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Abstract

Human interaction with the world is inherently
multimodal, involving multiple sensory chan-
nels for perception. This has sparked signif-
icant interest in developing AI systems with
multimodal capabilities. This survey exam-
ines two crucial research areas: Multimodal
Captioning and Figurative Language Under-
standing. We delve into multimodal caption-
ing, including image captioning, video caption-
ing, and context-assisted captioning, by review-
ing key papers that showcase advancements in
generating textual descriptions for visual con-
tent. Figurative language understanding is an-
alyzed through seminal works on hyperbole
detection, metaphor detection, metaphor gen-
eration, and visual metaphors, highlighting the
intricate interpretation of non-literal language.
Furthermore, the paper discusses standard eval-
uation metrics and key datasets prevalent in
these fields, offering a comprehensive overview
for researchers and practitioners. By synthesiz-
ing these contributions, the survey maps out
the progress made and identifies future direc-
tions in the integration of linguistic and visual
modalities.

1 Introduction

In recent years, the intersection of natural lan-
guage processing (NLP) and computer vision (CV)
has led to significant advancements in multimodal
captioning and figurative language understand-
ing. This survey aims to provide a comprehen-
sive overview of seminal works in these rapidly
evolving fields. By examining landmark papers, we
explore the methodologies, challenges, and break-
throughs that have shaped current research.

Multimodal captioning, an area where textual
descriptions are generated for visual content, has
seen substantial progress. This survey covers three
key domains within multimodal captioning: image
captioning, video captioning, and context-assisted
captioning. Image captioning focuses on generat-

ing descriptive sentences for static images, lever-
aging deep learning techniques to understand and
articulate visual elements. Video captioning ex-
tends this challenge to dynamic content, requiring
models to account for temporal information and
evolving scenes. Context-assisted captioning intro-
duces additional layers of complexity by incorpo-
rating textual context to enhance the accuracy and
relevance of generated captions.

Parallel to multimodal captioning, figurative lan-
guage understanding involves nuanced interpreta-
tion of non-literal expressions in text. This survey
examines pivotal research on hyperbole detection,
metaphor detection, metaphor generation, and vi-
sual metaphors. Hyperbole detection involves iden-
tifying exaggerated statements that convey empha-
sis rather than literal truth. Metaphor detection and
generation focus on recognizing and creating ex-
pressions where one concept is understood through
the lens of another, adding depth and creativity to
language. Visual metaphors bridge the gap between
visual and verbal communication, where images
and videos are used to convey metaphorical mean-
ing in more creative and interesting ways.

By synthesizing the findings from these land-
mark papers, this survey highlights the interdisci-
plinary nature of these fields and underscores the
importance of integrating linguistic and visual un-
derstanding. The goal is to provide researchers
and practitioners with a detailed roadmap of past
achievements, current trends, and future directions
in multimodal captioning and figurative language
understanding.

2 Foundations and Background

This section provides comprehensive background
and discusses the foundations that are essential for
understanding the subsequent discussions in the
survey. The section introduces deep learning mod-
els and discusses their formulation and usage. Input
to these deep learning models need to be converted



to forms that can be digested by these models and
hence we subsequently discuss the input represen-
tation. We discuss the evaluation metrics used in
the work for evaluating the models and also define
and explain the terminologies used.

2.1 Input Representation

Input to deep learning models need to be vector-
ized before they are fed into the system. Converting
inputs in multiple forms to vectors in a way that
conserves the original meaning is a very challeng-
ing problem. We discuss some modality specific
input representation techniques below.

2.1.1 Image Representation
The image need to be vectorized before being fed
into deep learning models. These image features
can be extracted from pretrained models that were
trained on huge amount of diverse data. This helps
our models to learn representations that are better
generalised and helps in dealing with unseen data
during testing.

VGG16: VGG16 (Simonyan and Zisserman,
2015) is a very deep convolutional network that was
trained on ImageNet (Deng et al., 2009) dataset. It
has about 15 million labeled high-resolution im-
ages belonging to roughly 22, 000 categories. This
model was trained on such large data using a very
deep convolutional network using many 3 ∗ 3 ker-
nels. The models perform very well in image clas-
sification. By slicing off the output layer, the input
features to the last layer of the deep CNN can be
obtained and used to represent images.

ResNet50: ResNet50 (He et al., 2015) uses a 50
layer deep convolutional network trained on Ima-
geNet data. It uses residual neural networks which
allow them to connect to layers that are further
apart and help in handling the vanishing gradient
problem. Similar to VGG16, the last output layer
can be sliced off, and the input to the final layer
representing the internal representation of the im-
age learned so far can be used as the feature of the
image.

CLIP: CLIP (Radford et al., 2021a) stands for
Contrastive Language–Image Pre-training. The ob-
ject detection datasets are harder to create because
of the annotation demands. The models that are
trained on these datasets have very deep networks
which makes them harder to train and makes it a
time consuming process. Hence it becomes very
important that once a model is trained on a very
large dataset, it should be able to have a reasonable

performance in all other datasets. CLIP achieves
this by training image and text pairs together such
that image features are learned from the textual
description of the images. It jointly trains an image
encoder and a text encoder to predict the correct
pairings of image and text. Figure 1 provides an
overview of the CLIP training procedure. Con-
trastive learning is used to score the correct pair
of image-text combination higher and other pairs
lower.

SimCLR: SimCLR (Chen et al., 2020) uses a
self-supervised approach for learning image repre-
sentation. It uses contrastive learning framework
by which similar images are closer to each other in
the latent space and images with different objects
are distant from each other in the latent space. In
order to get similar pairs of images, different aug-
mentation techniques like resizing, color distortion,
adding noise, etc., are done to the original image.
For negative pairs, images are sampled randomly
and grouped. The model learns to minimize the
distance between similar images and maximize the
distance between negative pairs.

2.1.2 Text Representation
In our Context assisted captioning task, the context
information is present in the form of text along with
the image. This textual information has to be con-
verted into feature vectors to be used in the training.
The text representation for context paragraphs is
discussed below.

Word Embeddings: Word embeddings can be
used to help the model learn the semantic struc-
ture of a word. As the embeddings obtained for
a word are captured based on its context, it holds
some information about the semantic structure of
the context in which it occurs. In order to get the
embedding for a context paragraph, word embed-
dings are obtained from Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014) for each
word in the paragraph. The word embeddings are
summed up or averaged to get the embedding for
the entire context.

BERT: BERT (Devlin et al., 2019a) is a lan-
guage model which stands for Bidirectional En-
coder Representations from Transformers. Tradi-
tional models read and process input sequentially
either from left to right or from right to left. This
allows them to learn the context of words in only
one direction. BERT on the other hand is non-
directional. It learns from the context in both direc-
tions.



Figure 1: An overview of the CLIP architecture (Radford et al., 2021a)

BERT uses two training strategies. The first of
which masks 15% of the words in each sequence
and uses the context information present to the
left and right of the masked tokens to predict the
masked words. The other strategy is called Next
Sentence Prediction (NSP) where the model is
trained on a pair of sentences to predict if the pair
of sentence will occur next to each other in a docu-
ment. Since both these strategies allow the model
to learn the entire context of the textual data, it can
be used to get rich embedding for text data.

S-BERT: Sentence-BERT (SBERT) (Reimers
and Gurevych, 2019), is a modification of the orig-
inal BERT network. It uses siamese and triplet
network structures to derive semantically meaning-
ful sentence embeddings. This can be used in text
similarity tasks where the similarity of texts can
be obtained by comparing the cosine similarity of
the embedding obtained from S-BERT model. The
model captures the entire semantic structure of the
text and hence can be used to get the embedding
that accurately describes the text in deep learning
networks. The model learns to discriminate be-
tween similar and different text by using cosine
similarity as the cost function.

RoBERTa: RoBERTa (Liu et al., 2019a) builds
upon the success of (Devlin et al., 2019a). It uses
the same language masking strategy as BERT. It
modifies key hyper parameters of BERT like learn-
ing rate and trains the model for much longer time
on much larger datasets compared to BERT. It also
uses dynamic masking to dynamically mask dif-
ferent words of a sequence on different occasions
hoping for better generalizability and robustness.
BERT used two training objectives. In RoBERTa,
the Next Sentence Prediction (NSP) objective was
dropped as it was not contributing much to the per-

formance of the model. RoBERTa produces richer
embeddings compared to BERT and is known to
be more robust.

CLIP: As discussed in section 2.1.1, the CLIP
model encodes image and text to the same latent
space. Thus using CLIP as the text encoder can
help the model learn similar representation for im-
ages and text that are consistent with each other.

2.1.3 Video Representation

Representing input video effectively is crucial for
tasks such as action recognition, video summariza-
tion, and video captioning. Unlike images, where
the features are static, videos bring in a new tempo-
ral dimension. The interpretation of video involves
understanding both spatial and temporal features.
Hence, video representation is more challenging to
learn compared to the modalities discussed so far.
In this section, we briefly introduce the commonly
used video representation techniques.

Frame-Based Representations: In Frame-
based representations, a video is treated as a se-
quence of individual frames. Image-based models
are used to obtain image features for each frame
and an overall representation is obtained by com-
bining them. This method can leverage the power
of Convolutional Neural Networks (CNNs) for spa-
tial feature extraction and use temporal pooling
operation to combine them. Karpathy et al. (2014)
explores different pooling strategies for combining
individual frame features.

Optical Flow-Based Representations: Optical
flow methods capture the motion between consec-
utive frames, providing temporal information that
complements the spatial data. This is typically used
along with frame based representation discussed
earlier. Optical flow captures the motion vectors



of objects between adjacent frames. This informa-
tion can be very helpful in tracking objects across
videos. Feichtenhofer et al. (2016) proposes an
effective fusion strategy for fusing the spatial and
temporal features.

3D Convolutional Neural Networks: Tran et al.
(2014) introduced 3D-CNNs for modelling both
spatial and temporal features together. In 3D-
CNNs, 3 ∗ 3 ∗ 3 convolution kernels are used to
learn features for videos. The third dimension can
effectively capture the temporal information. Fig-
ure 2 shows an overview of a 3D-CNN with the 3D
convolution operation.

Other Representations: Natural Language Pro-
cessing (NLP) and Computer Vision (CV) fields
often have an osmosis of techniques between them.
Convolution networks had tremendous impact on
NLP models in the recent path. Similarly, RNNs
and LSTMs are used to a large extend in video mod-
els to model the long range dependencies present
in the videos. Transformers have revolutionized
NLP and so they also found their way to Computer
Vision community.

Vision Transformers (Dosovitskiy et al., 2020)
tokenize images into fixed size patches and use self
attention on them to learn their relative importance.
Girdhar et al. (2018) uses Vision Transformers to
aggregate spatial and temporal features and shows
promising performance.

2.2 Evaluation Metrics

Our work involves captioning and figurative lan-
guage detection systems. Captioning generates a
natural language sentence consisting of multiple
words for the given input. An image/video/audio
can be described in many correct ways. Therefore
it becomes impossible to check the validity of a
caption by doing a mere string matching of gener-
ated and ground truth captions. Hence there is a
strong need for evaluation metrics that quantify the
performance of a captioning system better. This
section introduces some of the most commonly
used evaluation metrics for captioning and classifi-
cation systems.

2.2.1 BLEU
BLEU (Papineni et al., 2002) stands for BiLingual
Evaluation Understudy BLEU computes precision
of n-grams between candidate and ground truth
captions (i.e) it measures the number of n-grams
in the candidate sentence that matches with the
n-grams in the ground truth caption. BLEU-1 com-

putes score by matching words across sentences,
BLEU-2 by matching all pairs of words and so
on. The unigram scores indicate the adequacy of
the caption generated, indicating if the model has
learned enough features, and higher n-grams indi-
cate fluency of the generated caption.

BLEU metric is the most popular metric used
in NLG systems even though it is not perfect. In
order to penalize captions with multiple repeated
words pushing the precision up, techniques like
clipped precision is used, in which a word is con-
sidered only n number of times if it occurs n times
in the ground truth caption. Brevity penalty is intro-
duced to discourage short captions with only stop
words which could otherwise achieve higher preci-
sion. Brevity penalty for a ground truth sentence
of length r and predicted sentence of length c is
calculated as follows:

Brevity Penalty =

{
1, if c > r

e(1−r/c), if c ≤ r
(1)

2.2.2 CIDEr
CIDEr (Vedantam et al., 2015) stands for
Consensus-based Image Description Evaluation.
It compares the candidate sentence with a set of
ground truth captions and rewards the caption that
matches most of the ground truth captions. Each
ground truth caption can describe the input differ-
ently. An ideal caption should agree with all those
ground truth captions. CIDEr obtains consensus
among candidate and reference sentences by us-
ing n-gram matching. In order to discourage the
common n-grams that occur in captions that add no
specific value to the generated captions, n-grams
are weighted with Term Frequency Inverse Doc-
ument Frequency. It uses cosine similarity of the
weighted n-grams to computer CIDErn scores. It is
the most popular used evaluation metric in caption-
ing systems and it is found to have good correlation
with human judgement.

Term Frequency (TF) is the count of n-gram ‘g’
in candidate and reference sentence.

TF(g, x) =
count(g, x)∑
g′ count(g′, x)

(2)

Inverse Document Frequency (IDF) for a set of
N reference caption is calculated as:

IDF(g) = log

(
N∑N

i=1 1[g ∈ ri]

)
(3)



Figure 2: An overview of the 3D-CNNs introduced by Tran et al. (2014)

w(g, x) = TF(g, x) · IDF(g) (4)

c⃗ = (w(g1, c), w(g2, c), . . . , w(gM , c)) (5)

r⃗i = (w(g1, ri), w(g2, ri), . . . , w(gM , ri)) (6)

cosine(c⃗, r⃗i) =
c⃗ · r⃗i

||⃗c|| · ||r⃗i||
(7)

Average Cosine Similarity for ‘R’ reference cap-
tion is:

CIDErn(c,R) =
1

|R|
∑
ri∈R

cosine(c⃗, r⃗i) (8)

The final CIDEr Score is calculated as:

CIDEr(c,R) =
1

N

N∑
n=1

CIDErn(c,R) (9)

2.2.3 ROUGE
ROUGE (Lin and Och, 2004) stands for Recall-
Oriented Understudy for Gisting Evaluation. It was
primarily introduced for evaluating automatic text
summarization. It computes recall of n-grams be-
tween candidate and reference captions. ROUGE-L
metric employs the longest common subsequence
between a candidate sentence and a set of reference
sentences to measure their similarity at sentence-
level. The matched words need not be consecutive
which gives them flexibility to handle word order-
ing. The ROUGE-L Metric is computed as follows:

ROUGE-Lprecision =
LCS(C,R)

|C|
(10)

ROUGE-Lrecall =
LCS(C,R)

|R|
(11)

2.2.4 METEOR
METEOR (Lavie and Agarwal, 2007) stands for
Metric for Evaluation of Translation with Explicit
ORdering. It computes harmonic mean of uni-
grams between candidate sentence and reference
sentences. The computation involves both preci-
sion and recall with recall getting higher weightage.
It was introduced to address the weakness of BLEU
as BLEU only takes into account the precision of
unigrams. It also considers alignment of segments,
and includes mechanisms for stemming, synonymy
matching, and penalizing incorrect word order. For
a candidate sentence c and reference sentence r, is
is computed as:

P =
m

|c|
(12)

R =
m

|r|
(13)

Fmean =
10 · P ·R
R+ 9 · P

(14)

Alignment Penalty for matched chunks ‘ch’ and
unigram matches ‘m’ is:

Penalty = 0.5 ·
(
ch

m

)3

(15)

METEOR = Fmean · (1− Penalty) (16)

2.2.5 SPICE
SPICE (Anderson et al., 2016) stands for Seman-
tic Propositional Image Caption Evaluation. The
evaluation metrics discussed so far perform n-gram
matching in one way or the other. While n-gram
matching can be suitable when the input can be
only described in a few ways, it does not work
when the same scene can be explained accurately
in multiple different ways, which is the general case
with most captioning systems. SPICE introduces
a semantic matching technique that matches the
semantics of the reference and candidate captions.
The main idea is that for given sentence a scene



graph is generated which encodes the objects in
the sentence with their attributes and relationships.
The scene graphs of candidate and reference cap-
tions is compared and f-score is calculated between
both giving the SPICE score.

2.2.6 BERTScore
BERTScore (Zhang et al., 2019) is a metric that
evaluates the quality of generated text using con-
textual embeddings instead of n-gram based match-
ing. It compares the embeddings of each token in
the candidate and reference texts using pre-trained
contextual embeddings from BERT (Devlin et al.,
2019a) model.

2.2.7 Average Concept Distance
In the task of video metaphor captioning, the model
is trained to generate creative metaphors as output.
Previous works rely on manual evaluation to quan-
tify the creativity and metaphoricity of the gener-
ated captions. As no existing metric can be used to
evaluate the creativity of metaphors, Kalarani et al.
(2024) introduced a new and intuitive metric called-
“Average Concept Distance” (ACD) was introduced.
It is calculated as:

CS = Cosine(PC, SC) (17)

ACD =

∑n
i BERTScore(hyp, pred) ∗ (1− CS)

n
(18)

where PC and SC denote the primary and sec-
ondary concepts in the predicted caption respec-
tively and Cosine denotes the cosine similarity be-
tween them. The primary and secondary concepts
denote the object of comparison and the object it is
being compared to respectively. Average Concept
Distance (ACD) is obtained by weighing the cosine
distance between the concepts with the BERTScore
of the predicted caption. The caption ‘The car is as
fast as a jeep’ is less creative as it makes an obvious
comparison while the caption ‘The car is as fast as
a cheetah’ is more creative. This can be captured
by the CS metric but a disfluent caption like ‘The
adsfd is as fast as a cdsak’ will also score low on
CS and this can be captured by the ACD metric.

2.2.8 Likert scale
The automatic evaluation metrics discussed so far
give an intuition about the quality of caption gen-
erated but they are no match to manual evaluation.

Likert scale is a unidimensional scale that is popu-
larly used for collecting inputs from manual anno-
tators to score the quality of captions. It is a linear
scale consisting of multiple options that linearly
differ from each other. For example, in a caption-
ing system with 3 point scale, the options could be
- Agree, Neutral, Disagree indicating whether the
caption agrees with the reference statement or not.

There are broadly two classes of Likert scales -
Even Likert Scale and Odd Likert Scale. In Even
Likert Scale, the options have even number of
choices which indicates that there is no neutral op-
tion. In Odd Likert Scale, odd number of choices
are given with a neutral class.

2.2.9 Classification Metrics
Accuracy measures the number of correct predic-
tions of the total predictions made. When the actual
data contains class imbalance, accuracy may not
give the correct overview of the model as it can
simply predict the majority class and have higher
accuracy. In order to give better insights into the
model’s classification abilities precision and recall
were introduced.

True positive means the predicted class was pos-
itive and it was correct. True negative means, neg-
ative class was predicted and it was correct. False
positive means, the predicted class was positive but
it was wrong. False negative means, the predicted
class was negative but it was wrong. Precision is
the measure of how many of the predicted posi-
tive classes are correct. Recall is the measure of
how many of the actual positive classes were cor-
rectly predicted by the system. F1 Score gives a
combined measure of precision and recall.

Precision =
TruePositive

TruePositive+ FalsePositive

Recall =
TruePositive

TruePositive+ FalseNegative

F1 score = 2 ∗ precision ∗ recall
precision+ recall

2.3 Definitions and Terminologies
Image Captioning: Image captioning is the task
of providing a description that best describes the
image in natural language. The generated caption
may include all the features and objects present in
the image or may include a few important ones.

Context Assisted Image Captioning: Context
Assisted Image Captioning is a task in which the
caption generated is a function of both the input



Figure 3: Illustration of the computation of BERTScore (Zhang et al., 2019)

image and the context in which the image had oc-
curred. The caption generated should include in-
formation from both the image features and the
context description.

Visual Entailment: Visual entailment is a re-
fined image-text matching task that checks for the
entailment of the caption with the premise image.
Visual entailment deals with only the descriptive
characteristics of the image.

Contextual Visual Entailment: Contextual Vi-
sual Entailment is a VL classification task that uses
contextual information. In the contextual visual
entailment task, both the image and the context of
the image are treated as the premise, and the en-
tailment of the caption is predicted with respect to
both.

Metaphor: Metaphor is a literary device that
uses an implicit comparison to drive home a new
meaning. Metaphors consist of a source and tar-
get domain in which the features from the source
domain are related to the features in the target do-
main through comparable properties. The source
domain and target domain can also be referred as
the primary and secondary concepts. For example,
consider the sentence, He is a lion in the battle.
Here ‘He’ is compared to ‘lion’ and the property
that links them is bravery.

Hyperbole: Hyperbole is a figurative language
in which the literal meaning is exaggerated inten-
tionally. It exaggerates expressions and blows them
up beyond the point they are perceived naturally
with the objective of emphasizing them.

Visual Metaphor Concepts: Lakeoff (Lakoff,
1993) describes metaphor as a mapping between
a source and target domain through shared prop-
erties. For example, consider the sentence “The
development has hit a wall”. Here, hitting a wall
denotes that the development has been halted. The
target domain is halting and the source domain is
wall and the property of wall is used to describe

halting.
Metaphors and similes can be simplified to a

syntax of A is B, where A is being compared to B.
This format is used in METACLUE (Akula et al.,
2022) and VMCD (Kalarani et al., 2024). A is
denoted as the primary concept and B is referred
to as the secondary concept. For example, in the
sentence “The blanket is as white as snow”, the
primary concept is the blanket and it is compared
to the secondary concept snow. The property that
links them is their colour.

3 Datasets

In our survey, we discuss a diverse range of datasets
that are used to train models for different tasks
and comprehensively evaluate the performance of
models on those tasks. These datasets contain both
custom-built sets for a particular experiment and
also widely recognized benchmarks, ensuring a
comprehensive examination across diverse contexts
and conditions. We discuss these datasets in the
following sections.

3.1 Contextual Visual Entailment

The existing vision-language datasets like SNLI-
VE (Xie et al., 2019) do not contain the context
information of the image for consistency detec-
tion. Hence the authors (Rajakumar Kalarani et al.,
2023) build their own datasets for the proposed
task. They built two datasets from the GoodNews
Dataset (Biten et al., 2019a) which they refer as
Synthetic and Challenging datasets. The news arti-
cle is treated as the context information as it con-
tains all the information about the image and the
caption. The context information might sometimes
contain all the information present in the caption,
and the problem could degenerate to a text match-
ing problem if dataset is not challenging enough.
This is taken into account while constructing our
dataset.



3.1.1 Synthetic Dataset
Contextual Visual Entailment is a binary class prob-
lem, so it is required to construct both positive and
negative pairing of image, caption with the con-
text. For the data instances where the caption is
consistent with the image and the context, the orig-
inal image, the caption, and the context from the
GoodNews dataset are used in both synthetic and
challenging datasets (P). The datasets differ in how
the negative examples are created.

They use the following operations to generate
the inconsistent pairs in our synthetic dataset:

1. Choose a random caption different from the
correct caption (N-I).

2. Replace the named entities in the correct cap-
tion with named entities from randomly cho-
sen caption (N-II). For example, the caption

‘John Garrison performing in Berlin, April
2015’ will be changed to ‘Mark Pattinson per-
forming in London, April 2015’.

3. Keep the named entities of the original caption
intact but replace the remaining content with a
random caption that has the same type and the
same number of named entities (N-III). For
example, the caption ‘John Garrison perform-
ing in Berlin, April 2015’ will be changed to

‘John Garrison waiting in queue for filing tax
returns in Berlin, April 2015’.

Named entity recognition is done with SpaCy
(Honnibal and Montani, 2017) in our experiments.
SpaCy allows the detection of 18 different named
entities. They only use the named entities labeled
as ‘PERSON’, ‘FAC’, ‘ORG’, ‘GPE’, ‘LOC’, and

‘EVENT’ that represent a person, building/airport,
organization, geopolitical entities, location, and
event respectively, as they occur more frequently.

The N-I class of negative captions will have
different information and different named entities
from the original caption. The N-II class will have
same information as the original caption but will
contain different named entities. The N-III class
of captions will have same named entities but will
convey different information. The classwise distri-
bution of dataset is discussed in Table 1. They also
create a separate manually annotated challenging
dataset for evaluation.

3.1.2 Challenging Dataset
In addition to synthetically creating a dataset for
pretraining, the authors create and release a man-

Class Train Validation Test
P 201552 9169 11548
N-I 67165 3055 3847
N-II 67189 3055 3847
N-III 67193 3059 3851
Total 403099 18338 23093

Table 1: Class-wise distribution of the synthetic dataset

ually annotated challenging dataset for the task
of contextual visual entailment consisting of 2.2K
data instances. The negative captions in this dataset
are created manually by changing a word or a small
phrase from the original caption, such that its mean-
ing changes significantly without much difference
in the sentence structure. For example, ‘Support-
ers marched peacefully during the protest’ will be
changed to ‘Supporters marched violently during
the protest’. The negative examples created in these
ways will ensure that the models need to learn the
relationship between image, caption, and context
to identify the entailment correctly. This is used
to test the model’s knowledge of image-caption
entailment at a more finer level.

3.2 Context Assisted Image Caption
Generation

Context assisted image caption generation is a task
of generating caption as a function of both the im-
age and the textual context of the image. Hence
the datasets for training should include the textual
context for image. News article datasets containing
news images present in the original news article are
preferred for this task.

3.2.1 GoodNews
The GoodNews dataset was constructed by using
the New York Times API by collecting images from
news articles published between 2010 and 2018. It
covers a wider range of events compared to all its
contemporary datasets. It consists of 4,66, 000
images with captions, headlines and text articles.
The text articles give the context information for
the image and the image captions in the news article
act as the ground truth caption. GoodNews datasets
has a higher proportion of named entities as about
20% of the words in the dataset is of named entities.

3.2.2 NYTimes800k
The NYTimes800k was also built using the publicly
available New York Times API. NYTimes800k is



70% larger than the GoodNews dataset and con-
tains additional metadata like position of images
in the article. The presence of unnecessary HTML
tags observed in GoodNews dataset has been re-
solved here. It contains a higher ratio of Named
entities and almost 97% of the captions have at
least one named entity present in them.

3.2.3 WIT: Wikipedia-based Image Text
Dataset

WIT (Srinivasan et al., 2021) is composed of a
huge set of 37.6 million image-text examples with
11.5 million unique images across 108 Wikipedia
languages. They have additional information like
context of the image, the Wikipedia section details
etc., which give a lot more information about the
context in which the image had occurred in the
document.

3.2.4 Visual News
Visual News dataset was compiled by collect-
ing news articles from four news agencies: The
Guardian, BBC, USA Today, and The Washing-
ton Post. It includes only the articles with high
resolution images and where the caption length
is between 5 and 31 words. It consists of over
600,000 articles compiled from these sources. The
visual News dataset is observed to be more diverse
as it compiles data from multiple news agencies
that have different properties like average caption
length, article length, distribution of named enti-
ties.

3.2.5 KPTimes
KPTimes dataset was constructed by crawling over
half a million news articles, mainly from New York
Times. The main content and the title of the articles
were parsed from the news article urls. The meta-
data associated with field types news_keywords
and keywords form the gold standard keyphrases
for the news articles. We then created datasets for
each of the three datasets from these two datasets.

3.3 Hyperbole and Metaphor Datasets

In this section, we introduce the hyperbole and
metaphor datasets used for experiments on hyper-
bole and metaphor detection and generation.

3.4 Hyperbole Datasets

Troiano et al. (2018) introduced hyperbole detec-
tion as a binary classification task, using traditional
machine learning algorithms. They also released

a dataset named ‘HYPO’ for hyperbole detection.
They used a feature set composed of imageability,
unexpectedness, polarity, subjectivity, and emo-
tional intensity. The classification was done with
traditional machine learning algorithms. Kong
et al. (2020) introduced ‘HYPO-cn’, a Chinese
dataset for hyperbole detection, and showed that
deep learning models can perform better at hyper-
bole detection with increased data. Biddle et al.
(2021) used a BERT (Devlin et al., 2018) based
detection system that used the literal sentences of
the hyperbolic counterparts to identify the hyper-
bolic and non-hyperbolic use of words and phrases.
They also released a test suite for evaluating mod-
els. Tian et al. (2021) proposed a hyperbole gener-
ation task. Zhang and Wan (2022) introduced an
unsupervised approach for generating hyperbolic
sentences from literal sentences and introduced two
new datasets ‘HYPO-XL’ and ‘HYPO-L’ for their
experiments. Badathala et al. (2023) introduced a
multitask dataset that consist of both hyperbole and
metaphor labels.

Dataset (# sentences) Hyp. Met. # sent.

HYPO
(1,418)

✓ ✓ 515
✓ ✗ 194
✗ ✓ 107
✗ ✗ 602

HYPO-L
(3,326)

✓ ✓ 237
✓ ✗ 770
✗ ✓ 19
✗ ✗ 2,200

Table 2: Statistics of annotated hyperbole datasets with
metaphor labels, where Hyp. means hyperbole, Met.
means metaphor, and #sent is the number of sentences.

Their experiments use two hyperbole datasets:
HYPO (Troiano et al., 2018) and HYPO-L (Zhang
and Wan, 2022). The HYPO dataset contains 709
hyperbolic sentences each with a corresponding
paraphrased literal sentence and a sentence con-
taining the hyperbolic words/phrases in a non-
hyperbolic context. They used the hyperbolic and
paraphrased sentences from the dataset, resulting
in 1418 sentences. The HYPO-L dataset includes
1, 007 hyperbolic sentences and 2, 219 paraphrased
sentences. For each sentence in the HYPO and
HYPO-L datasets, they added metaphor labels. Ta-
ble 2 shows the statistics of the annotated hyperbole
datasets.



Dataset (# sentences) Met. Hyp. # sent.

TroFi
(3,838)

✓ ✓ 209
✓ ✗ 1,710
✗ ✓ 235
✗ ✗ 1,684

LCC
(7,542)

✓ ✓ 615
✓ ✗ 3,187
✗ ✓ 144
✗ ✗ 3,596

Table 3: Statistics of annotated metaphor datasets with
hyperbole labels, where Hyp. means hyperbole, Met.
means metaphor, and #sent is the number of sentences.

3.5 Metaphor Datasets

Metaphors have been extensively studied even be-
fore hyperbole detection was introduced. Tsvetkov
et al. (2014) introduced the TSV dataset with 884
metaphorical and non-metaphorical adjective-noun
(AN) phrases. They showed that conceptual map-
ping learnt between literal and metaphorical words
is transferable across languages. Mohler et al.
(2016) introduced the LCC dataset which contains
sentence-level annotations for metaphors in four
languages totaling 188, 741 instances. Steen (2010)
studied metaphor at the word level and was the
first to include function words for metaphor detec-
tion with the new VUA dataset. Birke and Sarkar
(2006) introduced the TroFi dataset that consists of
verbs in their literal and metaphoric form. In recent
years, metaphor detection has been explored with
the aid of large language models. Choi et al. (2021)
used the contextual embeddings from BERT (De-
vlin et al., 2018) and RoBERTa (Liu et al., 2019b)
to classify metaphorical sentences. Aghazadeh
et al. (2022) probed and analyzed the metaphor-
ical knowledge gained by large language models
by testing them on metaphor datasets across lan-
guages.

Badathala et al. (2023) used two metaphor
datasets: LCC (Mohler et al., 2016) and TroFi
(Birke and Sarkar, 2006). They manually anno-
tated 3, 838 (out of 5, 482) sentences in the TroFi
dataset and 7, 542 (out of 40, 138) sentences in the
LCC dataset with hyperbole labels. Table 3 shows
the statistics of the annotated metaphor datasets.

3.6 Video Captioning Datasets

Video captioning datasets consists of short video
clips with or without audio. Each video clip is asso-
ciated with one or many descriptions, that describe

the video as a whole entity.

3.6.1 MSVD
Microsoft Video Description (MSVD) dataset
(Chen and Dolan, 2011) was constructed using
YouTube video clips. The video clips were an-
notated with descriptions. The audio information
present in the video was removed and any video
with subtitles or any other text in the frame was
removed. It consists of 1970 video clips with du-
ration of the clip between 10 and 25 seconds. The
captions are in multiple language and there are 41
description per clip on average.

3.6.2 MSR-VTT
Microsoft Research- Video To Text (MSR-VTT)
dataset (Xu et al., 2016) consists of open domain
videos from 20 different categories. There are 7180
videos which are divided into 10,000 clips. It con-
tains 20 descriptions for each video. It also contains
audio information for each video clip.

3.6.3 Charades
he Charades dataset (Sigurdsson et al., 2016) con-
sists of videos of people performing daily indoor
household activities. There are 9848 video clips
with an average duration of 30 seconds. It contains
27847 descriptions for all videos in total.

3.6.4 ActivityNet Captions
ActivityNet Captions dataset (Krishna et al., 2017)
consists of about 20k videos. There are multiple
descriptions for each video which accounts to 100k
dense captions for all videos. Each description has
an average word count of 13.48 words.

3.7 Video Metaphor Dataset
In this section, we discuss the video metaphor
dataset constructed for the novel task of video
metaphor captioning (Kalarani et al., 2024). No
existing datasets have metaphor details available
for videos. As advertisements have metaphorical
representations in them to convey additional mes-
sages to viewers, they choose the Pitt’s Ads dataset
(Hussain et al., 2017) for constructing our dataset.
The Pitt’s Ads dataset consists of advertisement
images and videos on a wide range of topics. The
released dataset contained URLs to 3, 477 videos
out of which only 2063 videos are currently acces-
sible. They annotate these videos with metaphor
information for our experiments. Additionally, they
also queried YouTube with keywords like adver-
tisements, creative advertisements, funny advertise-



ments, etc. using the YouTube Search tool1. They
filter videos that are less than 2 minutes and add
them to the Video Metaphor Captioning Dataset
(VMCD) if they have metaphors in them.

3.7.1 Annotation Details

Three annotators were employed to annotate data
for the novel task- video metaphor captioning. The
annotators were given detailed explanations about
metaphors and visual metaphors with examples.
They were given two tests with examples consist-
ing of metaphoric and non-metaphoric videos and
asked to classify them. The annotators were short-
listed based on their ability to identify metaphors
present in the videos. In the final batch of annota-
tors, all three annotators were in the age bracket
of 24-30 years. All three annotators are proficient
in English with Masters degrees. Each video is
annotated by all the three annotators.

The annotators were asked the following ques-
tions for each video:

1. Does this video contain a visual metaphor?

2. Is audio of the video required to understand
the metaphor?

3. What part of the video contains the metaphor?

4. What is the primary concept in this video?

5. What is the secondary concept in this video?

6. What is the common property of both con-
cepts?

7. Give a one-line description of the form
“primary_concept” is as “property” as “sec-
ondary_concept”.

8. A free-form description of the video.

Questions a and b are Yes/No questions. The
annotators record the time of occurrence of the
metaphor in the video for question c. Question
g follows the format used for annotation in the
MetaCLUE dataset (Akula et al., 2022) for visual
metaphor in images.

1https://pypi.org/project/
youtube-search-python/

3.7.2 Dataset Statistics
Interpretation of metaphors present in videos is
very subjective and each annotator can understand
it differently. It was observed that the captions for
each video were diverse. The authors only included
videos in their final dataset that were classified as
metaphors by all three annotators. This ensured
that the VMC dataset has videos that are unambigu-
ously metaphoric.

All videos are accompanied by three cap-
tions. The Video Metaphor Captioning Dataset
(VMCD) consists of 705 metaphoric videos with
2115 captions. The train, validation, and test split
contain 400, 55, and 250 videos each with 1200,
165, and 750 captions respectively.

4 Multimodal Captioning

Captioning refers to the task of generating a sin-
gle line description of the input. The description
should match the properties of the input and cover
all the aspects of it. We discuss different classes of
captioning aggregated based on the type of input
modality in the sections below.

4.1 Image Captioning

Image captioning systems take an input image and
generate a description for the image as the output.
The image can contain multiple objects and events
present in it. The caption generated should capture
the salient events and the objects involved in those
events along with the relationship between them.

Traditionally, retrieval and template-based meth-
ods were used for associating images with captions.
The advent of deep learning allowed many of the
techniques used in machine translations to be in-
corporated into the task of image captioning. Im-
portant classes of image captioning techniques are
discussed below.

4.1.1 Sequential Encoder-Decoder Models
The Encoder-Decoder architecture provided great
results in machine translation tasks. The general
approach is that the input will be encoded into a
fixed vector representation that captures a summary
of the input through a few layers of a deep network.
This encoded information will be fed to another
network of layers that will decode this input into a
sequence of words in the target language.

Show and Tell (Vinyals et al., 2015) was the
first to adopt this technique for the task of image
captioning. The authors use a deep CNN to learn

https://pypi.org/project/youtube-search-python/
https://pypi.org/project/youtube-search-python/


image representations. These image features are
fed to an LSTM network that generates a caption
as a sequence of words. The decoding process
continues until a predefined number of words is
predicted or the end of sequence token is generated
by the model.

The training objective is to maximize the proba-
bility of the correct word in the caption, given the
words generated so far and the input image.

θ∗ = argmax
θ

∑
(I,S)

log p(S|I; θ)

where θ are the model parameters, I is the input im-
age and S is the caption generated. The caption S is
composed of many words S0, S1, S2, ...SN where
N is the length of the caption in words. In such
cases, the conditional probability is determined by
the chain rule as:

log p(S|I) =
N∑
t−0

log p(St|I, S0, ....St−1)

In the training data, a token that specifically
marks the "End of Sequence" (EOS) is added at the
end. The model learns to predict the EOS token
as the last word. If the model gets into a loop of
predicting words without predicting the EOS token,
the generation is stopped after predicting a prede-
fined number of words as the upper limit. Further,
during the generation of a caption we can choose
the word with the highest probability at each step
as the output or beam search can be used. In the
case of beamsearch, at each step k best words are
chosen and passed as input to the next word genera-
tion. The next words are generated for each of the k
cases and the top k probable words are chosen and
used in the next iteration and so on. BeamSearch
allows the model to choose word sequences that
have a higher probability of occurrence instead of
predicting the same high probability word again
and again.

4.1.2 Attention Based Models
The attention mechanism allows the model to con-
centrate on a subset of input at each step during the
generation of output. In image captioning systems,
the attention mechanism can be used to provide bet-
ter captions. Attention allows the model to focus
on different parts of the image while generating
captions. An image can consist of multiple objects
but a particular word in the caption will mostly be

related to a single image patch from the image. Al-
lowing the model to learn the relationship between
words in the caption and different image regions
was studied by Xu et al. (2015). Figure 5 shows the
architecture of an Encoder-Decoder architecture
with visual attention.

The authors use VGG network (Simonyan and
Zisserman, 2015) which is a deep CNN network
as the encoder. The network is pretrained on Im-
ageNet dataset. The key difference is that instead
of using the last dense layer before the classifica-
tion layer, the features are extracted from the fourth
convolutional layer before max pooling. LSTM net-
work is the preferred decoder which takes the input
image vectors weighted by their attention scores.
The authors propose two attention mechanisms -
hard attention and soft attention.

The raw image is fed through the VGG network
and a set of vectors (L), each of dimension D is
obtained. Each of these vectors corresponds to
different parts of the image. A simple MLP is used
to learn the weights for each of these annotation
vectors.

eti = fatt(ai, ht−1)

αti =
exp(eti)∑L

k=1 exp(etk)

Here, fatt refers to the MLP that learns the im-
portance of the given patch ai for a word at time
t, conditioned on the hidden states ht−1. The next
equation computes the softmax for that annotation
vector of image over all vectors. This gives the
weight αti which denotes the importance of vector
i for the word t.

Soft and hard attention differ in how the weights
associated with each annotation vector of image
is incorporated into the decoder to generate words
in the caption. In soft attention mechanism, the
final context vector learned for an image is the
weighted sum of each annotation vector ai and the
learned weights αti. Thus soft attention computes
the relative importance of each part of image and
the words in the caption are chosen by focusing on
the most important region. In case of hard attention,
only the annotation vector ai that maximizes the
probability of correct word in the caption is chosen.
Thus it focuses only on the important aspect of the
image while shutting out the other aspects. Figure
5 depicts the comparison of soft and hard attention
over image patches for a generated caption.



Figure 4: An overview of the neural image caption system with visual attention (Xu et al., 2015)

Figure 5: Visualization of hard and soft attention over an input image (Xu et al., 2015)

4.1.3 Transformer Based Models
The vanilla transformer proposed by Vaswani et al.
(2017) uses self-attention which enables the model
to learn pairwise similarities in the input vectors.
Learning pairwise similarities can help the model
get better insights about different regions in the
image but they can limit the model’s ability to con-
struct global knowledge that can be used for other
images. For example, when a man and basketball
region are identified, the concept that the man is a
player and the words ‘man and basketball’ together
mean that a game is being played is difficult to infer
from attention over these regions alone.

Cornia et al. (2020) proposed the use of Memory-
Augmented Attention over pure self attention and
using Meshed decoder that uses information from
all encoder layers. The self attention in a vanilla
transformer as introduced in the original paper is
calculated as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V

S(X) = Attention(WqX,WkX,WvX)

where Q, K, V corresponds to queries, keys and
values respectively. Q, K, V are obtained from in-
put vector X using learnable weights Wq,Wk,Wv

respectively. In Memory-augmented attention mod-
ule, attention is calculated as follows:

Mmem(X) = Attention(WqX,K, V )

K = [WkX,Mk]

V = [WvX,Mv]

Here Mk and Mv are learnable matrices. The
key and value vectors are a function of the input X
and the learned matrices. This enables the model
to learn global properties that are not bound to the
current input giving global knowledge to the model.

The decoder in the vanilla transformers com-
putes cross attention on the outputs of the last en-
coder. This enables the model to learn information
only from the final encoder output. The meshed
decoder introduced in this paper attends over all
encoder layers enabling the model to learn image
features across multiple levels.

Mmesh(X̃, Y ) =

N∑
i=1

αi ⊙ C(X̃i, Y )

C(X̃i, Y ) = Attention(WqY,WkX̃
i,WvX̃

i)

Here Y is the output vector, X̃i corresponds to
the output from the ith encoder layer. Weighted
attention is computed for each combination of Y
and X̃i and the final result is used to generate the
output.



4.1.4 Reinforcement Learning Based Models

Reinforcement learning is an interesting paradigm
that makes use of trial and error strategy to learn
insights about the problem at hand. The deep learn-
ing based strategies discussed so far treat the prob-
lem of image captioning as a supervised task in
which the model learns to minimize the cross en-
tropy loss between the predicted and ground truth
caption. The performance of these models is eval-
uated and compared using evaluation metrics like
BLEU, CIDEr, METEOR. This creates a mismatch
between training and testing, as the objective of the
model was to minimize cross entropy loss whereas
while testing, the model is evaluated on completely
different metrics for which it was not optimized for.
The evaluation metrics cannot be directly used as
cost functions in the training phase as they are not
differentiable.

Rennie et al. (2017) introduces a variation of
the traditional REINFORCE algorithm called Self-
Critical Sequence Training (SCST) that demon-
strates improved performance for image captioning.
It is known that with a baseline function that per-
forms bias correction, the existing REINFORCE
algorithm can give better results. The key change
in SCST is that it uses the output generated by the
model during test time inference as the baseline
function for the model to normalize the variance
of the REINFORCE algorithm. It has two advan-
tages. It first eliminates the need to come up with
a baseline function and test its working separately
based on tasks it is optimized for. It also allows the
model to optimize for test time inference during
the training stage itself.

A CNN network with spatial attention is used as
the encoder that encodes the image to feature vec-
tors and LSTM generates caption words by taking
these feature vectors as input. The LSTM that gen-
erates the word based on input features from CNN
together forms the environment. The prediction
of the next word in the caption is the action, the
weights of the LSTM network are the current state
of the system. The LSTM network is the agent
that uses a policy pθ where θ is the parameters of
the network and optimizes for the reward which
could be one of the evaluation metrics that is used
to evaluate the model.

The expected gradient for a non-differentiable
reward function can be approximated with Monte-
Carlo sample ws = (ws

1....w
s
t ) is given by

∇θL(θ) ≈ −r(ws)∇θlogpθ(w
s)

where r is the reward obtained, ws corresponds
to the word sampled and pθ corresponds to policy
that is based on the the model parameters θ. SCST
introduces a key change to this gradient computa-
tion by adding the baseline function as,

∇θL(θ) ≈ −(r(ws)− b)∇θlogpθ(w
s)

where b is an arbitrary function computed from
test time inference of words and is independent of
the action. It is also parameterized by θ.

4.1.5 Finetuning Pretrained Models
In recent times, there has been significant growth
in building efficient systems that make better use of
GPUs and also scale to utlize multiple GPU clusters
at the same time. This has meant that a lot of
research has gone into improving existing datasets
and better computing clusters for experiments. This
has paved the way for large language models and
vision models to be trained on humongous data
for days/weeks together. The models trained on
such huge corpus tend to generalize better and it
has been observed that they can be successfully
finetuned for many novel tasks. In this section,
we will discuss some of the benchmark works that
tackle the task of image captioning by finetuning
the existing pretrained models.

The CLIP model (Radford et al., 2021a) was
trained on 400M image-text pairs. The model was
trained to minimize the cosine similarity of em-
bedding obtained for image and text such that an
image and its corresponding description can be rep-
resented close to each other in a joint latent space.
Radford et al. (2019) created ripples in the natu-
ral language generation community by the time
it was released for its amazing ability to generate
long-range text at its will. It was the largest known
language model at that point and was able to out-
perform its contemporary language models.

ClipCap (Mokady et al., 2021) introduced a
novel image captioning system that used pretrained
CLIP models and GPT-2 models and finetuned
them for the task of image captioning. Prefix tuning
is a very popular finetuning technique for finetun-
ing large language models for different downstream
tasks. For example, if we want the model to gener-
ate ‘Tendulkar’ as the next word, then adding the
prefix ‘Sachin’ to the input to the language model



Figure 6: ClipCap model for image captioning (Mokady et al., 2021)

can guide the model to generate the next word as
‘Tendulkar’. ClipCap makes use of this technique
by using the clip embeddings as the prefix to the
GPT-2 model.

ClipCap consists of a mapping network. It ex-
tracts the clip embeddings for the image using
CLIP’s visual Encoder and converts them into fixed
size embedding vectors where the size of the vec-
tors is the same as that of word embeddings. The
GPT-2 system generates the next word in the cap-
tion as a function of the words generated so far and
the prefix generated by the mapping network. Fig-
ure 6 illustrates the general architecture of ClipCap.
The training can be done in two different ways:

• Train the mapping network to learn prefix em-
bedding and finetune GPT-2 to generate the
desired caption for the given prefix.

• Train the mapping network to learn prefix em-
bedding such that GPT-2 generates the desired
caption without changing the parameters of
the GPT-2.

Finetuning GPT-2 makes it easier for the map-
ping network to learn a prefix to generate captions.
A simple MLP can be used to generate prefixes
in such cases. However, updating billions of pa-
rameters in GPT-2 based on a small dataset may
affect the prowess of GPT-2. In the case where
the parameters are frozen and only the mapping
network is responsible for generating prefix that is
sophisticated enough to lead GPT-2 to generate cor-
rect captions, a transformer architecture is used in
place of MLP as the mapping network. The model
achieves comparable results to SOTA models while
taking way less time for its training.

I-tuning (Luo et al., 2022) uses a similar ap-
proach of finetuning a large language and vision
model for image captioning. It uses a cross-modal
filter. The visual information from the image is

obtained with the CLIP visual model and stored in
a visual memory. The visual features from visual
memory are used as a filter to adjust the output lay-
ers of the language model to generate the required
caption.

∆h = λWO

(∑
i

SiVMi

)
+ bO

where h is the hidden state output, WO and bO

are the weights and bias terms for output layer
respectively, Si denotes the cross modal attention
weight, VMi denotes the visual embedding vector
in memory.

The cross modal attention used in I-Tuning is
similar to cross attention in which the query and
key-value pair come from two different networks.
Here the Query vector Q is the language embed-
dings from the LM like GPT-2 for generating words
in the caption and the Key, Value are from the Vi-
sual memory which contains the visual embedding
of the image obtained from a vision model like
CLIP. Thus the model learns to query appropriate
visual features from the image that can tune the
language model to generate correct words in the
caption. The authors also make an inference that
since the early layer of language models does not
contribute significantly to the final words gener-
ated, dropping the first few layers results in getting
good performance in significantly less time.

4.2 Context Assisted Image Captioning

In context assisted image captioning, the input to
the captioning system is the image and an accom-
panying text context that describes the context in
which the image has occurred. The captioning sys-
tem should produce a caption that is consistent
with both image and the context and should include
information from both of those modalities.



4.2.1 Sequential Encoder-Decoder Models
The encoder-decoder architecture which showed
good promise in image captioning domain was
again the starting point for context based image
captioning architectures. The image and text fea-
tures are encoded into vectors as discussed in previ-
ous sections and an LSTM based decoder decodes
them into a series of words.

Biten et al. (2019b) was the first to experiment
with the encoder-decoder architecture for context
assisted image captioning. The architecture used
here was inspired from the Show and Tell Archi-
tecture (Xu et al., 2015). It uses an encoder and de-
coder with attention. Figure 8 shows the overview
of the architecture used in this paper.

The image vectors are obtained from pretrained
ResNet (He et al., 2015) model. The output from
the fifth layer of ResNet-152 is used to get the im-
age embedding. In both captions and articles, the
presence of named entities is profound. It is diffi-
cult for the model to recognize the named entities
and generate them in one single stretch. Hence a
two-step strategy is used. Initially, the named enti-
ties in captions and articles are masked with place
holders. For example, if the named entity was the
name of a person, the name would be masked with
the word ’PEOPLE’, if it was of an organization, it
would be masked as ’ORG’ and so on. For named
entity recognition and masking Spacy (Honnibal
and Montani, 2017) is used. A model is trained to
generate captions with masked named entities by
including these masked words like PEOPLE, ORG
to the vocabulary of the model. In the next step,
the correct named entity is chosen from the news
article and placed in the corresponding placeholder
for that particular named entity.

The context embedding for the article is obtained
with 3 different strategies using GloVe (Pennington
et al., 2014).

• The simplest of all techniques was to obtain
word embedding for each word in a sentence
and average them to get a sentence embedding.
The sentence embedding is obtained for all
sentences in the news article.

• The second strategy was to use the weighted
average of word embeddings where weights
are obtained from the smoothed inverse fre-
quency of words in the corpus.

• The third strategy was named tough-to-beat
baseline (TBB) in which the first component

of PCA was subtracted from the weighted av-
erage vectors to get the final embedding.

It was experimentally verified that a simple averag-
ing of word vectors produced better results among
the three strategies.

The image vectors obtained from ResNet-152,
and sentence embedding obtained from the previ-
ous step are passed as input to an LSTM network
with attention layer. The image embeddings and
sentence embeddings are multiplied by an attention
vector which is learned through training, indicating
the importance of sentence/image for the current
word being generated. The LSTM generates cap-
tions with masked named entities.

The insertion of correct named entities in the
generated placeholders is also a challenging prob-
lem. The authors explore three different strategies
to do the same.

• A random insertion method (RandIns) is used
to pick a random named entity from the arti-
cle and substitute in the masked named entity
generated. This method acts as the baseline.

• Context Insertion is a strategy (CtxIns) where
cosine similarity scores are computed between
the glove embedding of the caption sentence
against the embeddings obtained for each sen-
tence in the article. The article sentences are
ranked based on cosine similarity and named
entities are picked from those sentences in
order.

• Attention Method (AttIns) is a method that
makes use of the attention vectors learned dur-
ing the generation of caption. The sentences in
the article are ranked according to the weight
of attention vectors and named entities are
picked from those sentences in that order.

4.2.2 Transformer Based Models
Encouraged by the performance unlocked by trans-
former based models in the task of image caption-
ing, context assisted image captioning also saw a
surge in the usage of transformers for generating
captions. Transform and Tell (Tran et al., 2020)
was the first to introduce transformer based model
for context assisted image captioning.

Transform and Tell uses an end-to-end approach
and generates caption in a single step with named
entities, eliminating the need for finding and insert-
ing named entities after generation of captions as



Figure 7: Illustration of the GoodNews model (Biten et al., 2019b)

done in the case of GoodNews model. The encoder
consists of four different blocks.

• Image Encoder: It is responsible for extract-
ing image features from the input image. It
uses ResNet-152 (He et al., 2015). The output
of the layer before the final pooling layer is
obtained and used as features which gives a
49 ∗ 2048 vector for each image.

• Face Encoder: Face encoder is used to detect
faces in the images and encode the face in-
formation separately. FaceNet (Schroff et al.,
2015) is used for detecting faces in the im-
ages which is pretrained on a face detection
dataset. For each image, the authors obtain a
n ∗ 512 vector, where n is the number of faces
detected.

• Object Encoder: It uses YOLOv3 (Redmon
and Farhadi, 2018) to detect objects present
in the image. For each image, an embedding
vector n ∗ 2048 is obtained where n is the
number of objects detected.

• Article Encoder: For embedding the article,
RoBERTa (Liu et al., 2019c) is used. The arti-
cle embedding is obtained by mixing the out-
put obtained from different transformer layers.

The output from all these blocks acts as the input
to the decoder. The decoder generates words in the
caption as a function of words generated so far and
these four context vectors. If zlt is the token to be
generated at block l at time t when zl<t tokens have
been generated so far and XI , XA, XF , XO rep-
resents image, article, face, and object embedding
respectively, then the token generated is given by,

z1t = Blockl(zlt|zl<t, X
I , XA, XF , XO)

The decoder also uses dynamic convolutions in-
troduced by Wu et al. (2019) in place of self at-
tention used in vanilla transformer. The caption is
tokenized with byte pair encoding where common
byte patterns are encoded with the same encoding.
The decoder generates captions as a series of byte
patterns instead of words. This allows the model
to generate unseen named entities during the infer-
ence phase.

Visual News (Liu et al., 2021) differs from trans-
form and tell by introducing a visual selective layer
that combines information from both image and
text modality. In both GoodNews model and trans-
form and tell model, the image and text information
were encoded separately with separate encoders
and the decoder received the combination of both
as input. It does not allow the decoder to learn
the relationship between both. In the Visual News
model, the text and image information is combined
with a series of FFN layers with RELU activation
and final embeddings is used as input for generat-
ing captions.

Visual News model also uses ResNet-152 (He
et al., 2015) for image feature extraction. The out-
put of the layer before the final pooling layer is
obtained, which gives a 49 ∗ 2048 vector for each
image. For encoding the textual information spaCy
(Honnibal and Montani, 2017) is used. Spacy is
used to tokenize the words in the articles and cap-
tion and it is also used for named entity extraction
from the accompanying news article. The news
article can be very long and attending to the entire



article may not be computationally feasible. Hence
only the first 300 tokens of the article are encoded
and used during training.

The named entities extracted are also passed as
input to the encoder to learn the final encoder rep-
resentation. In addition to the encoded information
obtained from Spacy, word embeddings, and posi-
tion embeddings are additionally learned for each
token in the article. The word embeddings are
learned by using two embedding layers and the
positional embeddings are learned with a separate
LSTM layer. Finally, the word embedding and po-
sitional embedding are summed up to get the word
embedding for a token in the article.

Visual News uses attention on attention (AoA)
introduced by Huang et al. (2019) for both encoder
and decoder. AoA layer computes attention on
the attention vector to give better intuition on how
much the attention vector should impact the input
vector.

Journalistic Guidelines Aware News Image Cap-
tioning (JoGANIC) introduced by Yang et al.
(2021a) treats the problem of context based image
captioning purely from the news image caption-
ing point of view. It notes that a perfect news im-
age caption should explain the “who, when, where,
what, why, and how” questions related to the image
and article.

JoGANIC combines image, and article embed-
ding with a template guidance module that guides
the decoder to generate words that will help answer
who, when, where, what, why, and how questions
about the article and image. The who, when, and
where components of an article can be extracted
by performing named entity recognition on the arti-
cle. The words recognized as ‘PERSON’, ‘NORP’,
and ‘ORG’ form the who component, those with
type ‘DATE’ and ‘TIME’ form the when compo-
nent, and ones with type ‘FAC’, ‘GPE’ and ‘LOC’
form the where component. The remaining entities
are added to the misc component. The what, why,
and how components are together combined into
a context component. The context component is
assumed to be found when a verb is detected by the
PoS tagger. Thus there are five components in total
- who, when, where, context, and misc.

The general task of context assisted image cap-
tioning can be formulated as prediction of next to-
ken n, given previous n-1 tokens, article and image
embedding as,

P (y|XI , XA; θ) =

N∏
n=1

P (yn|XI , XA, y<n; θ)

In JoGANIC, an additional parameter α is added,
which denotes the probability of each of the five
components guiding the current word to be gener-
ated.

P (y|XI , XA; θ) =
N∏

n=1

P (yn|XI , XA, α5
i=1, y<n; θ)

The image embedding is obtained from ResNet-
152 and text embedding is obtained from RoBERTa
as before. It uses Multi-Span Text Reading (MSTR)
method to read more than 512 tokens from the
article. It splits the text into overlapping segments
of 512 tokens and learns representation from it.
In addition, it obtains named entity embeddings
from the Wikipedia knowledge base (KB) using
Wikipedia2vec (Yamada et al., 2020).

4.3 Video Captioning
Describing the information in a video clip through
a single, automatically generated natural language
sentence is called video captioning. Unlike image
captioning which has only one scene to describe,
video captioning is a much more complicated task
as multiple events happen throughout the video.
Selecting salient features of the video by selecting
the correct frames to describe it forms the crux of
video captioning. A brief overview of different
classes of techniques is discussed below.

4.3.1 Classical Techniques
The earlier classical techniques involve a simple
two step process.

• Detect objects, humans, actions, and events in
the video

• Generation of natural language sentences by
fitting the appropriate entities in predefined
templates.

For example, if the video clip contains a man
walking and the predefined template is ’Subject
+ Verb’, then in the first step, the Subject is de-
tected as ’man’ and the event is decided as ’walk’.
The caption will be generated by substituting this
information as ’man walking’.

Aafaq et al. (2019) classifies the classical meth-
ods into three broad categories as :



Figure 8: Overview of Visual News model (Liu et al., 2021)

• Subject (Human) Focused

• Action and Object Focused

• SVO Methods for Open Domain Videos

4.3.2 Deep Learning Techniques
Deep learning methods typically use the encoder-
decoder technique which has shown impressive per-
formance on other captioning tasks. The encoding
stage involves the use of a CNN, RNN, or LSTM
network to extract visual features from video clips.
Video frames are sampled from the video clip and a
representation that captures the information present
throughout the video is encoded by the encoder.
Decoders generate captions as a sequence of words
using LSTM, RNN, or GRU networks conditioned
on the learned visual features.

Gao et al. (2017) introduced an attention based
video captioning technique. Given a video clip,
equally spaced 28 frames are selected from the
first 360 frames. Image features for each frame
are obtained from pretrained Inception-v3 network
(Szegedy et al., 2015). In recent days, pretrained
Vision-Language models (Wang et al., 2022a) that
are trained on large-scale datasets are adapted to
video captioning. The visual features are obtained
by sampling frames through the video and they
are combined by special network to form a unified
representation. This can then be used to perform
captioning like image captioning systems.

Recently, Video-Text models are trained on
large-scale paired video and language datasets to
align frames to text in the captions. VideoBERT
(Sun et al., 2019) built on BERT (Devlin et al.,

2019b) model by learning a joint representation
for visual and text tokens for video-text tasks. Lei
et al. (2021) proposed CLIPBERT that uses sparse
sampling to sample short clips from videos to learn
visual representation instead of using the whole
video and showed remarkable performance. Uni-
ViL (Luo et al., 2020) is a Unified Video and Lan-
guage pre-training model for both multimodal un-
derstanding and generation built by pretraining the
model on 5 diverse objectives. MERLOT (Zellers
et al., 2021) uses spatial and temporal objectives
during pretraining on large-scale datasets of videos
with transcriptions to align videos to text. The GIT
model (Wang et al., 2022b) is trained on a large
corpus of parallel image-text data. It used a single
image encoder and single text decoder and modeled
multiple vision-text tasks as a language modeling
task. These models however cannot follow instruc-
tions which makes it difficult to adapt to newer
tasks.

4.3.3 Video Assistants
Recent success in using frozen LLMs with vision
encoders for instruction fine-tuning for Image-Text
tasks (Li et al. 2023a; Liu et al. 2023) has inspired
the use of instruction fine-tuning for videos. Video-
LLaMA (Zhang et al., 2023) uses frozen visual and
audio encoders and projects them to the embed-
ding space of LLMs using Q-formers as in BLIP-
2 (Li et al., 2023a). VideoChat (Li et al., 2023b)
uses information from image, video, and ASR tools
along with video embedding to align video frames
to text. Video-ChatGPT (Maaz et al., 2023) uses
CLIP (Radford et al., 2021b) as the visual encoder
and Vicuna Zheng et al. (2023) as the LLM and



train the model on 100,000 video and instruction
pairs. Video-LLaVa (Munasinghe et al., 2023) uses
audio signals by transcribing them into text in an
LLaVA model-like architecture.

4.4 Text and Visual Entailment

A text T is said to entail a hypothesis H, if H can
be inferred from T (Pais et al., 2011). Visual entail-
ment (Xie et al., 2019) is the computer vision coun-
terpart of the textual entailment problem, where
the entailment is checked between the image and
the caption. Grounded textual entailment (Vu et al.,
2018) studies the usefulness of adding images to
the textual entailment task. Adding contextual in-
formation has not been explored in these entailment
tasks. Context Information can help in multiple
tasks like fake news detection (Zhou and Zafarani,
2020) and image search with contextual clues.

4.5 Unified Vision and Language Pretraining

Unified Vision-Language (VL) modeling is a new
paradigm that involves creating a unified frame-
work for multiple vision-language tasks, allowing
models to be trained on a range of datasets con-
structed for a range of tasks. ViLBERT (Lu et al.,
2019) extends the BERT (Devlin et al., 2019b) ar-
chitecture to work with visual inputs. Lu et al.
(2020) propose a multi-task training approach with
12 VL datasets on 4 broad tasks. VL-T5 (Cho
et al., 2021) combines multiple VL tasks as text
generation tasks using pretrained models for image
features. UniT (Hu and Singh, 2021) unifies cross-
modal tasks by using a modality specific encoder
and a shared decoder. UFO (Wang et al., 2021)
proposes to use the same transformer architecture
as the encoder for both image and text in VL tasks.
UniTAB (Yang et al., 2021b) supports VL tasks
with bounding boxes by encoding the text and box
output sequences to shared token sequences. OFA
(Wang et al., 2022c) abstracts all VL tasks into
sequence-to-sequence problems.

5 Figurative Language Understanding

Figurative languages are communication tools that
are used to convey ideas and thoughts in creative
and interesting ways. They allow the communi-
cator to convey abstract ideas, make novel com-
parisons and make nuanced ideas understandable.
The sentence ‘You are beautiful’ and ‘You are as
beautiful as the Moon’ evoke different reactions on
the listener even though the underlying meaning

is that the person is beautiful. Figurative language
allow the communicator to describe things without
explicitly spelling it out for the listener, allowing
the listener to engage and decipher the thought
communicated on their own.

Some of the commonly used figurative language
are described below:

1. Simile: Simile is used to compared two dif-
ferent things explicitly. The comparisons can
bring out some additional quality that is not
literally described. For example, the sentence
‘You are as beautiful as Moon’ not only tells
that the person is beautiful, but also that the
person is bright and cool.

2. Metaphor: Metaphors are communicative de-
vices that bring about an abstract comparison
between two objects. The goal of metaphors
is similar to that of simile, but here the ab-
stract comparison allows multiple interpreta-
tions. For example, consider the sentence ‘She
is a lion in the battlefield’. This sentence high-
lights both physical and mental power of the
person without making a direct comparison.

3. Hyperbole: Hyperbole is a figure of speech
that allows exaggeration of an idea or concept.
It allows the communicator to stress on the
thought by exaggerating it. For example, the
sentence ‘I walked forever to get water’ means
that the person walked very long to get water.

4. Idiom: Idiom is a figure of speech that con-
sists of words that convey a different meaning
when read together opposed to the individ-
ual meaning of each word. For example, the
phrase ‘spill the beans’ does not mean spilling
out the beans. It asks the person to reveal the
secret.

5. Sarcasm: Sarcasm is a figure of speech where
a group of words are used to convey an op-
posite meaning to what they are usually used
for. For example, in the sentence ‘Thanks for
sending me to Japan and my luggage to In-
dia’, the person is not thankful for the mixup
with the luggage even when it means that way
literally.

In our survey, we focus on detecting hyperbole
and metaphor in text form. We also explore the
understanding of metaphors in multimodal forms.
They are discussed in detail in the following sec-
tions.



Figure 9: Model architecture of MelBERT (Choi et al., 2021)

5.1 Hyperbole Detection

The task of hyperbole detection involves the detec-
tion of exaggerated phrases or words in the input
sentence. Detection of hyperbole in text is very
important due to its wide spread usage in common
discourse (Roger J., 1996). Troiano et al. (2018)
introduced hyperbole detection as a binary clas-
sification task, using traditional machine learning
algorithms. They also released a dataset named
‘HYPO’ for hyperbole detection. They used a fea-
ture set composed of imageability, unexpectedness,
polarity, subjectivity, and emotional intensity. The
classification was done with traditional machine
learning algorithms. Imageability refers to the ex-
tend to which a word brings about a mental image
about the word in our mind. Unexpectedness de-
notes the rarity of a word in the sentence. It is
computed by calculating the cosine similarity of
word pairs and identifying the pair with lowest sim-
ilarity. Polarity denotes the positive and negative
sentiment of the word. Subjectivity denotes if the
opinion of the word is subjective or universally ac-
cepted. Emotional intensity denotes the strength of
emotion.

Kong et al. (2020) introduced ‘HYPO-cn’, a Chi-
nese dataset for hyperbole detection, and showed
that deep learning models can perform better at
hyperbole detection with increased data. They per-
formed experiments with CNN, LSTM and BERT
and showed that they outperform models that use
custom features with classical ML models.

Biddle et al. (2021) used a BERT (Devlin et al.,
2018) based detection system that used the literal
sentences of the hyperbolic counterparts to identify
the hyperbolic and non-hyperbolic use of words

and phrases. The authors use a sampling module to
select positive and negative hyperbole statements
for a given sentence. For a hyperbole sentence
as input, they sample another hyperbole sentence
from dataset as positive example and its paraphrase
as the negative example. The model is trained with
triplet loss to ensure that the input sentence is closer
to the hyperbole example. They also released a test
suite for evaluating models.

Tian et al. (2021) proposed a hyperbole genera-
tion task. The authors use COMET (Bosselut et al.,
2019) an LLM trained on the ConceptNet (Speer
et al., 2016) knowledge graph to generate hyper-
bole sentences for the given literal sentence. Zhang
and Wan (2022) introduced an unsupervised ap-
proach for generating hyperbolic sentences from
literal sentences and introduced two new datasets
‘HYPO-XL’ and ‘HYPO-L’ for their experiments.

5.2 Metaphor Detection

Metaphor Detection is the task of identifying if the
given sentence/token contains a metaphor or not.
Metaphors have been extensively studied even be-
fore hyperbole detection was introduced. Tsvetkov
et al. (2014) introduced the TSV dataset with 884
metaphorical and non-metaphorical adjective-noun
(AN) phrases. They showed that conceptual map-
ping learnt between literal and metaphorical words
is transferable across languages. Mohler et al.
(2016) introduced the LCC dataset which con-
tains sentence-level annotations for metaphors in
four languages totaling 188, 741 instances. This
dataset was instrumental in enabling the study of
metaphors at a sentence level across multiple lan-
guages, providing a rich resource for training and
evaluating metaphor detection models. Their work



emphasized the importance of cross-linguistic stud-
ies in metaphor detection and the challenges in-
volved in understanding metaphors in a multilin-
gual context.

Steen (2010) studied metaphor detection at the
word level and was the first to include function
words for metaphor detection with the new VUA
dataset. Birke and Sarkar (2006) introduced the
TroFi dataset that consists of verbs in their literal
and metaphoric form. In recent years, metaphor
detection has been explored with the aid of large
language models.

Choi et al. (2021) proposed MelBERT that used
the contextual embeddings from BERT (Devlin
et al., 2018) and RoBERTa (Liu et al., 2019b) to
classify metaphorical sentences. The authors used
contextual embeddings of these transformer mod-
els and used late interaction to predict the output
label. They also use two metaphor theories that
make use of the differences in individual embed-
ding of the word vector in general and the contex-
tual embedding in the current sentence. Aghazadeh
et al. (2022) probed and analyzed the metaphori-
cal knowledge gained by large language models by
testing them on metaphor datasets across languages.
The authors showed that metaphor language is en-
coded in the LLMs and it is mostly found in the
middle layers of such LLMs. They also showed
that this knowledge is generalizable across datasets
and languages for metaphor detection that follow
similar annotation guidelines.

Previous research on metaphor and hyperbole
detection typically treats these figurative language
forms separately, despite their common properties.
In their work (Badathala et al., 2023), the authors
proposed a multi-task approach that simultaneously
detects both hyperboles and metaphors, and demon-
strate that this approach outperforms individual de-
tection tasks with experimental results and detailed
analysis.

5.3 Metaphor Generation

Metaphor generation is the task of generating
metaphorical sentences given a literal sentence
(Abe et al. 2006, Terai and Nakagawa 2010).
Metaphor generation was initially modelled as a
template-filling task. Veale (2016) used templates
to generate metaphoric tweets. Stowe et al. (2020)
used masked language modelling by masking the
verbs in the literal sentence and training the model
to replace it with its metaphoric counterparts. They

Figure 10: An example of a creative advertisement that
uses visual metaphors. The sugar-free nature of lollipop
is highlighted by showing ants avoiding them.

also created a dataset from a Knowledge graph
called MetaNet (Dodge et al., 2015), which con-
tains the details about source and target domain
mappings of metaphors. Stowe et al. (2021) used
FrameNet (Baker et al., 1998) embeddings to gen-
erate metaphoric sentences by replacing verbs with
metaphoric verbs in literal sentences.

5.4 Visual Metaphors

The detection and generation of metaphors in tex-
tual form have been explored extensively but the
use of metaphors in other modalities like images
is not explored until very recently. Metaphors can
also be expressed visually. For example, consider
the Figure 10, the lollipop is shown as sugar-free
by creatively showing that ants avoid them. The
sweetness property of lollipop is highlighted by
visually showing ants next to them in the image.

Akula et al. (2022) introduced a set of tasks
related to understanding visual metaphors. They
showed that existing Vision-Language models are
not good at understanding visual metaphors. Fig-
ure 11 shows some examples of different types of
visual metaphors present in the dataset created by
the authors. The dataset consists of 5061 metaphor-
ical images in total. There are four types of visual
metaphors discussed by the authors.

1. Contextual Metaphors uses context to indi-
cate the primary or secondary concept without
explicitly showing them.

2. Hybrid Metaphors combine both primary
and secondary concept.



Figure 11: Examples of different types of visual metaphors (Akula et al., 2023)

3. Juxtaposition places the primary and sec-
ondary concept explicitly to drive home the
point.

4. Multimodal Metaphors represent pri-
mary/secondary using another modality.

The authors proposed multiple tasks to study the
metaphor understanding of vision language models
in detail. The tasks include- Visual metaphor clas-
sification, metaphor localization, visual metaphor
generation, visual metaphor retrieval, captioning
and question answering.

Yosef et al. (2023) introduced a multimodal
dataset (IRFL) that contains metaphors, similes,
and idioms with corresponding images for them.
Zhang et al. (2021) introduced the MultiMET
dataset which contains multimodal metaphors. It
consists of 10, 437 image-text pairs in total. The
authors used metaphor detection, sentiment analy-
sis and intent detection tasks to show the usefulness
of their proposed dataset.

Hwang and Shwartz (2023) proposed the Meme-
Cap dataset that consists of 6.3K memes along
with the actual meaning and literal meaning of the
memes. The authors showed that SoTA vision lan-
guage models struggle to understand memes clearly.
Xu et al. (2022) introduces the MET-Meme dataset
with 10045 memes and their meanings.

Chakrabarty et al. (2023) explored generating vi-
sual metaphor images from metaphorical input sen-
tences. The authors used Instruct GPT-3 with chain-
of-thought prompting to explain the details about
the metaphor text and used DALL-E 2 (Ramesh

Figure 12: An overview of the visual metaphor creation
process (Chakrabarty et al., 2023)

et al., 2022) to generate images for those detailed
prompts. Figure 12 shows an overview of the visual
metaphor image generation process.

All these works focus on understanding
metaphors in images. Kalarani et al. (2024) in-
troduced a video metaphor captioning task that in-
volved understanding metaphors in the video. They
also released VMC dataset with 705 videos. They
proposed GIT-LLaVA model for video metaphor
captioning task and showed that all existing video-
language models lack deeper understanding of
video to fully understand metaphors in them.

6 Summary and Conclusion

In this survey, we have delved into two pivotal
research areas: Multimodal Captioning and Fig-



urative Language Understanding. We provided a
detailed discussion on the benchmark datasets, eval-
uation metrics, and seminal papers that have shaped
each field. Our exploration began with image cap-
tioning, the foundational multimodal captioning
task, which has significantly influenced the devel-
opment of captioning techniques for other modali-
ties such as video and context-assisted captioning.

The importance of understanding figurative lan-
guage, which is prevalent in everyday commu-
nication, was underscored by examining various
datasets and techniques for detecting and interpret-
ing hyperboles and metaphors. We also explored
the intersection of these research areas in the form
of visual metaphors. Current research indicates that
while visual metaphor understanding holds great
promise, it remains in its early stages, presenting
numerous open challenges and opportunities for
further investigation.

By synthesizing the advancements and identi-
fying the gaps in these domains, our survey high-
lights the progress made and points to future di-
rections for research. Integrating linguistic and
visual modalities continues to be a rich field for ex-
ploration, with significant potential to enhance AI
systems’ ability to understand and generate human-
like multimodal communication.
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