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Abstract

In recent years, the development and deploy-
ment of large language models (LLMs) have
revolutionized the field of natural language
processing. However, these models are prone
to generating hallucinations, i.e., outputs that
are factually incorrect or inconsistent with the
given context. This survey paper provides a
comprehensive overview of hallucination de-
tection in machine-generated text. We clas-
sify hallucinations into intrinsic and extrinsic
types and further distinguish between factu-
ality and faithfulness hallucinations. We ex-
plore the origins of hallucinations, identify-
ing key phases such as training data, train-
ing phase, and inference. Various approaches
for detecting hallucinations are reviewed, in-
cluding fact overlap-based, entailment-based,
weakly supervised classifier-based, question-
answering based, retrieval-based, uncertainty-
based, prompting-based, and gaze-based meth-
ods. Additionally, we examine benchmarks
used for evaluating hallucination detection
methods, such as FACTOR, FreshQA, Med-
HALT, HaluEval, and FELM. The paper also
delves into human cognitive behavior and its
relevance to hallucination detection, highlight-
ing basic terminologies and experimental de-
signs in eye tracking. In conclusion, we discuss
future directions for research, emphasizing the
need for improved self-correction mechanisms,
understanding of knowledge boundaries, and
balancing creativity with truthfulness in LLM
outputs. This survey aims to provide a foun-
dation for further research and development in
the field of hallucination detection in LLMs.

1 Introduction

Hallucination detection in text refers to the task
of identifying and validating information that is
inaccurately or falsely represented within textual
content. Detection of hallucination involves ex-
amining the claims made in the text and assess-
ing their alignment with the surrounding context

and external knowledge. Addressing hallucinations
has become paramount, particularly in the context
of automatically generated text utilizing powerful
language models (LLMs), which often exhibit hu-
manlike fluency but are prone to hallucinatory out-
puts (Zhang et al., 2023a; Alkaissi and McFarlane,
2023). Natural Language Generation (NLG) has
made tremendous progress in neural text genera-
tion with the advent of large pre-trained language
models like BERT (Devlin et al., 2018) and the
GPT series (Radford et al., 2019; Brown et al.,
2020; OpenAI, 2023). Although text generation
using these models is fluent, it is often observed
that the generated text is divergent or unfaithful to
the source text (Kryściński et al., 2019a; Wiseman
et al., 2017; Dhingra et al., 2019). This problem of
generating contradicting or irrelevant text is termed
hallucination (Maynez et al., 2020b).

2 Motivation

Recent advancements in artificial intelligence, espe-
cially in large language models (LLMs) (Agrawal
et al., 2022; Radford et al., 2019), have revolution-
ized various fields, including healthcare and legal
domains (Singhal et al., 2023a; Bernsohn et al.,
2024; Wang et al., 2023b). These models, capable
of comprehending and generating human-like text
by learning from extensive text data, serve as valu-
able tools for medical professionals, legal experts,
researchers, and students (Singhal et al., 2023b;
Nguyen et al., 2024; Louis et al., 2024; Wiratunga
et al., 2024). However, despite their impressive
capabilities, LLMs face unique challenges such as
hallucination (Ji et al., 2023; Bang et al., 2023),
where they produce plausible yet incorrect or un-
verified information.

To address these challenges, it is essential to
develop methods to evaluate and mitigate halluci-
nations. Central to this effort is the creation of ro-
bust datasets specifically designed for hallucination
detection. These datasets can facilitate the identi-



fication and reduction of hallucinations in LLM
outputs, enhancing the reliability of these models
in high-stakes fields. Furthermore, improving the
transparency and interpretability of LLMs can help
users understand the limitations and potential inac-
curacies of the generated content. By improving
our ability to detect and mitigate hallucinations, we
can ensure that LLMs are safer and more reliable
tools in both medical and legal contexts, ultimately
protecting the welfare of individuals and the in-
tegrity of critical decision-making processes.

Moreover, the development of hallucination de-
tection techniques can drive advancements in the
broader field of NLP. It encourages the research
community to focus on building models that are
not only fluent and coherent but also factually ac-
curate and trustworthy. This shift in focus can lead
to the creation of more robust and reliable AI sys-
tems, capable of being deployed in a wider range
of applications with confidence. Addressing hal-
lucinations aligns with the ethical considerations
of AI development, ensuring that these powerful
technologies are used responsibly and beneficially
for society.

3 Background and Definitions

The term hallucination was inspired by psychology.
In the medical context, hallucinations refer to the
particular type of perception realized by an indi-
vidual without any external stimulus (Blom, 2010).
Hallucination, as a psychological term, refers to
an unreal perception that looks real on the surface.
In the same way, in NLG, the generated text may
contain information that might look correct but if
we verify the information present, it might contain
unfaithful or illogical text.

Various works use different categorizations of
hallucination in NLP tasks. In this survey, we will
see two types of categorizations.

Maynez et al. (2020a) first introduced the di-
vision of hallucination into intrinsic and extrin-
sic hallucination. Recently, a more fine-grained
categorization of hallucination was introduced by
Huang et al. (2023). They divide hallucinations
into two broad categories: Factuality Hallucina-
tions and Faithfulness Hallucinations. Factual-
ity hallucinations are further divided into two sub-
categories: Factual Inconsistency and Factual Fab-
rication. Faithfulness hallucinations are further
divided into three sub-categories: Instruction In-
consistency, Context Inconsistency and Logical In-

consistency. These two types of classifications are
discussed in detail in the following sections.

3.1 Types of Hallucination: Intrinsic and
Extrinsic

3.1.1 Intrinsic Hallucination

Intrinsic Hallucinations occur when the output gen-
erated by any NLG model contradicts the source
text. For example, in a machine translation task,
intrinsic hallucinations are defined as a span of the
word(s) in the generated sequence containing incor-
rect information but they might represent the same
entity type. Similarly, in the summarization task, if
the generated summary contradicts the given source
information or document, it is referred to as intrin-
sic hallucination.

3.1.2 Extrinsic Hallucination

Extrinsic Hallucinations occur when the output gen-
erated by any NLG model cannot be verified by the
source information. In other words, the generated
output neither contradicts nor is supported by the
source information. It is important to note that ex-
trinsic hallucinations are challenging to detect as
they are not implied by the source text or informa-
tion. one interesting identity of extrinsic halluci-
nations is that it does not always contain factually
incorrect data i.e. although the generated output
text might not be validated whether it is true or false
from the source information provided. But, the gen-
erated output can be factually correct considering
the external or world knowledge. But, identifying
extrinsic hallucination improves the consistency
with the reference text and further identifies the
content which is not required for the given specific
task or context. The example of extrinsic halluci-
nation in machine translation refers to the span of
words consisting of additional information which
can’t be inferred from the given input or source
text. In the context of the summarization task, ex-
trinsic hallucinations refer to the output text neither
supported nor contradicts by the given input article

The definitions of intrinsic and extrinsic slightly
vary depending on the task, for example in machine
translation intrinsic hallucination refers to the sub-
stitution of some other entity in place of the real
or true entity while in abstractive summarization
intrinsic hallucination refers to the contradiction
to the source text. For other NLP tasks, a few ex-
amples are shown in Figure 1 taken from Ji et al.
(2022).



Figure 1: Examples of Intrinsic and Extrinsic hallucinations for different NLG tasks

3.2 Types of Hallucination: Factuality and
Faithfulness

The concept of hallucination originates from the
fields of pathology and psychology, where it de-
notes the perception of an entity or event that
does not exist in reality (Macpherson and Platchias,
2013). In natural language processing (NLP), hallu-
cination describes a phenomenon where generated
content appears nonsensical or unfaithful to the
source material (Filippova, 2020; Maynez et al.,
2020a). This concept loosely mirrors the halluci-
nations observed in human psychology. Hallucina-
tions in natural language generation can generally
be divided into two main types: intrinsic and ex-
trinsic (Cao et al., 2021; Li et al., 2022; Ji et al.,
2023). Intrinsic hallucinations involve outputs that
contradict or conflict with the source content, while
extrinsic hallucinations involve outputs that cannot
be verified or supported by the source content.

In the era of large language models (LLMs), their
versatile capabilities have led to widespread appli-
cation across various fields, revealing limitations in
traditional task-specific categorization paradigms.
Since LLMs focus on user-centric interactions and

alignment with user directives, and their hallucina-
tions primarily occur at factual levels, a more de-
tailed taxonomy is proposed by Huang et al. (2023),
building on the foundational work of Ji et al. (2023).
Their refined taxonomy aims to capture the distinct
complexities associated with LLM hallucinations.
To illustrate their definition of LLM hallucination
more intuitively, examples for each type of hal-
lucination are provided in Table 1 and Table 2,
along with corresponding explanations. Figure 2
shows some intuitive examples of factuality and
faithfulness hallucinations (taken from Huang et al.
(2023)). The details of their proposed categories
are elaborated below:

3.2.1 Factuality Hallucination
Current LLMs sometimes generate outputs that are
either factually incorrect or potentially misleading,
which undermines the reliability of artificial intel-
ligence. These factual inaccuracies are referred
to as factuality hallucinations. Based on whether
the generated factual content can be corroborated
with a reliable source, these hallucinations can be
classified into two main types:

• Factual Inconsistency occurs when the out-



put of an LLM contains facts that, despite
being grounded in real-world information,
present contradictions. This type of halluci-
nation is the most common and stems from
various sources, including the LLM’s acquisi-
tion, storage, and expression of factual knowl-
edge. For instance, as illustrated in Table 1,
when asked about “the first person to land on
the Moon," the model incorrectly generated
“Yuri Gagarin" which contradicts the actual
historical fact.

• Factual Fabrication refers to cases where the
LLM produces facts that cannot be verified
against established real-world knowledge. For
example, as shown in Table 1, while “the ori-
gins of unicorns" lack empirical evidence, the
model invented a plausible historical origin
for unicorns.

3.2.2 Faithfulness Hallucination
As LLMs’ applications become more user-centric,
maintaining consistency with the instructions and
contextual information provided by users is crucial.
Additionally, the faithfulness of an LLM is evident
in the logical coherence of its generated content.
From this standpoint, three subtypes of faithfulness
hallucinations are proposed by Huang et al. (2023):

• Instructional inconsistency pertains to in-
stances where the outputs of an LLM diverge
from a user’s directive. As illustrated in Table
2, the user’s intent is translation; however, the
LLM erroneously veered from this instruction
and instead performed a question-answering
task.

• Context inconsistency arises when the output
of an LLM fails to adhere to the contextual in-
formation provided by the user. For instance,
as depicted in Table 2, although the user spec-
ified that the source of the Nile is in the Great
Lakes region of central Africa, the LLM’s re-
sponse contradicted this context.

• Logical inconsistency occurs when the out-
puts of an LLM exhibit internal logical con-
tradictions. For example, as demonstrated in
Table 2, while the reasoning step of dividing
both sides of the equation by 2 is accurate, the
final answer of x=4 contradicts the reasoning
chain, resulting in an incorrect outcome.

4 Origin of Hallucination

Language models can generate hallucinated or fab-
ricated content due to various factors stemming
from how they acquire knowledge and capabili-
ties. This section examines the underlying reasons
behind hallucinations in large language models,
broadly grouped into three main areas: the data
used for training, the training process itself, and
the inference or generation stage.

4.1 Hallucinations Originating from Training
Data

The pre-training data forms the foundation for large
language models, allowing them to develop general
capabilities and acquire factual knowledge (Zhou
et al., 2024). However, this training data can inad-
vertently become a source of hallucinated or fabri-
cated content generated by the model. This issue
primarily stems from two factors: potential pitfalls
arising from flawed data sources and suboptimal
utilization of the factual knowledge present in the
data.

Flawed Data Sources While increasing the
scale of pre-training data significantly enhances lan-
guage models’ competencies (Kaplan et al., 2020;
Hoffmann et al., 2022) , maintaining consistent
data quality remains a challenge, potentially intro-
ducing misinformation and biases (Bender et al.,
2021; Weidinger et al., 2021). Furthermore, the
absence of specific domain knowledge and up-to-
date facts in the training data can create knowledge
boundaries for the language model, limiting its per-
formance in certain scenarios.

Inferior Data Utilization The pre-training data
contains a rich repository of real-world factual in-
formation, allowing large language models to ab-
sorb and encode a vast amount of factual knowl-
edge within their parameters (Petroni et al., 2019;
Jiang et al., 2020; Roberts et al., 2020). However,
despite possessing this extensive knowledge base,
language models can still generate hallucinations
containing factual inaccuracies due to suboptimal
utilization and integration of the parametric knowl-
edge they have acquired.

4.2 Hallucination Originating in Training
Phase

The pre-training stage lays the foundation for
large language models, typically employing a
transformer-based architecture to perform causal
language modeling on vast text corpora. How-



Figure 2: Intuitive examples of factuality and faithfulness hallucinations.

Hallucination Type Sub-Type User Input Model Output Explanation

Factuality Hallucination Factual In-
consistency

Tell me about
the first person
to land on the
Moon.

Yuri Gagarin was
the first person to
land on the Moon.

The LLM’s response is fac-
tual inconsistency as Neil
Armstrong was the first per-
son to land on the Moon,
not Yuri Gagarin, who was
the first human in space.

Factual Fab-
rication

Tell me about
the historical
origins of
unicorns.

Unicorns were doc-
umented to have
roamed the plains
of Atlantis around
10,000 BC, where
they were consid-
ered sacred crea-
tures and were often
associated with roy-
alty.

The LLM’s response is
a fabricated claim since
there’s no verified, real-
world evidence supporting
the existence of unicorns in
Atlantis, especially in con-
nection with royalty.

Table 1: Examples of Faithfulness Hallucinations. Content marked in Red represents the hallucinatory output, while
content marked in Blue indicates user instruction or provided context that contradicts the LLM hallucination. These
examples are taken from Huang et al. (2023)

ever, certain aspects of the architectural design
and training strategies employed during this stage
can potentially lead to hallucinated outputs. Most
large language models adopt a transformer-based
architecture following the paradigm established by
GPT (Radford et al., 2018; Brown et al., 2020),
where they learn representations through a causal
language modeling objective. This approach is ex-
emplified by models such as OPT (Zhang et al.,
2022), Falcon (Penedo et al., 2023), and Llama-2
(Touvron et al., 2023). Despite its success, this
unidirectional modeling approach has certain draw-
backs, primarily related to Inadequate Unidirec-
tional Representation and Attention Mechanisms.
The unidirectional nature of this modeling, while
facilitating efficient training, also presents limita-
tions. By exclusively utilizing context from a sin-
gle direction, it may hinder the model’s ability to

capture intricate contextual dependencies, poten-
tially increasing the risk of generating hallucinated
content (Li et al., 2023b). Recent research (Liu
et al., 2024) has demonstrated that these models
can occasionally exhibit unpredictable reasoning
errors in the context of algorithmic reasoning tasks,
spanning both long-range and short-range depen-
dencies, regardless of model scale. A potential
contributing factor is the limitations of soft atten-
tion mechanisms (Hahn, 2020; Chiang and Cholak,
2022), where attention may become diluted across
positions as sequence length increases.

4.3 Hallucination Originating from Inference

The decoding process is crucial to get the full po-
tential of large language models after they have un-
dergone pre-training. However, certain limitations
or flaws within the employed decoding strategies



Hallucination Type Sub-Type User Input Model Output Explanation

Faithfulness Hallucination
Instruction
Inconsis-
tency

Translate the
following English
question into Span-
ish: "What is the
capital of France?"

The capital of
France is Paris.

The user explicitly pro-
vided an instruction to
translate the English ques-
tion into Spanish. Instead
of performing the transla-
tion as instructed, the LLM
chose to answer the ques-
tion.

Context In-
consistency

Summarize the fol-
lowing paragraph
about the Nile:
The Nile is a major
north-flowing
river in north-
eastern Africa.
It’s traditionally
considered the
longest river in the
world. Originating
in the Great Lakes
region of central
Africa, it flows
through several
countries before
emptying into the
Mediterranean
Sea.

The Nile originates
from the mountain
ranges of central
Africa and flows
into the Mediter-
ranean.

The LLM’s summary in-
correctly states that the
Nile originates from the
"mountain ranges of cen-
tral Africa," while the para-
graph clearly mentions that
the Nile originates in the
Great Lakes region of cen-
tral Africa.

Logical In-
consistency

Solve the equation
2x + 3 = 11 step by
step.

Step 1: Subtract 3
from both sides to
get: 2x = 8. Step
2: Divide both sides
by 2 to get: x = 3.
So the result of the
equation is x=3.

The first step correctly iso-
lates the term with x to get
2x = 8. However, the next
step inaccurately divides 8
by 2 to yield a result of x
= 3, which is inconsistent
with the earlier reasoning.

Table 2: Examples of Faithfulness Hallucinations. Content marked in Red represents the hallucinatory output, while
content marked in Blue indicates user instruction or provided context that contradicts the LLM hallucination. These
examples are taken from Huang et al. (2023).

can result in the models generating hallucinated or
fabricated content that deviates from factual infor-
mation.

Currently, large language models predominantly
use stochastic sampling (Fan et al., 2018; Holtzman
et al., 2019) as their decoding strategy. The moti-
vation behind introducing randomness into these
decoding strategies arises from the observation that
sequences with high likelihood often result in sur-
prisingly low-quality text, a phenomenon known
as the likelihood trap (Stahlberg et al., 2022; Holtz-
man et al., 2019; Meister et al., 2020; Zhang et al.,
2023b). However, the diversity gained from this
randomness in decoding comes at a cost, as it is
positively correlated with an increased risk of hallu-
cinations (fabricated or nonsensical content) in the
generated text (Dziri et al., 2021a; Chuang et al.,
2023).

5 Approaches for Hallucination Detection

The ability to identify hallucinations or fabricated
content generated by large language models is es-
sential for ensuring the reliability and trustworthi-
ness of their outputs. Following sections discuss
various approaches to hallucination detection

5.1 Fact Overlap-based Approaches
Ensuring LLMs are faithful in providing context or
user directives is crucial for practical use in various
applications such as summarization and interactive
dialogue systems. Detection of faithfulness halluci-
nation primarily focuses on aligning the generated
content with the given context to avoid extraneous
or contradictory output. When evaluating faithful-
ness, a common method involves measuring the
overlap of key facts between the generated and
source content. Metrics can be categorized based
on entities, relation triples, and knowledge (Lin,
2004; Wang et al., 2020b; Maynez et al., 2020a).



Figure 3: The illustration of detection methods for faithfulness hallucinations: a) Fact-based Metrics, which assesses
faithfulness by measuring the overlap of facts between the generated content and the source content; b) Classifier-
based Metrics, utilizing trained classifiers to distinguish the level of entailment between the generated content
and the source content; c) QA-based Metrics, employing question-answering systems to validate the consistency
of information between the source content and the generated content; d) Uncertainty Estimation, which assesses
faithfulness by measuring the model’s confidence in its generated outputs; e) Prompting-based Metrics, wherein
LLMs are induced to serve as evaluators, assessing the faithfulness of generated content through specific prompting
strategies.

N-gram based: Evaluation metrics like ROUGE
(Lin, 2004) and PARENT-T (Wang et al., 2020b)
can assess faithfulness by treating the source con-
tent as the reference. However, these metrics show
poor correlation with humans due to language
diversity and reliance on surface-level matching
(Maynez et al., 2020a).

Entity-based: Metrics that focus on entity over-
lap are commonly used in summarization tasks to
ensure accurate summaries. A metric introduced
by (Nan et al., 2021) quantifies entity hallucination
by measuring the precision of named-entities in the
summary against the source entities.

Relation-based: (Goodrich et al., 2019) focus
on the overlap of relation tuples and introduce a
metric that calculates the overlap of relation tuples
extracted using trained end-to-end fact extraction
models.

Knowledge-based: The Knowledge F1 metric
introduced by (Shuster et al., 2021) assesses how
well the model’s generation aligns with the pro-
vided knowledge in knowledge-grounded dialogue

tasks.

5.2 Entailment-based Approaches
Using Natural Language Inference (NLI) to assess
text trustworthiness is a prevalent concept. Stud-
ies (Falke et al., 2019; Maynez et al., 2020a) have
used NLI datasets to spot inaccuracies, particularly
in abstract summarization. However, Mishra et al.
(2021) noted limitations in detecting inconsisten-
cies due to input granularity discrepancies. Ad-
vanced studies suggest methods like fine-tuning on
adversarial datasets (Barrantes et al., 2020), break-
ing down entailment decisions at the dependency
arc level (Goyal and Durrett, 2020), and segment-
ing documents into sentence units for improved
accuracy in hallucination detection.

5.3 Weakly Supervised Classifier-based
Approaches

Leveraging data from related tasks to fine-tune
classifiers has potential but acknowledges gaps
between tasks. Addressing this, Kryściński et al.
(2019b) introduced rule-based transformations to



create weakly supervised data for refining clas-
sifiers. Zhou et al. (2020) developed a method
for token-level hallucination detection. Dziri et al.
(2021b) created adversarial synthetic data, while
Santhanam et al. (2021) focused on factual consis-
tency in dialogue tasks.

5.4 Question-Answering Based Approaches
Metrics based on Question-Answering are gain-
ing attention for capturing information overlap be-
tween a model’s output and source. These metrics
select target answers and generate questions to as-
sess reliability. Implementations include (Durmus
et al., 2020; Wang et al., 2020a; Scialom et al.,
2021; Honovich et al., 2021), showing varied per-
formance outcomes.

5.5 Retrieval-based Approaches
One strategy to detect factual inaccuracies in LLM
outputs is to compare the generated content against
reliable knowledge sources, aligning with fact-
checking workflows. However, traditional fact-
checking methods often make simplifying assump-
tions, leading to limitations in complex real-world
scenarios. Recent approaches address this by in-
corporating components like claim decomposition,
uncurated web evidence retrieval, claim-focused
summarization, and veracity classification (Chen
et al., 2023). Techniques also aim to resolve con-
flicting evidence (Galitsky, 2023) and compute fine-
grained factual scores for long-form generations by
decomposing them into atomic facts and checking
against knowledge sources (Min et al., 2023).

5.6 Uncertainty-based Approaches
Several approaches aim to detect hallucinations
without relying on external knowledge sources, op-
erating in zero-resource settings. These methods
are based on the premise that hallucinations stem
from the model’s uncertainty. By estimating the
uncertainty of the factual content generated, it be-
comes possible to identify hallucinations without
the need for evidence retrieval. The internal states
of large language models can indicate their uncer-
tainty, manifested through metrics like token prob-
ability or entropy. Varshney et al. (2023) determine
model uncertainty for key concepts by consider-
ing the minimum token probability within those
concepts, where lower probabilities signal higher
uncertainty. Luo et al. (2023a) propose a self-
evaluation approach, grounding on the idea that
a model’s ability to reconstruct a concept from its

own explanation reflects its proficiency with that
concept, thus indicating uncertainty.

When systems can only be accessed through
API calls, access to the output’s detailed prob-
ability distribution may be limited. To address
this, recent studies have focused on exploring a
model’s uncertainty using methods such as natural
language prompts or analyzing its behavior. For
example, Manakul et al. (2023) identified hallucina-
tions in a language model by evaluating consistency
among responses to the same prompt. Agrawal
et al. (2023) suggest using indirect queries, which
ask open-ended questions to gather specific infor-
mation, unlike direct queries that explicitly seek
verification. Another approach involves assessing
uncertainty by comparing multiple generations of
language models. Cohen et al. (2023) proposed
the LMvLM method, where one language model
questions another to uncover inconsistencies dur-
ing interactive sessions, inspired by legal cross-
examination practices.

Hallucinations in conditional text generation are
linked to high model uncertainty. Uncertainty esti-
mation, explored in Bayesian deep learning (Blun-
dell et al., 2015; Gal and Ghahramani, 2016; Lak-
shminarayanan et al., 2017) determines predictive
entropy for overall uncertainty. Some studies (Ma-
linin and Gales, 2020) quantify model uncertainty
using log probability.

5.7 Prompting-based Approaches

The exceptional ability of LLMs to follow instruc-
tions has recently highlighted their potential for
automated assessment (Chiang and Lee, 2023; Liu
et al., 2023; Wang et al., 2023a). Leveraging this ca-
pability, researchers have explored new approaches
to evaluating the accuracy of content generated by
models (Luo et al., 2023b; Laban et al., 2023; Ad-
lakha et al., 2023; Gao et al., 2023; Jain et al., 2023).
By providing clear evaluation guidelines to LLMs
and supplying them with both the model-generated
and original content, they can effectively evaluate
accuracy. The resulting evaluation can be a binary
determination of accuracy (Luo et al., 2023b) or a
Likert scale with k-points indicating the level of
accuracy (Gao et al., 2023). For prompt selection,
evaluation prompts can involve direct prompting,
chain-of-thought prompting (Adlakha et al., 2023),
in-context learning (Jain et al., 2023), or allowing
the model to produce evaluation results along with
explanations (Laban et al., 2023).



Figure 4: An example of detecting factuality hallucination by retrieving external facts.

5.8 Gaze-based Approaches

In recent years, various attempts have been made
to investigate the correlation of human attention
with the machine attention of a pre-trained large
language model (Eberle et al. (2022), Sood et al.
(2020a), Bensemann et al. (2022)). Eberle et al.
(2022) highlighted the inability of cognitive mod-
els to account for the higher level cognitive activi-
ties like semantic role matching, hence motivating
the use of large language models (LLMs) for mod-
elling the human gaze. Hollenstein et al. (2021)
showed the efficacy of LLMs in predicting the gaze
features for multiple languages, including English,
Russian, Dutch and German. Barrett et al. (2018)
used natural reading eye-tracking corpus for regu-
larizing attention function in a multi-task setting.
Sood et al. (2020b) investigates the integration of
the gaze-based text saliency model with vanilla
transformers (Vaswani et al., 2017) for directly
incorporating gaze predictions into the attention
mechanisms for paraphrase detection and sentence
compression tasks.

6 Hallucination Detection Benchmarks

6.1 FACTOR

Muhlgay et al. (2023) introduced a method to quan-
titatively evaluate the factuality of language mod-
els (LMs) by generating benchmarks through per-
turbing factual statements from a specified corpus.
This approach led to the creation of two bench-

marks called Wiki-FACTOR and News-FACTOR.
The process involved using prompts with specific
error types to guide InstructGPT in generating non-
factual completions based on a given prefix text.
The resulting responses were then filtered for flu-
ency and self-consistency to form the basis for
multi-choice tasks. The evaluation of an LM’s
factuality was based on whether the model was
more likely to produce factually correct comple-
tions compared to non-factual ones.

6.2 FreshQA

Vu et al. (2023) introduced FreshQA as a bench-
mark to assess the factuality of existing large lan-
guage models (LLMs) by focusing on potential
hallucinations stemming from outdated knowledge.
This benchmark consisted of 600 manually created
questions with answers that could change over time
or contain factually incorrect premises. It primarily
evaluated LLMs on their ability to handle rapidly
changing information and identify questions with
false premises. The evaluation process included
two modes: RELAXED, which assessed the cor-
rectness of the primary answer, and STRICT, which
further evaluated the accuracy of all facts within the
answer. The factuality of LLMs was judged based
on the accuracy of their responses as determined
by human annotations.



6.3 Med-HALT

Med-HALT, developed by Umapathi et al. (2023),
focuses on the challenges faced by large language
models (LLMs) in the medical field, particularly in
relation to hallucinations. This benchmark assesses
LLMs’ reasoning and memory skills in a medical
context through multiple-choice questions sourced
from various countries. The reasoning task, con-
sisting of 18,866 samples, evaluates LLMs’ abil-
ity to discern incorrect or irrelevant options and
fake questions in medical multiple-choice ques-
tions. The memory task, comprising 4,916 samples,
assesses LLMs’ capacity to recall and accurately
generate factual information by linking PubMed
abstracts/titles or producing titles from given links
and PMIDs. LLM performance is evaluated based
on their accuracy in answering test questions or
a Pointwise Score that considers both correct an-
swers and penalties for incorrect responses.

6.4 HaluEval

HaluEval, introduced by Li et al. (2023a), aims to
evaluate LLMs’ ability to recognize hallucinations.
This benchmark was created using a combination
of automated generation and human annotation, re-
sulting in 5,000 general user queries paired with
ChatGPT responses and 30,000 task-specific sam-
ples. The automated generation process utilizes a
"sampling-then-filtering" approach, drawing from
various datasets to sample hallucinated answers and
selecting the most plausible ones. Human annota-
tion involves processing Alpaca-sourced queries
with ChatGPT to assess the presence of halluci-
nated content in multiple responses.

6.5 FELM

FELM, developed by Zhao et al. (2024), dif-
fers from previous studies by evaluating factuality
across five domains: world knowledge, science and
technology, mathematics, writing and recommen-
dation, and reasoning. Unlike prior research that
induced hallucinations based on specific patterns,
this benchmark employs ChatGPT to generate re-
sponses in a zero-shot setting, resulting in 817 sam-
ples (3948 segments). Each segment is annotated
for factuality, error reasons, error type, and exter-
nal references. Serving as a platform for factuality
detectors, the benchmark uses the F1 score and
balanced classification accuracy to assess factual
errors at both the segment and response levels.

7 Human Cognitive Behaviour and
Hallucination

7.1 Basic Terminologies

Reichle et al. (2003) describes various connections
of the annotator’s gaze behaviour to the reading pat-
terns. We briefly explain three major gaze features
and their usage in the context of natural language
processing tasks in this section.

7.1.1 Saccades
Contrary to popular belief, reading doesn’t really
entail the eyes naturally gliding out across text. In-
stead, saccades—rapid, brief movements—of the
eyes are made. Although there are rare exceptions,
saccades typically advance the gaze 6 to 9 character
spans. Saccades may take 20–50 milliseconds to
accomplish, depending on how lengthy the move-
ment is.

In the process of saccadic motion, no informa-
tion is collected. Saccadic suppression is the term
used to describe this phenomenon of decreased sus-
ceptibility to visual stimuli (Matin, 1974). This is
due to the fact that throughout a saccade, the eyes
move so quickly across the stationary visual stimuli
that we only see a blur and not new information
(Rayner, 1998).

7.1.2 Fixation
Martinez-Conde et al. (2004) defines fixation as
the firm focus of gaze on text. It should be ob-
served that even when the sight is fixed, the eyes
are constantly moving. Though their magnitude
should make them evident to us, we are unaware of
such eye movements. If fixational eye movements
are blocked for whatever reason—including brain
adaptation—our visual perception may completely
vanish.

The visual data can only be extracted from the
words during fixations. Due to this, normal reading
is frequently compared to the viewing of a slide
show, when only a few sentences of text are dis-
played for roughly a second at a time. It’s intrigu-
ing to note that, like saccade length, the time of the
fixation can vary greatly. Fixation typically lasts
between 200 and 250 ms (Reichle et al., 2003).

Word length and indeed the amount of space
around them appear to have a big impact on where
readers decide to focus their attention next in the



Figure 5: Saccadic Movements

document (Reichle et al., 2003). The preceding
hypothesis is supported by a number of further in-
vestigations. Rayner (1979) describes the effects of
the size of a phrase that also is fixated on the length
of saccades. McConkie et al. (1988) investigates
the variations in word length-dependent word fixa-
tion patterns in readers. Ehrlich and Rayner (1981)
explores these patterns. Despite the fact that pre-
dicted word is skipped more frequently than unpre-
dictable ones, contextual limitations have minimal
effect on the location where a subject’s eyes land
inside a word.

7.1.3 Pupil Dilation
The phenomenon of pupil enlargement is called
pupil dilation. The diameter of the retina’s pupil
is sensitive to a variety of cognitive functions.
Zénon (2019) enlists the possible cognitive sce-
narios which can directly or indirectly affect pupil
diameter which include the following:

1. Mental effort

2. Surprise

3. Emotion

4. Decision Processes

5. Decision Biases

6. Value beliefs

7. Volatility

8. Exploitation Exploration trade-off

9. Attention

10. Uncertainty (Expected and Unexpected)

Based on substantial evidence, (Zénon, 2019)
suggests that the updating of internal models in
the brain is the fundamental information-theoretic
mechanism that underlies the collection of experi-
ences that cause changes in pupil-linked arousal.
When a stimulus is presented, the pupillary reaction
is proportional to how much information that stim-
ulus contains about it and how much information
it offers about other task factors. (Zénon, 2019)
tries to define all the above cognitive processes in
terms of information gain and reports the similari-
ties between pupillary responses and information
gain using KL (Kullback–Leibler) divergence.
(Hess and Polt, 1960)) first documented the well-
known reversible relationship between emotions
and pupil dilation, finding that when individu-
als looked at painful photos, their pupils shrank,
whereas when they glanced at pleasant pictures,
their pupils grew.

(Bradley et al., 2008) found that there is a sub-
stantial correlation between skin conductance with
dilated pupils, suggesting that there could be a sep-
arate mechanism behind emotion regulation that
primarily involves autonomic modulation of both
the dilation muscles. (Bradley et al., 2008) work
significantly support the notion that pupillary mod-
ifications during picture gazing are transmitted by
sympathetic stimulation activity and that pupil di-
latates are dictated by emotional response regard-
less of whether images are pleasant or unpleasant.
According to (Hyönä et al., 1995), the difference in
the cognitive effort can also be assessed by the vari-



Figure 6: Fixation Points

ation in pupil dilation’s magnitude. Besides two
significant experiments, the relevance of pupillary
response in assessing cognitive function was fully
investigated. The first experiment compared the
average pupil size’s response to simultaneous in-
terpretation to the global cognitive stress of seeing
and repeating a text that had been presented orally.

7.2 General Eye Tracking Experiment Design
This section describes a general eye-tracking ex-
periment as described by (Conklin and Pellicer-
Sánchez, 2016):

1. Examine the attributes of the eye-tracking
device: There are several kinds of eye track-
ers, each with a unique set of parameters that
make them more or less suitable for studying
various linguistic phenomena. A system must
be able to supply the information required
to respond to research inquiries. In general,
greater sampling rates, monocular recording
(rather than binocular), head-supported sys-
tems, and/or the use of chin rests result in
superior accuracy and resolution. Neverthe-
less, imprecision is typically not an issue with
eye trackers that run at 200Hz. The majority
of reading research employs eye trackers with
frequencies ranging from 500Hz to 1,000Hz.
While devices with lower sample rates can be
utilised for reading, the quantity of informa-
tion required to compensate for that sampling
frequency’s added imprecision is unfeasible.

2. Familiarity with the process by which the
eye-tracker and related software operate:
It’s crucial to be able to calibrate an eye-
tracker correctly in order to get reliable data.

Data that is not exact will be produced by poor
calibration. A nine-point calibration is often
performed at the start of an experiment, at
extra predetermined times in longer investiga-
tions, and so when eye-drifting was present.
To ensure that data is being outputted cor-
rectly, it is crucial to perform an experiment
at least once before the final run.

3. Choosing the appropriate stimuli: Critical
stimuli must be accurately matched for fac-
tors including lexical ambiguity, grammati-
cal structure, word class, length, frequency,
predictability, and orthographic uniformity
because it has been demonstrated that these
factors affect fixation duration. Studies fre-
quently benefit from a control scenario or stim-
uli that serve as a benchmark. The experimen-
tal stimulus and the control stimulus need to
be somewhat similar. In order to prevent ef-
fects from being driven by diverse contexts,
critical stimuli should emerge in situations
that are the same or as comparable as feasible.

Examples of appropriate stimuli are those
with the same amount of words, within
identical syntactic frames, and equal for
bias/predictability. Also, if there is a potential
that spillover effects may occur, the region im-
mediately after the crucial stimulus ought to
match exactly or be the same. Because read-
ing speed often declines as a reader moves
through a book and because words near the
end of a sentence and phrases at the conclu-
sion of passages are read more slowly, critical
stimulus should be supplied in comparable lo-
cations. For instance: New Courier, where



Figure 7: Pupil Dilation

each letter requires a similar amount of hori-
zontal space.

Eye trackers are also less reliable in detect-
ing vertical eye movements. Double-spacing
should be used to simplify the process to tell
what line of the document is now being read.

Last but not least, when showing larger texts
that span numerous displays, the screens must
have comparable durations and each stimulus
should occur in comparable places.

4. Regulating non-linguistic visual stimuli:
While presenting visuals, there are several as-
pects that must be under control. It is crucial
to equalize the placement of things on a screen
since we typically scan visuals from left to
right (for language whose writing is from left
to right). If condition y always shows on the
left side of the screen and condition x always
appears on the right, for instance, condition y
would probably always be fixed first—not due
to the experimental manipulation, but rather
due to its location on the screen. The visuals
should also be coordinated for size & salience
because it has been discovered that these fac-
tors affect gazing patterns.

5. Take the limitations of eye tracking into
account: Although eye-tracking has indeed
been acclaimed as enabling "natural" reading,
it does not necessarily mean that we can basi-
cally give participants "real" material (like a
newspaper story, TOEFL/IELTS reading pas-
sage, etc.) and make conclusions directly from
various reading time is long for specific words
or sentences. It is essential to remember that
the readings record may be affected by such
factors if experimental material were not thor-
oughly regulated and prepared, in accordance
with the procedures described above. This
will cast doubt on any inferences that are taken
from the data.

7.3 Hallucination Detection using Gaze
Features

Many existing methods for hallucination detection
depend on knowledge sources that are explicit such
as Wikipedia or knowledge graphs (Manakul et al.,
2023; Santhanam et al., 2021; Dziri et al., 2021a; Ji
et al., 2023) or ingrained in language encoders such
as BERT or RoBERTa (Shen et al., 2023; Zhou
et al., 2020). While these traditional approaches
can reasonably detect hallucinations in a text when



supplemented with knowledge sources, they face
sustainability challenges due to the constant need
for up-to-date knowledge. Obtaining the latest in-
formation for hallucination detectors is often im-
practical, as it requires readily available and current
sources of knowledge. To address this issue, Ma-
haraj et al. (2023) propose an alternative approach
that leverages cognitive and behavioural informa-
tion from humans in the form of gaze patterns while
they analyze text for potential hallucinations.

The work of Maharaj et al. (2023) is motivated
by the notion that humans, while reading text for
hallucination identification would naturally em-
ploy their cognitive faculties to navigate the intri-
cate relationship between language and real-world
knowledge. Linguistically, this involves scrutiniz-
ing whether (a) entities in the text are adequately
placed (e.g., is Canada a right choice of entity) (b)
the semantic roles played by the entities are valid
w.r.t the context (e.g, Pluto is a planet). This criti-
cal examination would often manifest as prolonged
fixations on specific sections of text (e.g., longer
fixations on entities and phrases such as Canada,
Pluto and a planet) that require closer evaluation,
resulting in denser and more extensive fixation ac-
tivities. In essence, fixations may serve as invalu-
able indicators, acting as a reliable surrogate for
knowledge-based validation of contextual informa-
tion pertaining to potential hallucinations. This
may open up possibilities for the development of a
hallucination detector that can leverage gaze data
as a primary input, alleviating the reliance on sup-
plementary external knowledge.

To validate this, they first collect a first-of-its-
kind eye-tracking data of 5 annotators annotating
500 instances of claim-context pairs, carefully de-
rived from the FactCC dataset (Kryscinski et al.,
2020). The annotators were asked to verify whether
the claim is consistent with respect to the context or
not. During the annotation process, Maharaj et al.
(2023) capture the fixation patterns of annotators
on both the claim and context texts, along with
their corresponding labels. Behavioural analysis
of the annotated data reveals a recurrent pattern
where annotators tend to skim through somewhat
irrelevant context while selectively focusing on in-
formation crucial for establishing or refuting hal-
lucinations. Building upon insights gained from
this behavioural analysis, they term this selective
reading phenomenon as "attention bias". Further-
more, their observations indicate that attention bias

can manifest as either a "global" approach, involv-
ing the extraction of sentences containing relevant
information about hallucinations, or a "local" ap-
proach, focusing on specific phrases within sen-
tences to evaluate the alignment of semantic roles
between the claim and the selected phrases.

Building upon these insights, they also propose
a modular architecture that incorporates global and
local attention bias using transformer-based deep
learning techniques Vaswani et al. (2017) and a
gaze-based attention saliency module Sood et al.
(2020b). Experimental evaluations on the FactCC
dataset demonstrate the efficacy of this approach,
outperforming baseline models while attaining bet-
ter interpretability.

8 Future Directions

As research into the phenomenon of hallucination
in large language models (LLMs) advances, several
pivotal questions warrant sustained exploration and
discussion. One critical area of investigation is the
efficacy of LLMs’ self-correction mechanisms in
mitigating hallucinations. Future research should
focus on developing and rigorously testing these
mechanisms to enhance their ability to identify and
correct inaccuracies in real-time, thus improving
the overall reliability of generated content.

Another essential avenue for future research is
the understanding of knowledge boundaries within
LLMs. It is crucial to delineate the limits of what
these models know and identify the thresholds at
which they are likely to produce hallucinatory infor-
mation. By mapping these boundaries, researchers
can better predict and prevent instances of hallu-
cination, thereby enhancing the practical utility of
LLMs in various applications.

Moreover, striking a balance between creativity
and truthfulness in LLM outputs remains an open
question. While creativity is a valuable attribute
that enables LLMs to generate engaging and novel
content, it must be tempered with accuracy to avoid
the dissemination of false or misleading informa-
tion. Future studies should investigate methods to
fine-tune this balance, ensuring that LLMs main-
tain their creative potential without compromising
factual integrity.

Addressing these questions not only contributes
to a deeper understanding of the capabilities and
limitations of LLMs but also provides critical in-
sights into the complex nature of hallucinations
in machine-generated text. By delving into these



future directions, researchers can pave the way for
the development of more robust, accurate, and trust-
worthy LLMs.

9 Summary & Conclusion

This survey has examined the critical challenge
of hallucination detection in large language mod-
els (LLMs). We categorized hallucinations into
intrinsic and extrinsic types, and further into fac-
tuality and faithfulness hallucinations, providing
a framework for targeted detection and mitiga-
tion. We explored the origins of hallucinations
from training data, training phase, and inference,
and reviewed diverse detection methodologies
including fact overlap-based, entailment-based,
classifier-based, question-answering, retrieval-
based, uncertainty-based, prompting-based, and
gaze-based approaches. Additionally, we discussed
key benchmarks like FACTOR, FreshQA, Med-
HALT, HaluEval, and FELM for performance eval-
uation. The survey also highlighted the intersection
of human cognitive behavior and hallucination de-
tection, introducing terminologies related to eye
tracking and discussing how gaze features can be
leveraged for this purpose. Understanding human
cognitive responses to hallucinations can inform
the development of more intuitive and effective
detection systems.

In discussing future directions, we highlighted
the need to enhance LLMs’ self-correction mech-
anisms, better understand their knowledge bound-
aries, and balance creativity with truthfulness.
These areas are crucial for improving the accu-
racy, reliability, and practical utility of LLMs. By
addressing these challenges, future research can
develop more robust and trustworthy LLMs, en-
hancing their application across various domains.
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