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Abstract

This paper presents a survey of the importance
of incorporating storytelling speaking style in
text-to-speech (TTS) technology. The paper
highlights the significance of prosodic features,
such as intonation and rhythm, in conveying
meaning and emotion in spoken language. It
discusses the challenges of capturing human
narrators’ vocal characteristics and speaking
style and the ways to overcome them using var-
ious neural network architectures. The paper
extensively covers state-of-the-art expressive
TTS models and different TTS datasets. In the
context of emotional speech synthesis, this pa-
per summarizes controllable emotional speech
synthesis. We summarize the idea of task arith-
metic that has been shown to be useful in steer-
ing the behaviour of neural models for NLP
and vision tasks. The potential of TTS technol-
ogy in enhancing spoken language quality and
impact in various domains, from entertainment
to education, is also emphasized.

1 Introduction

Text-to-speech (TTS) synthesis has made signifi-
cant progress in recent years, with systems capa-
ble of generating speech with diverse prosody and
speaking styles. One interesting application of TTS
is in creating a story-telling machine that can take a
story for children in text format as input and output
a well-narrated story in speech format. The final
expected outcome is a TTS system that can narrate
stories to children, rich in prosody and exaggerat-
ing certain emotions and expressions to make it
more interesting for children. In this survey, we
explore the state-of-the-art in storytelling speak-
ing style and emotional TTS systems. We begin
by discussing the challenges involved in this task,
such as the need for expressive prosody, the im-
portance of understanding how to narrate a story
expressively, and the difficulty in training models
on data labeled with prosodic features. We then re-
view the different approaches taken by researchers

to address these challenges, including using multi-
speaker TTS, single-speaker/multi-role TTS, and
incorporating linguistic and paralinguistic infor-
mation. Then we discuss about emotional speech
synthesis and the application of task arithmetic for
editing models at inference. We explore differ-
ent ways of controlling the emotions of generated
speech using controllable emotional TTS systems.

1.1 Problem statement

The aim is to build a story-telling machine that
takes a story for children in text format as input
and outputs a well-narrated story in speech for-
mat. This problem is part of the bigger problem
called expressive text-to-speech synthesis system
that can generate speech with diverse prosody and
speaking styles. The final expected outcome is
a TTS system that can narrate stories to children.
The output should be rich in prosody. In fact, the
speech should exaggerate certain emotions and ex-
pressions to make it more interesting for children.
An even more interesting problem is to produce
such speech as output without explicitly training
the model on data labeled with any prosodic fea-
tures. Hence, we expect the TTS system to not only
speak the story but also understand how to narrate
a story expressively to children aged 7-12 years.
Another interesting problem this survey talks about
is including and controlling the emotions expressed
in speech for each sentence.

1.2 Motivation

Modern neural text-to-speech (TTS) systems have
achieved human-like quality in terms of naturalness
and intelligibility. However, most TTS systems are
trained on a standard 24-hour LJ Speech dataset,
which consists of non-fiction audiobooks read by
professional actors. To effectively model all expres-
sions of speech, a more expressive speech dataset is
required. Children’s stories, with their exaggerated
emotions, provide a suitable alternative. Despite



the high quality of current TTS systems, they lack
an understanding of the spoken text, resulting in
a lack of human prosody and expressive speech.
Motivated by the need to create a TTS system that
can narrate stories to children in an interactive and
expressive way, this survey explores the state-of-
the-art in storytelling speaking style TTS systems.
We discuss the challenges involved in this task,
such as the need for expressive prosody, the im-
portance of understanding how to narrate a story
expressively, and the difficulty in training models
on data labeled with prosodic features.

2 Background

The art of storytelling is found culturally every-
where in the world. In fact, most stories children
hear in India are either from their parents or grand-
parents. The advent of urbanization and technol-
ogy has allowed people to forget this tradition of
telling stories to children and instead YouTube has
taken its place. Though this is easier for parents, it
does not help children interact and learn actively
from stories. The proposed TTS system may tell
the story the parents want and even mock parents’
voices using zero-shot voice cloning. Creating
such a system will open a plethora of opportu-
nities and will help the research of TTS systems
further in terms of expressiveness. Storytelling
speaking mainly comprises two primary research
areas: speech production and emotions in the pro-
duced speech. The following sections provide clear
explanations of these two parts.

2.1 Speech

Speech production is the process in which humans
produce meaningful speech that can be perceived
by others. Speech is produced as a by-product of
human respiration. CO2 is let out from the lungs
during exhalation, which passes through the vocal
tract. The rest is controlled by the brain and the
vocal tract to produce meaningful speech. Sounds
are classified broadly into vowels and consonants,
where vowels are produced by unrestricted
airflow through the vocal tract, and consonants
are produced by forming a constriction at some
place in the vocal tract. Most common sounds
are because of the vibration of vocal cords, some
sounds are produced by a narrow constriction in
the oral cavity. Some sounds like /t/ are produced
because of a sudden release of air called plosion
and such sounds are called plosives. All vowels

are voiced as air flows through vocal cords which
vibrate and create voiced sounds. Vocal cords do
not vibrate while producing voiceless sounds.

The amount of air exhaled by the lungs and the
muscular strain on the articulators that produce the
sound are the key determinants of a speech sound’s
volume or intensity. For instance, speech in rage
typically has more volume than regular or calm
speech. The volume or intensity is a prosodic pa-
rameter that is related to emotions and sentence
type. For example, interrogative sentences tend to
end with a higher intensity as compared to neu-
tral statements. The fundamental frequency of
voiced sounds is the frequency at which the vo-
cal cords vibrate (F0 or pitch). One of the most
significant prosodic factors is the fundamental fre-
quency, which is dependent on the strain placed
on the vocal cords and the amount of airflow gen-
erated by the lungs. The fundamental frequency
may be modified to give the phrase a certain intona-
tion. Emotions and phrase patterns are significantly
influenced by the fundamental frequency. The sig-
nal’s spectral envelope is a highly helpful tool from
signal processing for speech analysis. This spec-
tral envelope often displays a few maxima at the
vocal tract’s resonance frequencies, or formants,
which are traits of the various phonemes. In fact,
the formants of the various vowels can be used to
differentiate them. With the aid of voicing (and
fundamental frequency for tonal languages like
Chinese), the spectral envelope is capable of differ-
entiating between speakers and distinct phonemes
of a language. The durations of the phonemes are
determined by the coordinated movement of the
speech production system across time. Duration is
regarded as a prosodic feature that provides useful
data for identifying phonemes and speakers.

2.2 Emotion

There are recognized theories of emotions from the
majority of the great classical thinkers. Defining
emotions is a 124-year-old unsolved mystery.
Since Darwin, researchers have been studying
emotions, and many psychological schools have
developed several theories that reflect various
approaches to comprehending emotional state. The
three basic kinds of theories of emotion are physi-
ological, neurological, and cognitive. According
to physiological theories, emotions are caused by
internal processes in the human body. According



Figure 1: Plutchik’s wheel of emotions

to neuroscientific ideas, emotional responses are
the result of brain activity. According to cognitive
theories, ideas and other mental activities are
crucial in the development of emotions. The
categorical model and the dimensional model are
the two distinct methods for representing emotions.
The representation in the dimensional model is
built on a number of quantitative metrics scaled on
many dimensions. Both models offer perceptions
on how emotions are represented and perceived by
the human mind and each one serves to express a
certain aspect of human emotion. These models
evaluate a person’s actual emotional states.

According to Oxford dictionary emotion is "A
strong feeling deriving from one’s circumstances,
mood, or relationships with others." Emotion was
introduced into academic discussion as a catch-all
term to passions , sentiments and affections (Dixon,
2003). Plutchik was one of the psychologists work-
ing at the frontiers of emotions. He proposed that
are eight primary emotions : sadness, fear, disgust,
anger, trust, anticipation, surprise and joy. He also
proposed a wheel of emotions to depict the rela-
tionship between different emotions. He used color
theory to depict the combination of emotions and
the result of this combination as another emotion.

2.3 Expression of emotions in speech

Humans have the innate ability to comprehend the
underlying emotional state and linguistic substance
of spoken communication. Typically, humans

notice the emotions of a stranger through depar-
tures from their typical condition. This suggests
that a reference (neutral/normal) exists and that
departures from the reference are perceived.

The word voice quality refers to the distinctive
marking of a person’s speaking. Typically, each
speaker has a unique voice quality characteristic.
They express essential information, such as inten-
tions, emotions, and attitudes, by utilizing a variety
of voice characteristics. Some of the characteristics
of the many emotions share comparable traits.
A voice signal’s spectrum is sound-specific and
comprises characteristics such as F0, durations,
loudness, and spectral parameters. Several studies
have demonstrated that the amplitude and shift of
formants during emotional states vary between
vowels. The concept of seeing emotions as points
in a continuous spatial dimension was initially
proposed in (Schlosberg, 1941). Principally,
emotions are understood as mixtures of three
dimensions: valence, arousal, and dominance.
There are many levels of feature representation,
including frame level, segment level, and utterance
level. Voice characteristics include shimmer, jitter,
and NAQ, which are connected to glottal excitation
traits.

2.4 Storytelling

Storytelling, a sub theme of fiction literature, is
built on discourse modes, which commonly include
narrative, descriptive, and conversational styles.
The primary purpose of narrative storytelling is
to enlighten the audience about the events and in-
dividuals influencing the plot. In contrast, the de-
scriptive mode provided the listener with specific
information about a character or incident so that
they could form a clear mental image of what was
presented. Lastly, dialogue storytelling is when the
narrator transforms his or her voice into a charac-
ter’s, generating an exaggerated register of expres-
sions and full-blown emotions. In the majority of
storytelling speaking styles, children’s stories and
folk tales are the preferred narrative kinds.

3 Datasets

The LJSpeech dataset ((Ito and Johnson, 2017))
is the benchmark dataset used by State-of-the-Art
English TTS systems. It is a US accent dataset with
approximately 24 hours of audio of 7 non-fiction



Corpus Domain #Hours #Spk fs(kHz)
ARCTIC Read speech 7 7 16
VCTK Read Speech 44 109 48

Blizzard-2011 Audiobook 16.6 1 16
Blizzard-2013 Audiobook 319 1 44.1

LJSpeech Audiobook 25 1 22.05
LibriSpeech Audiobook 982 2484 16

LibriTTS Audiobook 586 2456 24
VCC 2018 Read speech 1 12 22.05
HiFi-TTS Audiobook 300 11 44.1

CALLHOME Conversational 60 120 8
RyanSpeech Conversational 10 1 44.1

Table 1: Various English TTS corpora compiled in Table
17 in (Tan et al., 2021)

books. Other TTS corpora like LibriTTS ((Zen
et al., 2019)) and VCTK ((Yamagishi et al., 2019))
are also famous for multi-speaker training. The
libriTTS dataset consists of 585 hours of speech
data sampled at 24kHz recorded by 2456 speakers.
Since none of these datasets contain audio for chil-
dren, the presented dataset is more expressive than
the currently available TTS corpora. Table 1 is a list
of English TTS corpora and their related properties,
like the number of hours of speech data, the num-
ber of speakers, and the sampling rate. Most mod-
ern production quality TTS use 22.05kHz, 32kHz,
44.1kHz, or 48 kHz sampling rate. Higher sam-
pling frequency allows the acoustic model to learn
the audio’s detailed acoustic information and repro-
duce the same from the text.

4 Neural Text-to-speech systems

A neural text-to-speech synthesis system can be
modular or end-to-end. A typical TTS system
consists of three components: 1. Text-processor,
2. Acoustic model, 3. Vocoder. In an end-to-
end model, all these components are modeled to-
gether as a single neural network architecture. Here
end-to-end means the input to the model is text
and the output is a speech waveform. A text-
processing module converts textual input i.e. char-
acters into linguistic features using a neural archi-
tecture. These linguistic features are input to the
acoustic model which outputs an acoustic represen-
tation. These acoustic features are fed into Vocoder
which produces the output speech waveform.

4.1 Text-processing module
This module is also called the front end in con-
ventional text-to-speech systems. A typical text-
processing module consists of the following steps:

• Text-normalization: This involves converting

numbers like 1989, abbreviations like Mr., and
other non-standard words from raw-text for-
mat to spoken form like “nineteen eighty-nine”
and “Mister”. This module is important when
there are multiple ways of verbalizing non-
standard words. For example, 3 Lb can be spo-
ken as “three lb” or “three pounds” depending
upon the context ((Zhang et al., 2019a)). An-
other such instance is for numerical addresses.
Consider “345 Tilak Marg”, as this can have
two verbalizations. One where the number
is expanded completely as “Three hundred
and forty-five Tilak Marg” but this option is
not the most suitable for the case of naviga-
tion systems where the better output is “Three
forty-five Tilak Marg”. All such words are
called semiotic words that differ in the way
they are written and verbalized. Some of these
words include dates, times, numbers, and mon-
etary amounts.

• Part-of-Speech Tagging: This module assigns
a part-of-speech tag to each word in the text.
This will help the TTS system to convert the
graphemes to phonemes easily as a word may
have different phonetic transcription based on
the POS tag. Though this module is very im-
pactful for statistical TTS systems, neural ar-
chitectures almost always skip this step.

• Prosody Prediction: Prosody plays an impor-
tant role in human speech and the inclusion
of prosody in TTS-generated speech makes
the speech natural. Prosody includes rhythm,
stress, and intonation of speech which are
modeled by the duration, pitch, and loud-
ness of the phonemes. Neural architectures
have separate modules to learn the elements
of prosody like pitch, duration, and intensity.

• Grapheme-to-phoneme conversion: The most
important step is to convert the graphemes
to phonemes. This can be done using a
grapheme-to-phoneme dictionary available
for the language. But for an out-of-vocabulary
word, the lexical and pronunciation dictionary
available for that particular language is used to
give the phonemic representation of the word.
In all our experiments E-speak Phonemizer
has been used for converting the graphemes
to phonemes.

Note: Neural network-based Text-to-Speech sys-
tems almost all the time use characters or phonemes



as input features. So, a separate neural network to
extract linguistic features from the characters or
words is not required for the TTS system.

4.2 Acoustic Model
Acoustic models convert linguistic features into
acoustic features. These acoustic features can
be Mel Cepstral Coefficients (MCC), Line Spec-
tral Pairs (LPS), Mel Generalized Coefficients
(MGC), Pitch, Fundamental Frequency, and Mel-
Spectrograms. But out of all these features, Mel-
Spectrograms are widely utilized as the output of
neural acoustic models. Different architectures
have been used to build these acoustic models.
Some popular architectures used for building these
acoustic models are elaborated below:

1. RNN-based models :
The Tacotron series is based on the RNN
framework, i.e., an encoder-attention-decoder
framework that takes characters as input and
outputs Mel-spectrograms.

2. CNN-based models :
DeepVoice ((Arik et al., 2017)) is a system
that uses convolutional neural networks to ob-
tain linguistic features, which are then used
to generate waveforms. DeepVoice 2 ((Gib-
iansky et al., 2017)) is an improved version
of DeepVoice that uses a more complex net-
work structure and is able to model multiple
speakers. DeepVoice 3 ((Ping et al., 2017)) is
the most recent version of DeepVoice, and it
uses a fully convolutional network to generate
mel-spectrograms from characters. ClariNet
((Ping et al., 2019a)) is a system that generates
waveforms from the text in a fully end-to-end
way. ParaNet ((Peng et al., 2019)) is a system
that is similar to ClariNet but is faster and has
better speech quality. DCTTS ((ho Kang et al.,
2021)) is a system that uses a fully convolu-
tional network to generate mel-spectrograms
from character sequences.

3. Transformer-based Models :
Tacotron 2 ((Shen et al., 2018)) model (which
uses an RNN-based encoder and decoder)
has two issues: 1) it can’t be trained or run
in parallel, which makes it inefficient, and
2) it’s not good at modeling long dependen-
cies. The TransformerTTS ((Li et al., 2018))
model (which uses a Transformer-based en-
coder and decoder) is similar to Tacotron 2

but doesn’t have these issues. However, the
Transformer-based model has its own issue
of not being robust due to parallel compu-
tation. Some works have proposed ways to
improve the robustness of the Transformer-
based model. TransformerTTS, Tacotron, and
DeepVoice series are auto-regressive in na-
ture and hence have two major problems: 1)
Slow inference speed as autoregressive gen-
eration of mel-spectrogram is slow. 2) Ro-
bustness, i.e., These autoregressive models
have problems like word skipping and repeti-
tion due to inaccurate attention alignments be-
tween text and mel-spectrograms.Hence a non-
autoregressive model called FastSpeech ((Ren
et al., 2019)) is introduced which is a feed-
forward Transformer network that generates
mel-spectrograms in parallel. This parallel
generation greatly speeds up inference. Fast-
Speech also removes the attention mechanism
between text and speech to avoid word skip-
ping and repeating issues and instead uses a
length regulator to bridge the length mismatch
between the phoneme and mel-spectrogram
sequences. The length regulator uses a dura-
tion predictor to predict the duration of each
phoneme and expands the phoneme hidden
sequence according to the phoneme duration.
This expanded phoneme hidden sequence can
match the length of the mel-spectrogram se-
quence and facilitate parallel generation.

Apart from these architectures, other models are
also there that are generating flow-based, VAE-
based, GAN-based, and Diffusion-based models.
In later sections, VITS TTS ((Kim et al., 2021a))
will be discussed which is an end-to-end model that
uses both Normalizing flows and VAE for acous-
tic modeling and performs adversarial learning for
waveform generation.

4.3 Vocoder
This module takes the output of the acoustic model
and converts it into a speech waveform. The input
can be acoustic features or mel-spectrogram de-
pending upon the acoustic model. Autoregressive
generation of a waveform from mel-spectrograms
is slow and therefore other methods like GAN, flow,
and Diffusion-based models are used for waveform
generation. These representative models are de-
scribed below:

1. Autoregressive models:



Wavenet ((van den Oord et al., 2016)) is the
first neural-based vocoder, which leverages di-
lated convolution to generate waveform points
autoregressively. WaveNet can be easily
modified to condition on linear-spectrograms
and mel-spectrograms, although the original
WaveNet and certain subsequent efforts that
use WaveNet as a vocoder generate speech
waveform conditioned on linguistic features.
The urge for a fast and lightweight vocoder
arose as the Wavenet has a slow inference
speed though the output speech quality was
good. LPCNet ((Valin and Skoglund, 2018))
introduces conventional digital signal process-
ing into neural networks and uses linear pre-
diction coefficients to calculate the next wave-
form point while leveraging a lightweight
RNN to compute the residual.

2. Flow-based:
A generative model that transforms a proba-
bility density into standard/normal probabil-
ity distribution using invertible transforms is
called normalizing flow. Neural flow-based
TTS can be classified based on autoregres-
sive and bi-partite transforms. Examples of
flow-based autoregressive vocoders include
WaveNet ((van den Oord et al., 2016)) and
bi-partite vocoders consisting of FloWaveNet
((Kim et al., 2018)) and WaveGlow ((Prenger
et al., 2018)). WaveFlow ((Ping et al., 2019b))
offers the benefits of both autoregressive and
bipartite transforms.

3. GAN-based:
Generative adversarial networks (GANs) have
been widely used in data generation tasks,
such as image generation and text processing.
A lot of vocoders leverage GAN to ensure au-
dio generation quality, including WaveGAN
((Donahue et al., 2018)), MelGAN ((Kumar
et al., 2019)), and HiFi-GAN ((Kong et al.,
2020a)). The research efforts focus on how to
design models to capture the characteristics
of the waveform, in order to provide a better
guiding signal for the generator. Multiple-
scale discriminators, proposed in MelGAN
((Kumar et al., 2019)), use multiple discrimi-
nators to judge audio in different scales (dif-
ferent downsampling ratios compared with
original audio). Multi-period discriminators
can capture different implicit structures by

Figure 2: The three key components of TTS

looking at different parts of an input signal in
different periods.Hierarchical discriminators
are leveraged in VocGAN ((Yang et al., 2020))
to judge the waveform in different resolutions
from coarse-grained to fine-grained. Other
specific losses such as STFT loss and feature
matching loss are also leveraged to improve
performance.

4. Diffusion-based:
Recently, various vocoder works, including
DiffWave ((Kong et al., 2020b)), WaveGrad
((Chen et al., 2020b)), and PriorGrad ((Lee
et al., 2021)), have used denoising diffusion
probabilistic models (DDPM or Diffusion).
The basic idea is to use diffusion and reverse
processes to formulate the mapping between
data and latent distributions: in diffusion, a
waveform data sample is gradually mixed
with random noises until it becomes Gaus-
sian noise; in reverse, random Gaussian noise
is gradually denoised into a waveform data
sample. Due to their lengthy iteration process,
diffusion-based vocoders may produce speech
with extremely high voice quality, but they
struggle with sluggish inference speed. As a
result, many studies on diffusion models fo-
cus on finding ways to shorten inference times
without sacrificing generation quality.

4.4 Fully end-to-end TTS model

A fully end-to-end TTS system takes input as
characters and directly generates the correspond-
ing speech waveform. The advantages of this
method are that it requires less human annotation
and feature development, and can avoid error
propagation. However, the main challenge of this
method is the different modalities between text
and speech waveform, as well as the huge length
mismatch between character/phoneme sequence
and waveform sequence. The experiments
presented in this report are performed using VITS
TTS (Conditional Variational Autoencoder with
Adversarial Learning for End-to-End Text to



Figure 3: Training pipeline for VITS model

Speech) model mentioned in (Kim et al., 2021a).
Given below is a detailed description of the model
architecture:

The suggested model’s overall architecture is
comprised of a posterior encoder, a prior encoder, a
decoder, a discriminator, and a stochastic duration
predictor. The posterior encoder and discriminator
are only employed for training and never for
inference. The normal posterior distribution’s
mean and variance are generated by the linear
projection layer over the blocks.

The prior encoder is comprised of a text
encoder that processes the input phonemes
and a normalizing flow that increases the prior
distribution’s flexibility. We may derive the hidden
representation from input phonemes by using
the text encoder and a linear projection layer
above the text encoder that generates the prior
distribution’s mean and variance. For the sake
of simplicity, the normalizing flow is designed
as a volume-preserving transformation with a
determinant of one.

Essentially, the decoder is a HiFi-GAN genera-
tor from (Kong et al., 2020a). It consists of a stack
of transposed convolutions that are each followed
by a multi-receptive field fusion module (MRF).
The stochastic duration predictor calculates the
phoneme duration distribution based on the con-
ditional input i.e. phonemes. Residual blocks are
stacked with dilated and depth-separable convolu-
tional layers for the efficient parameterization of
the stochastic duration predictor.

Figure 4: VITS inference piepline

5 Expressive TTS

The investigation of expressiveness in Text-to-
Speech (TTS) encompasses a wide range of
subjects such as modeling, disentanglement,
control, and transfer of elements like content,
timbre, prosody, style, and emotion, among others.
One of the fundamental aspects in achieving
expressive speech synthesis lies in effectively
addressing the issue of one-to-many mapping.
This concept pertains to the existence of numerous
speech variations associated with a single text, en-
compassing factors such as duration, pitch, sound
volume, speaker style, and emotion. Attempting to
model the one-to-many mapping using the standard
L1 loss (Gazor and Zhang, 2003) without adequate
input data can result in excessive smoothing of
mel-spectrogram predictions (Takamichi et al.,
2016). For instance, this may involve predicting
the average mel-spectrograms across the dataset
instead of capturing the nuanced expressiveness of
each individual speech utterance. Consequently,
this approach leads to the production of low-
quality, less expressive speech output. Hence, it
is crucial to include these variations as input data
and enhance the modeling of such variations to
address this issue and enhance the expressiveness
of the synthesized speech. Moreover, through
the inclusion of variation information as input, it
becomes possible to disentangle, regulate, and



shift the variation information. Firstly, through the
modification of these variation details (including
specific speaker characteristics like timbre, style,
accent, speaking speed, etc.) during inference,
we gain the ability to regulate the produced
speech. Secondly, by supplying the variation
information corresponding to a different style, we
can transform the voice into that particular style.
Lastly, for the purpose of attaining precise voice
regulation and transformation, it is essential to
disentangle various types of variation information,
such as content and prosody, timbre and noise,
among others.

The information needed to synthesize a voice
can be categorized into following types:

1. Text information: This can be characters or
phonemes that represents the content of the
synthesized speech (i.e., what to say). Some
works improve the representation learning of
text through enhanced word embeddings or
text pre-training (Xiao et al., 2020; Jia et al.,
2021), aiming to improve the quality and ex-
pressiveness of synthesized speech.

2. Speaker information or timbre data embod-
ies the unique characteristics of speakers (i.e.
how they sound). Some multi-speaker text-to-
speech (TTS) systems use methods such as
speaker lookup tables or speaker encoders to
explicitly capture these properties (Moss et al.,
2020; Chen et al., 2020a).

3. Prosody, style, and emotion information,
which covers the intonation, stress, and
rhythm of speech and represents how to
say the text (Wagner and Watson, 2010).
Prosody/style/emotion is the key information
to improve the expressiveness of speech and
the vast majority of works on expressive TTS
focus on improving the prosody/style/emotion
of speech (Um et al., 2019; Sun et al., 2020a).

4. Recording devices or noise environments,
which are the channels to convey speech, and
are not related to the content/speaker/prosody
of speech, but will affect speech quality. Re-
search works in this area focus on disentan-
gling, controlling, and denoising for clean
speech synthesis

6 Voice modulation in storytelling TTS

Though there has been a lot of work on neural
speech synthesis, expressive neural speech synthe-
sis is constrained by data scarcity. Since this work
concentrates on a very specific type of expressive
speech called storytelling speech synthesis, only
very few works have appeared in the literature.
This section contains brief descriptions of all such
recent works for storytelling speech synthesis.

Previous works, such as Greene et al. (2012)
make an attempt to predict and apply the suitable
character voice to a text-to-speech (TTS) system
for storytelling. However, these works solely rely
on objective tests to evaluate the match between
the character voice and the retrieved voice, without
conducting any subjective tests on the TTS outputs.
Using distinct and appropriate synthetic voices
for characters in a children’s story can enhance
engagement and comprehension. This paper
presents a data-driven approach for predicting
suitable voices based on character attributes, using
Mechanical Turk for labelling and Naive Bayes
for modelling. The system performs well in the
objective evaluation of speaker voice prediction,
showing the effectiveness of the approach. In
contrast, another study (Xin et al., 2023) focuses
on synthesizing speech with enhanced prosody
for audiobooks. This study takes into account
both the acoustic and textual contexts. However,
it should be noted that the dataset used in this
study is a multi-speaker Japanese audiobook TTS
dataset (Takamichi et al., 2022), which differs
from single-speaker storytelling speech.

Moving on, Nakata et al. (2022) explores char-
acter acting in Japanese audiobooks. The authors
predict character-appropriate voices by utilizing
character embeddings derived from the character’s
name, conversational sentences, and surrounding
characters. This paper presents a speech-synthesis
model for predicting appropriate voice styles based
on character-annotated text for audiobook speech
synthesis. The goal is to produce distinctive voices
for different characters in an audiobook. The
proposed model involves character-acting-style
extraction and style prediction from quotation-
annotated text, enabling the automated creation
of audiobooks with character-distinctive voices.
Subjective evaluations indicate that the proposed
model generates more distinctive character voices



while maintaining the naturalness of synthetic
speech. However, the sample audio does not fully
capture the ground truth in terms of expressiveness,
even though they make an effort to mimic the
character’s voice. Furthermore, the authors do not
provide any results on character voice consistency,
which is a crucial aspect of storytelling speech.

Another work, known as Kato et al. (2020)
concentrates on synthesizing Rakugo speech, a
form of comic storytelling that only includes char-
acter dialogues and not narrator sentences. Using
Tacotron 2 and enhancements, the authors aimed
to model rakugo speech and measure its quality
compared to professional performances. While the
synthesized speech did not reach the professional
level, the study highlighted the importance of not
only naturalness but also character distinguisha-
bility and content understandability for audience
entertainment. The authors develop a database and
annotate the character descriptions based on the
conversation. However, in the case of storytelling
speech, the character descriptions are derived from
the stories themselves. Additionally, storytelling
speech requires controllability in expressiveness,
particularly when it comes to the narrator’s text
compared to the character’s text. Lastly, there
is a work referred to as the Kalyan et al. (2023)
that presents a single-speaker English Storytelling
TTS dataset, allowing for the transition of voice
from the narrator to the character. In our work,
we present a more expressive Hindi TTS dataset
where the narrator modulates an average of 3-4
character voices in addition to the narration.

End-to-end TTS models, such as VAE (Zhang
et al., 2019b) and GAN-based models (ShuangMa
et al., 2019), have demonstrated the ability to gener-
ate high-quality speech using phoneme sequences
and audio as input. While many TTS models can
produce speech comparable to human speech, mod-
els utilizing GAN and Normalizing Flows (Aggar-
wal et al., 2020) have shown improved expressive-
ness (Ren et al., 2022). The paper (Kumar et al.,
2023) performs an analysis of various kinds of neu-
ral TTS for Indian languages. Due to its compet-
itive performance for Indian languages, we use
VITS TTS (Kim et al., 2021b) in a multi-speaker
setting. VITS, a non-auto-regressive TTS model,
utilizes the Variational Auto-encoder architecture
along with normalizing flows to model the prior dis-

tribution and employs a GAN pipeline to enhance
voice quality.

7 Emotional TTS

Speech consists of both lexical (the words we
use) and non-lexical (the way we say them) el-
ements. While both convey emotions (Schuller
and Schuller, 2020), research indicates that
prosody—comprising aspects like tone, rhythm,
and voice quality—is particularly crucial in ex-
pressing emotions through speech (Cowen et al.,
2019). Emotional TTS methods can be broadly
classified into three different categories based on
the nature of their conditioning data. These cate-
gories include models that use:

1. Categorical labels to represent one or more
emotions

2. Referenced speech with the desired emotional
state

3. Textual descriptions of the emotional target
state as a form of conditioning data.

The first approach is traditionally used when
working with a labeled data set, as it facilitates
the implementation of conditioning simply by
introducing an embedded lookup table.

Modeling emotion in a text-to-speech task
typically entails the development of a conditional
model that emulates emotional speech based on
text and emotion representation. The manner
in which emotions are depicted plays a crucial
role in determining the specific attributes of
emotions that can be replicated by the model.
In the study by (Lee et al., 2017), emotions are
portrayed as distinct labels (e.g., joy, sadness).
While this approach enables the model to replicate
primary emotions by explicitly defining the input
emotion label, it poses limitations on simulating
more intricate characteristics such as emotion
intensity and a blend of emotions. To address this
challenge, some recent studies incorporate the
aforementioned framework of emotions into their
models. (Zhou et al., 2022) stands out as one of the
pioneers in introducing the capability to replicate
emotion intensity and secondary emotions through
a rank-based emotion attribute vector. In the
study conducted by (Tang et al., 2023), emotion
is depicted as a vector embedding derived from
a preexisting speech emotion recognition model.



This approach facilitates the replication of various
characteristics through the integration of the
hidden state of the embedding.

Emotion can be most effectively characterized
through the utilization of explicit emotion labels
(Lee et al., 2017; Tits et al., 2019), in which the
model is trained to establish connections between
labels and styles of emotion. (Lee et al., 2017)
demonstrates the utilization of an emotion label
vector by the attention-based decoder in order
to generate the intended emotion. Similarly, in
(Tits et al., 2019), a model adaptation approach is
employed to construct a low-resourced emotional
text-to-speech system with the incorporation of
a limited number of emotion labels. Apart from
the explicit labels related to distinct emotion
categories, endeavors have been made to condition
the decoder with continuous variables (Rabiee
et al., 2019).

An alternative methodology involves utilizing
a style encoder for the purpose of replicating and
transferring the reference style (Skerry-Ryan et al.,
2018). Global style token (GST) (Wang et al.,
2017) serves as an illustration of acquiring style
embeddings from the reference audio in an unsu-
pervised fashion. Various research endeavors incor-
porate supplementary components such as emotion
recognition loss (Cai et al., 2020), perceptual loss
(Li et al., 2020), or adversarial training (Ma et al.,
2018) to enhance the emotional expression. Subse-
quent studies (Cornille et al., 2022; Klimkov et al.,
2019; Li et al., 2021; Zhang et al., 2020) opt to sub-
stitute the global style embedding with phoneme or
segmental level prosody embedding to encompass
emotion variations across multiple scales. Anal-
ogous methodologies have been extended to the
domain of emotional voice conversion research. In
(Zhou et al., 2021), the style encoder additionally
functions as the emotion encoder to glean genuine
emotion details via a two-phase training process.
In (Choi and Hahn, 2021), a speaker encoder is
introduced to safeguard the speaker attributes.

Controllable Emotional Speech Synthesis

Speech emotion is frequently expressed through
various aspects of prosody (Maupomé and Isyutina,
2013). The manipulation of different prosodic cues
can influence the expression of emotion. Current re-
search (Lee and Kim, 2018; Tan and Lee, 2020) pre-

dominantly focuses on formulating the prosody em-
bedding as a control vector derived from a frame-
work of representation learning. For instance, style
tokens (Wang et al., 2018) are specifically created
to encode high-level styles such as speaker charac-
teristics, pitch variability, and speech tempo. Emo-
tion expression can be regulated by selecting partic-
ular tokens. Recent efforts (Sun et al., 2020a,b) ex-
plore incorporating a detailed, hierarchical prosody
representation into the style token-based frame-
work (Wang et al., 2018). Additionally, some stud-
ies utilize variational autoencoders (VAE) (Kingma
and Welling, 2013) to regulate speech style through
the acquisition, adjustment, or fusion of disentan-
gled representations.

8 Model editing at inference - Task
arithmetic

Although neural networks are inherently non-linear
in nature, prior research has demonstrated through
empirical studies that the process of interpolating
between the weight configurations of two distinct
neural networks can result in the preservation of
their high level of accuracy. This phenomenon
occurs when these two neural networks have
overlapping segments within their optimization
trajectory, indicating a convergence or similarity in
the direction of optimization (Ilharco et al., 2022b;
Wortsman et al., 2022; Fort et al., 2020).

An increasing body of research is currently delv-
ing into the exploration of utilizing interpolations
between the weights of models and task arithmetic
in order to manipulate and enhance the capabilities
of pre-trained models. Specifically, numerous
research studies have indicated that the process
of interpolating between the fine-tuned weights
of a model and its pre-trained initialization has
the potential to result in enhanced performance
on individual tasks, sometimes even surpassing
the accuracies achieved through fine-tuning alone
(Ram’e et al., 2022; Ramé et al., 2022; Wortsman
et al., 2021). Within the context of multi-task
scenarios, a proposed approach involves averaging
the parameters of numerous fine-tuned models,
aiming to create superior multi-task models
(Wortsman et al., 2022; Li et al., 2022; Ilharco
et al., 2022a) that are able to prevent catastrophic
forgetting (McCloskey and Cohen, 1989; French,
1999) and may even offer a more advantageous
starting point for subsequent fine-tuning endeav-



ors (Don-Yehiya et al., 2022; Choshen et al.,
2022). Notably, the advantages associated with
weight ensembles and interpolations are not
limited to pre-trained models but also extend to
models that are trained from scratch, provided
that they are appropriately aligned prior to merg-
ing (Singh and Jaggi, 2019; Ainsworth et al., 2022).

(Achille et al., 2019) as well as (Vu et al., 2021)
delved into various strategies for representing tasks
through continuous embeddings, aiming to forecast
task similarities and transferability, or establish
taxonomic relations. Although the task vectors
we construct could serve such purposes, our
primary objective is to utilize them as instruments
for guiding the behavior of pre-trained models.
Furthermore, (Lampinen and McClelland, 2020)
introduce a framework for adjusting models based
on the interconnections between tasks.

In the context of fine-tuning, the precision
demonstrates a consistent rise as the parameters
of a pre-existing model are gradually adjusted
towards its fine-tuned equivalent (Wortsman
et al., 2021; Ilharco et al., 2022b). (Ilharco et al.,
2022b) discovered that beyond a singular task,
enhancing accuracy on fine-tuning tasks can be
achieved by fine-tuning multiple models with
different tasks but the same initialization and then
averaging their weights. Similarly, (Li et al., 2022)
observed analogous outcomes by averaging the
parameters of language models fine-tuned across
diverse domains. Through their research, (Choshen
et al., 2022) demonstrated that amalgamating the
weights of fine-tuned models through averaging
can establish a more optimal starting point for
fine-tuning on a subsequent task. Moreover,
(Wortsman et al., 2021) revealed that aggregating
the weights of models fine-tuned on various tasks
leads to an enhanced accuracy when applied to
a new downstream task, obviating the need for
additional training.

In view of the fact that re-training models is
typically cost-prohibitive, numerous scholars have
investigated more resourceful approaches to adjust-
ing a model’s behavior through interventions post
pre-training, denoting this procedure with various
terms such as patching (Murty et al., 2022; Ilharco
et al., 2022b), editing (Mitchell et al., 2022, 2021),
aligning (Glaese et al., 2022; Askell et al., 2021),

or debugging (Geva et al., 2022). Diverging from
earlier scholarly works, our study introduces a dis-
tinctive method of modifying models, allowing for
the addition or removal of capabilities in an effi-
cient and modular fashion by leveraging fine-tuned
models. A related study by (Subramani et al., 2022)
delves into steering language models by incorpo-
rating vectors into their hidden states; however, our
research involves the application of vectors in the
weight space of pre-trained models, without alter-
ing the standard fine-tuning process.

9 Summary

This survey article introduces two facets of speech
synthesis - Expressive and Emotional speech syn-
thesis within the narrative storytelling framework.
The study encompasses an overview of different
Text-to-Speech (TTS) datasets and architectures
designed for both English and Hindi languages.
The exploration of emotive speech synthesis and
the controllability in speech synthesis are detailed
within this research. The summary of model editing
during the inference phase is concisely presented
to facilitate the application of task arithmetic for
speech synthesis. In addition to providing insights
into emotional and expressive TTS systems, this
survey also briefly elucidates fundamental concepts
such as emotions and expressions in speech.
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