used for comparing
human attention distribution to neural attention
distribution:

• KL-Divergence (KL(P ||Q)) =∑
x P (x) log(P (x)

Q(x))

where P and Q are the probability distributions.

• Spearman Correlation (ρ) = 1− 6
∑

d2i
n(n2−1)

where di = R(Xi) − R(Yi) is the difference
between the two ranks of each observation, and n
is the number of observations.

The results demonstrated a statistically signif-
icant correlation between CNN and LSTM per-
formance and closeness to human visual attention
distributions. Interestingly, XLNets did not expe-
rience this. The attention values of the LSTMs
differed significantly from those of the XLNets as
well. The refined model gets the new SOTA on
the MovieQA benchmark dataset with 91% accu-
racy on the validation set, despite the fact that these
pre-trained Transformers are less close to human
visual attention. The KL divergence of LSTMs
as compared to XLNets showed a statistically sig-
nificant difference. LSTMs perform substantially
better than XLNets in terms of accuracy, despite
the fact that they are significantly more comparable
to human attention.

This finding implies that, despite the fact that
attempting to understand the “black box" by com-
paring it to human performance might be insightful,
it is not essential for all deep learning architecture
types to imitate human visual attention when com-
pleting a given job.

6.2 Incorporating fixation in language models
(Sood et al., 2020b) proposes a novel saliency-
based architecture for paraphrasing and sentence
compression. The main idea behind this approach
was to jointly model text saliency along with the
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required downstream task (sentence compression
and paraphrasing in this case) to leverage the hu-
man gaze for enhancing the attention layer of the
network.

The major bottleneck in such approaches is the
scarcity of human gaze datasets which are only ac-
cessible for a restricted subset of NLP tasks, and ex-
isting corpora of human gaze while reading have far
too few samples to be able to supervise contempo-
rary data-intensive systems effectively. The authors
highlight the benefits of adding gaze for strength-
ening text saliency prediction and its integration
with the task-specific model, which can alleviate
the critical issue of human gaze data scarcity.

There are two unique approaches to addressing
data scarcity. Initially, a unique hybrid text saliency
model (TSM) that combines a cognitive model of
reading behaviour with human gaze supervision
in a single machine learning framework was pre-
sented to address the issue of the lack of human
gaze samples for reading. More particularly, the au-
thors produce a large number of synthetic training
instances using the E-Z Reader model of attention
allocation while reading (Reichle et al., 1998).

These samples were utilised to pre-train a Trans-
former (Vaswani et al., 2017) and BiLSTM (Graves
and Schmidhuber, 2005) network, whose weights
were refined by training on just a tiny quantity
of human gaze data. Second, by including text
saliency model predictions into an attention layer,
a unique joint modelling technique of attention and
understanding that enables human gaze predictions
to be adaptably applied to various NLP tasks was
developed. The saliency predictions are tailored
to this downstream job without the requirement
for direct supervision using the actual gaze data
by jointly training the TSM and a task-specific net-
work.

The TSM was combined with two distinct NLP
task attention-based networks in a hybrid model
to represent the link between attention allocation
and text comprehension. In particular, a multiplica-
tive attention algorithm with a low computational
burden but great effectiveness was suggested as a
modification to the (Luong et al., 2015) Luong at-
tention layer. The attention scores are calculated
as:

ai = softmax(scoreT (hi, sj))

scoreParaGen(hi, sj) = u⊙ hTi Wasj

scoreTextComp(hi, sj) = u⊙ vTa tanh(Wa[hi; sj ])

It was demonstrated that these developments
significantly outperform the state of the art in
sentence compression and paraphrase creation,
respectively, while using a far simpler approach
than the earlier state of the art. It was also
shown that this method is successful in producing
task-specific attention predictions. Collectively,
these results demonstrate the validity and great
promise of merging cognitive and data-driven
models for NLP tasks, and maybe beyond, to
improve performance by successfully integrating
text saliency predictions into the task-specific
network (specifically the attention layer).

The authors also highlighted some of the major
applications of this approach by suggesting the
following:

• This method might be utilised in e-learning
apps to categorise reader behaviours and offer
feedback to promote growth in reading com-
prehension.

• Also, the potential for this method to be an
essential part of diagnostic tools to spot ab-
normal eye movements linked to cognitive
impairments like learning disorders was seen.

• This hybrid approach could also be helpful
for researchers creating computational models
of cognition, specifically aimed primarily to-
wards fusing conventional models of the cog-
nitive process with neural networks to create
a model that better replicates human cogni-
tive processes - potentially allowing for an
increase in parameters and task complexity
for further more robust models of human be-
haviour.

• This method may be helpful to machine learn-
ing researchers who want to develop artificial
systems that more accurately mimic human
behaviour and so perform more like humans
on currently difficult tasks requiring machine
comprehension.

7 Social Media Behaviour Tracking

Recent years have seen significant efforts towards
harnessing the potential of social media text to-
wards various natural language processing tasks,
which include but are not limited to personality
analysis (Sinha et al., 2015; Kerz et al., 2022),
personality detection (Jukić et al., 2022), mental
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Figure 7: High-level architecture of text saliency-based approach proposed by (Sood et al., 2020b)

disorder detection (Ji et al., 2022; Aragon et al.,
2023), etc. Social media has evolved into a widely
used and influential medium for self-expression,
allowing individuals to share thoughts, emotions,
opinions, and experiences in real time. This un-
filtered and spontaneous nature of communication
makes it a valuable resource for analysing linguis-
tic patterns that may reflect underlying cognitive
and emotional states. As a result, social media
text is increasingly being viewed as a proxy for
behavioural and psychological signals, enabling re-
searchers to build computational models that can
infer personality traits, detect early signs of men-
tal health conditions, and study broader patterns
of human interaction in digital environments. In
this work, we show the application of behavioural
signals implicitly present in social media texts for
mental disorders classification.

Mental disorder prediction from social media
has seen significant development in the last decade.
Early works transitioned from the use of low-level
handcrafted features like Linguistic Inquiry and
Word Count (LIWC) (Islam et al. (2018); Shrestha
and Spezzano (2019); Simms et al. (2017)) to
high semantic features like word or document em-
beddings (Friedenberg et al., 2016; Bandyopad-
hyay et al., 2019; Lin et al., 2017; Hemmatirad
et al., 2020). This was succeeded by representa-
tion learning-based approaches (Rao et al., 2020;
Wongkoblap et al., 2019; Gaur et al., 2021), which
operate on user-level prediction and eliminate the
need for explicit feature engineering.

Other works leverage longitudinal data to cap-

ture unique patterns of emotional transitions shown
by mental patients. These approaches use chunk-
ing to process m words (Trotzek et al., 2018; Uban
et al., 2021; Orabi et al., 2018) or n posts (Ragheb
et al., 2019; Mitchell et al., 2015) sequentially and
perform classification using majority voting. An
alternative method involves feature extraction by
concatenating all posts (Aguilera et al., 2021; Jamil,
2017) related to a specific subject. However, these
approaches fail to incorporate the temporal varia-
tions between the posts of a subject because of the
usage of chunking and majority voting.

A few studies closely align with our approach
to constructing temporal representations of social
media posts. Reece et al. (2017) was the first
to employ state-space temporal analysis for de-
pression detection, but a significant limitation was
their reliance on low-level features like total tweets
per user, average word count, and part-of-speech
counts. These features lack the semantic under-
standing that is responsible for the proper represen-
tation of the emotional aspect of human language.

De Choudhury et al. (2013) examined a user’s
tweets within a single day to derive various be-
havioural measures, including engagement, ego
network, emotion, linguistic style, depressive lan-
guage, and demographics. These measures are
obtained daily per user, allowing the construction
of time series data for each measure over the en-
tire year of Twitter activity. However, irregular or
sporadic tweeting patterns may hinder the accurate
capturing and analysis of behavioural changes over
time. Chen et al. (2020) created a time series rep-
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resentation of the mood profile using traditional
sentiment retrieval models. A significant limitation
of these approaches is their reliance on low-level
features, which do not provide a deeper semantic
understanding of the emotional aspects of human
language.

Yang et al. (2023a) trained MentalLLaMA,
the first open-source Large Language Model se-
ries for interpretable mental health analysis with
instruction-following capabilities. The aforemen-
tioned approach is generally known for its effec-
tiveness; nevertheless, it comes with a significant
cost associated with collecting a sufficiently large
corpus. Furthermore, experiments involving large
language models predominantly centre on mental
health prediction tasks, frequently overlooking the
crucial aspect of comprehending temporal fluctua-
tions in the textual content.

8 Behaviour Simulation using LLMs

There have been several attempts to simulate hu-
man behaviour (Kang et al., 2023; Wei et al., 2022;
Li et al., 2022; Pan et al., 2024; Yao et al., 2023)
and their cognitive abilities (Wu et al., 2023; Qiu
et al., 2024; Bortoletto et al., 2024) for tasks in
natural language processing.

Behaviour Simulation in the context of Large
Language Models (LLMs) is challenging primar-
ily due to the lack of the Theory of Mind (Chen
et al., 2024) and cognitive abilities (Huber and
Niklaus, 2025; Huang et al., 2024; Galatzer-Levy
et al., 2024; Goyal and Dan, 2025). In this con-
text, Chen et al. (2024) introduces a benchmark,
ToMBench, to understand the Theory of Mind ca-
pabilities of LLMs and highlights that even the
best models like GPT-4 (OpenAI, 2023) lag be-
hind human performance by over 10% points. Hu-
ber and Niklaus (2025) discusses the coverage of
Bloom’s taxonomy in the existing LLMs bench-
mark to identify the strengths and weaknesses of
LLMs in terms of cognitive abilities. This work
highlights the tendency of LLMS to only excel
at lower-level Bloom’s taxonomy. (Huang et al.,
2024) attempts to benchmark the cognitive reason-
ing abilities of LLMs by introducing a challenging
interdisciplinary benchmark for evaluating the cog-
nitive reasoning of AI models and shows their poor
performance in the given context. (Galatzer-Levy
et al., 2024; Goyal and Dan, 2025) showed the poor
performance of LLMs in the Perceptual Reason-
ing Index and in areas demanding compositional

generalisation and rule abstraction.

Zhou et al. (2024b); Asai et al. (2023) attempts
to simulate the meta-cognitive behaviour of hu-
mans for performing retrieval augmented genera-
tion. The metacognition module aims to perform
a self-reflection step that evaluates the available
reasoning process for the given task. This can be
understood parallel to introspection in the context
of humans, where a person examines all possible
strategies to come up with the most optimal plan
that could yield the results more efficiently and ac-
curately. The proposed methods show significant
gains in improving factuality and reasoning across
the tasks relative to the other baseline models.

Another class of simulation includes taking in-
spiration from working memory theory for design-
ing deep learning frameworks and architectures.
(Park and Bak, 2023; Wang et al., 2024; Chi et al.,
2023). The primary intuition behind these works is
to introduce a memory mechanism in the existing
architectures and framework to simplify the ease
of accessing and storing information necessary for
given tasks. More specifically, Park and Bak (2023)
introduces Memoria, which aims to solve long-term
information in the context of artificial neural net-
works. Wang et al. (2024) attempts to improve
the multi-step deductive reasoning by augmenting
LLMs with external working memory, which stores
information in both natural language and symbolic
form, essentially alleviating the challenges of rule
grounding in multi-step scenarios. Another attempt
made by Chi et al. (2023) to incorporate working
memory in a transformer architecture was to pro-
pose a working memory module to store, blend,
and retrieve information for different downstream
tasks, which improved the training efficiency and
generalisation in Atari games and Meta-World ob-
ject manipulation tasks.

It can be noted that the concept of working mem-
ory can also be used to understand the cognitive
load theory (Baddeley and Hitch, 1994) of humans.
This architecture can be used to assess the possibil-
ities of cognitive overload and help us simplify the
given tasks into simpler, manageable subtasks. Our
work aims to simulate the memory management
aspect of working memory architecture, where the
objective is to reduce cognitive load, which ulti-
mately leads to the simplification of the given task,
resulting in improved performance.
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9 Cognitive Load

In this section, we start by discussing the primary
motivation behind using gaze in the measurement
of cognitive load in natural language processing.
We first define cognitive load and various termi-
nologies related to the same. We discuss the cogni-
tive load theory afterwards, and then we mention
some of the methodologies used in cognitive load
measurement.

9.1 Motivation

Direct personal evaluation of complexity is very
subjective and vulnerable to prejudice. The amount
of time spent annotating can be affected by environ-
mental distractions, suggesting that the amount of
time spent annotating may not be highly associated
with the complexity of the activity (Mishra et al.,
2013). It should be emphasised that not all books
require the same degree of annotation work, irre-
spective of the annotator’s level of expertise. In this
circumstance, using cognitive qualities can be help-
ful (Joshi et al., 2014). An accurate assessment of
the difficulty during the annotation activity may be
made with the use of cognitive load measurement,
which can then help with resource management and
planning. This paradigm may also be used in edu-
cational settings when altering the cognitive load of
course material is necessary. This can help teach-
ers evaluate and clarify ideas they’ve explained to
pupils.

9.2 Cognitive Load Theory and Cognitive
Load Measurement

The goal of cognitive load theory is to create
teaching strategies that effectively make use of
people’s constrained cognitive processing capacity
to encourage their capacity to use newly learned
knowledge and skills in novel contexts (i.e., trans-
fer)(Sweller, 1994) (Sweller et al., 1998). Based on
a restricted working memory, somewhat indepen-
dent processing units for both auditory and visual
data, and relatively infinite long-term memory, CLT
is a cognitive architecture. The key tenet of CLT
is that developing instruction should take working
memory architectures and its constraints seriously.
Schema creation and automation are the most cru-
cial learning processes for fostering the capacity
to transmit learned information and abilities. Ac-
cording to CLT, cognitive schemas, which may be
highly automated, can chunk numerous pieces of
information into a single unit. Then, individuals

can go around working memory during mental pro-
cessing to overcome working memory’s constraints.
As a result, the creation and automation of schemas
are the primary objectives of instruction. But, infor-
mation must first be retrieved from working mem-
ory and modified before it can be kept in long-term
memory in a schematic form. The development of
creative teaching strategies that effectively utilise
the capacity for working memory has been the fo-
cus of studies within the cognitive load paradigm.
Since they demand less training time and mental
effort to achieve the same or higher learning and
transfer performance than standard instructional
tasks, CLT-based activities have been proven to be
more effective. According to (Paas et al., 2003),
measuring cognitive load has helped CLT succeed
and may be viewed as essential to the practice’s
further advancement.

The term “cognitive load" is frequently used to
refer to the stress that doing a certain job puts on
the brain. It may be conceptualised as having three
multi-dimensional constructs with the following
elements described as follows (Paas et al., 1994):

• Mental Load: The strain that a task or the de-
mands of the environment impose on a person
is referred to as “mental load." These needs
might be formed of task-intrinsic aspects like
element interaction, which are resistant to in-
structional changes, or task-extraneous ele-
ments connected to instructional design. The
component of a cognitive strain known as
mental load results from the combination of
task and subject variables. According to (Paas
et al., 1994) approach, the mental load may
be estimated using the task and subject vari-
ables that we now know. As a result, it gives
a hint as to the anticipated demands on cogni-
tive ability and may be viewed as an a priori
estimation of the cognitive load.

• Mental Effort: Mental effort may be thought
of as reflecting the real cognitive load since
it is the component of cognitive load that re-
lates towards the cognitive capacity which is
truly allocated to fulfil the requirements im-
posed by the task. Participants’ mental effort
is monitored while they complete a task.

• Performance: Performance, another facet of
cognitive load, may be described in terms of
learner accomplishments, such as the percent-
age of test items that were answered correctly,
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the number of errors made, and the amount
of time spent on the activity. It can be discov-
ered either during or after someone completes
a task.

(Paas et al., 1994) suggests that the level of ef-
fort put forth by students may be seen as essential
to obtain an accurate assessment of cognitive load.
It is thought that mental effort estimations might
provide significant information that isn’t always
represented in mental load and performance assess-
ments. For instance, instructional interventions to
alter the mental load won’t work unless people are
motivated and genuinely exert mental effort to learn
them. Also, it is entirely possible for two persons
to perform at similar levels; one person must labo-
riously go through a difficult procedure in order to
arrive at the right answers, whilst the other person
does it with little effort.

Three methods of gauging cognitive load are
suggested by (Paas et al., 1994). Here is a quick
description of these methods:

• Physiological techniques: These methods are
based on the idea that adjustments to physi-
ological variables reflect adjustments to cog-
nitive function. Monitoring eye (for instance,
pupillary dilation, blink rate, and other gaze-
related metrics), brain, and heart rate, as well
as heart rate variability, are some of these tech-
niques that include brain evoked potentials
like EEG etc. (Sweller et al., 1998).

• Subjective techniques: These approaches are
based on the notion that people are capable
of self-reflection and self-evaluation of their
mental work. These methods usually use rat-
ing scales to measure the capacity expenditure
or experienced effort (Hendy et al., 1993).

• Task and performance-based techniques:
These methodologies further comprise two
types of techniques: main task measurement,
which is based on how well subjects complete
the task, and the secondary task methodology,
which is decided on the basis of how well sub-
jects perform when two tasks are completed
concurrently. These methods analyse objec-
tive task criteria (such as the number of vari-
ables to be considered, and the recurrence of
if-then conditions in prepositional reasoning
tasks), as well as performance efficiency, to
collect data on mental effort. (Sweller et al.,
1998)

The difficulty of quantifying cognitive load is
demonstrated by the discovery that subjects can
increase the mental effort to compensate for a
rise in cognitive load (which might include an in-
crease in task complexity) while maintaining ef-
ficiency at a steady level. Because of this, task-
and performance-oriented metrics are unable to de-
duce the cognitive costs associated with a specific
performance level with any degree of accuracy. Al-
ternatively, assessments of mental effort can offer
vital information about cognitive load that’s not
necessarily reflected in measures of performance
and mental burden.

9.3 Role of gaze data for cognitive load
measurement

This section examines the relationship between
gaze-related characteristics and the assessment of
cognitive strain. Also mentioned below is the
model put forward by (Zagermann et al., 2016).

The placement of the gaze inside the display or
a specific Area of interest (AOI) serves as a gauge
for the level of attention. The length of the fixa-
tion period, which has been connected to the level
of cognitive activity, reflects a stronger strain on
working memory. According to (Chen et al., 2011),
fixation length and rate are indicators of an elevated
level of attention needed as a task becomes more
demanding. According to these findings, fixation
length might be a significant factor in determining
cognitive load.

(Chen et al., 2011) looked into the properties of
saccade duration and velocity to gauge the cogni-
tive load on people. Saccadic characteristics were
revealed to more closely connect with the cognitive
load than the other two measures. According to
the research mentioned above, decreased saccade
velocity indicates exhaustion, whereas higher sac-
cade velocity indicates a task that is more difficult.
Given the results of these investigations, it can be
formally stated that saccadic duration or saccadic
velocity can help determine how much cognitive
burden is present. The substantial link between
saccadic distance and saccadic speeds was taken
into consideration in the experiments conducted by
(Zagermann et al., 2016).

According to the results of the studies conducted
by (Hyönä et al., 1995), the ability of pupil dila-
tion to measure cognitive stress can be used. They
also observed a decrease in pupil diameter towards
the conclusion of the study, which they believed to
be a symptom of weariness, throughout their ex-
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Figure 8: Dimensions of Cognitive Load

periment. These studies led to the conclusion that
greater cognitive load situations can cause pupil
dilatation.

Therefore cognitive load L can be defined as:

L = λ1

n∑
1
dur(f) + λ2

∑
sϵS

dist(s) + λ3∆p

The fixation length is denoted by the variable
dur(f), the saccadic distance is denoted by the
variable dist(s), and the pupil diameter change
during annotation is denoted by the variable ∆p.
Here λ1, λ2, and λ3 are coefficients of the respec-
tive features.

In this section, we discuss some of the major
highlights of this study and provide a brief sum-
mary of the same. We conclude this study by dis-
cussing the conclusion and future direction for up-
coming research in cognitive natural language pro-
cessing.

10 Summary, Conclusion and Future
Directions

This work explores the integration of cognitive fea-
tures, particularly gaze, into natural language pro-
cessing (NLP) to improve model interpretability
and performance. It begins by framing language
classification through a cognitive lens and outlines
various language model architectures that motivate
the incorporation of human-like signals into NLP
systems. Central to this approach is the Eye-Mind
Hypothesis, which supports the use of gaze features

such as saccades, fixations, and pupil dilation in
NLP tasks. Key design principles for eye-tracking
experiments and a review of available gaze datasets
lay the groundwork for empirical research in this
area. The relationship between human and neu-
ral attention is then examined, with comparisons
between model attention weights and human fixa-
tion data. Techniques for incorporating gaze into
models—especially for saliency and task-specific
enhancements—are discussed, alongside the use
of gaze signals to objectively estimate cognitive
load. Despite advances in eye-tracking technology
and publicly available gaze datasets, challenges re-
main in scaling this data for real-time deep learning
applications due to processing limitations and la-
tency. Consequently, gaze prediction for specific
NLP tasks has become a critical research focus.
Transformer-based models and multi-task learning
approaches have shown promise in predicting gaze
features, performing competitively with traditional
cognitive models. These predicted gaze signals can
act as inductive biases, improving performance in
tasks requiring nuanced human reasoning. Further-
more, strategies like aligning model attention with
human gaze not only enhance transparency but also
lead to better outcomes, particularly on more com-
plex data. Finally, incorporating cognitive signals
such as gaze can support more objective modelling
in tasks prone to human bias, such as cognitive load
estimation, offering a promising future direction
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Figure 9: Gaze and Cognitive Load

for cognitively grounded NLP.

Future work in this area offers several promising
directions. While studies like (Sood et al., 2020a)
show improved model performance, they also re-
veal misalignment with human attention, partic-
ularly in models such as XLNet. This calls for
comparative studies across pre-trained models like
BERT to disentangle the effects of training data
and architectural design. Token-level saliency anal-
ysis can be deepened by integrating cognitive load
perspectives and more comprehensive evaluation
metrics. Although (Bensemann et al., 2022) links
human gaze with model attention, the potential of
using gaze as a direct replacement for attention re-
mains underexplored. The high cost of gaze data
collection, especially for scanpath prediction (Yang
and Hollenstein, 2023), is a major hurdle, and most
existing studies focus narrowly on fixation-based
features like FFD and TRT. Broader gaze features,
as well as applications in underrepresented lan-
guages like Indian languages, warrant further study.
Additionally, the detection of cognitive states such
as surprise through signals like pupil dilation re-
mains an open and valuable research direction.
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