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Abstract

Question answering involves models respond-
ing to natural language questions, while
knowledge-infused question answering ex-
pands on this by incorporating external knowl-
edge from a predefined source. Another multi-
modal task, Visual question answering, deals
with questions grounded in visual content, ne-
cessitating models to access external context
from diverse sources. Knowledge-based vi-
sual question answering further extends this
by integrating external knowledge and images
to generate responses. Knowledge graphs are
valuable sources for extracting structured in-
formation and consolidating data from various
sources. This survey paper overviews differ-
ent question-answering frameworks leveraging
knowledge graphs as an external context. It
also discusses potential models for construct-
ing such frameworks and outlines previously
proposed datasets. Finally, we highlight gaps
in current research that could be addressed to
advance this field.

1 Introduction

Question answering is a very essential task in natu-
ral language processing which aims to provide cor-
rect answers to a question base. It aims to use NLP
technologies to generate a corresponding answer
to a given question based on the massive unstruc-
tured corpus.QA is a traditional research direction
that has been proposed half a century ago. People
hope to help with everyday life by teaching the pro-
gram how to answer questions like a real person.
This paper delves into two primary domains of QA:
Textual Question Answering and Visual Question
Answering.
In Textual Question Answering, models generate
answers by leveraging external contexts from vari-
ous sources like knowledge graphs, and Wikipedia
sentences, among others. These questions can be
tackled using conventional large language models
such as GPT3.5, LLAVA, T5, etc. Recently, Multi-

modal LLMs like LLAVA and GPT4, incorporating
images alongside text, have emerged to enhance
task-specific performance.
Visual Question Answering addresses natural lan-
guage questions grounded in visual content. A spe-
cific variant, Knowledge-based VQA, not only uti-
lizes visual information extracted from images but
also integrates supportive facts to facilitate accurate
reasoning and answer prediction. KB-VQA ques-
tions are categorized into closed-domain KBVQA,
requiring knowledge from predefined knowledge
bases like Wikidata or Freebase, and open-domain
KBVQA, where no fixed knowledge base is man-
dated, and questions may demand varying degrees
of knowledge.
Recent methodologies demonstrate the efficacy
of external knowledge retrieval coupled with ex-
tensive filtering to increase accuracy significantly.
Prior research has explored diverse knowledge
sources and filtering mechanisms. This paper pro-
vides an overview of these approaches and identi-
fies future research avenues. Additionally, it dis-
cusses open-source datasets vital for training state-
of-the-art models in these domains.

2 Motivation

Large language models like ChatGPT and GPT-
4 indeed store a vast amount of information
within their parameters, enabling them to answer
knowledge-aware questions effectively. However,
these models have limitations. They are large in
terms of parameters and may lack domain-specific
knowledge. Additionally, some models are paid,
restricting their accessibility.
To address this, external knowledge sources be-
come crucial. Knowledge graphs such as Wikidata,
Freebase, and WordNet are valuable because they
are frequently updated and freely available. These
external resources complement models with fewer
parameters, allowing them to provide accurate an-
swers to a wider range of questions.



Regarding visual question-answering models like
GPT-4 and Gemini, they face challenges when han-
dling user-centric questions. For example, ques-
tions like “Who is the person in the middle of the
image?” or “What is the age of the person shown
in the image?” require specific answers related to
named entities. Generic responses like “man” or “I
can’t guess the age” are insufficient. To improve
performance, fetching external context from knowl-
edge bases becomes essential, especially in real-
time applications where user-centric data matters.

3 Knowledge Graphs

3.1 KG Embeddings

Figure 1: KG Embeddings are trained with the objec-
tive of link prediction, Using KGE in a deep learning
network allows the DL model to do multihop reasoning
over graph

Knowledge graph embeddings are a type of repre-
sentation learning that maps entities and relations
in a knowledge graph to a continuous vector space.
This allows us to represent the meaning of entities
and relations in a way that can be used by machine
learning algorithms. There are two main types of
knowledge graph embeddings: translation-based
and tensor factorization-based.

1. Translation-based embeddings use a scoring
function that measures the distance between
the embedding of the head entity, the embed-
ding of the relation, and the embedding of
the tail entity. The goal is to minimize the
distance between the head entity and the tail
entity when they are connected by the relation.
Translation-based embeddings are relatively
simple to train and can be effective for a vari-
ety of tasks. However, they can be sensitive to
noise in the data and may not be able to cap-
ture complex relationships between entities.

2. Tensor factorization-based embeddings use

Figure 2: Entities and Relations are represented as vec-
tors, relation is a translation from one entity to another.
(Dai et al., 2020)

a tensor factorization model to learn the em-
bedding of entities and relations. The tensor
factorization model is trained to predict the ex-
istence of a relation between two entities. Ten-
sor factorization-based embeddings are more
complex to train than translation-based em-
beddings, but they can be more effective for
capturing complex relationships between en-
tities. However, they can be more computa-
tionally expensive to train and may not be as
effective for tasks that require real-time infer-
ence.

Figure 3: Knowledge Graph represented as tensor,
where entities are two of the dimensions and the third
dimension is relation (Dai et al., 2020)

Some popular translation-based embeddings are
TransE (Bordes et al., 2013),TransH (Wang et al.,
2014), TransR (Lin et al., 2015), and TransD (Ji
et al., 2015). Some popular tensor factorization-
based embeddings are RESCAL (Nickel et al.,
2011b), DistMult (Nickel et al., 2011a), and Com-
plEx (Trouillon et al., 2016). Knowledge graph
embeddings are effective for a variety of tasks, in-
cluding link prediction and question answering.



3.1.1 Translation Based Models
Translation-based Knowledge Graph Embedding
models represent relation as a translation from a
head entity to a tail entity in an embedding space.
The proposed translation-based models vary in the
space these elements are projected. The following
are some translation-based models:

1. TransE: TransE is the first Knowledge Graph
Embedding method which translates head by
the relation to reach the tail entity keeping
both head and tail entities in the same dimen-
sion i.e. k=d. The figure 4 shows the transla-
tion from head to tail using a relation.
The scoring function of TransE is fr(h,t) =
||h + r + t||l1/l2 . The model complexity of
TransE is O(Ned + Nrk)(d = k). TransE
fails to model the one-to-many, many-to-one
and many-to-many relationship between enti-
ties. It can’t model symmetric and reflexive
relations.

Figure 4: TransE: Translation over hyperplane, here r is
translation from h to t.

2. TransH: TransH projects the head and tail en-
tities onto a relation-specific hyperplane and
then uses translation on the hyperplane to
translate the projected head to obtain the pro-
jected tail entity. Since multiple entities can
be projected to the same point on the hyper-
plane, it can model one-to-many, many-to-one,
and many-to-many relations.
The scoring function of TransH is fr(h,t) =
||(h − wT

r hwr) + dr − (t − wT
r twr)||22. The

model complexity of TransH is O(Ned +
Nrk)(d = k). The ability to model n-ary rela-
tionship is limited due to the projection onto
a hyperplane in the same space as entities.

3. TransR: TransR projects the head and tail
entities from a k-dimensional space to a d-
dimensional space. Projection into a separate

Figure 5: TransH: Entities are first projected onto hyper-
plane and then translated over it.

space allows TransR to model more n-ary re-
lations. The projection is performed using a
relation-specific projection matrix.
The scoring function of TransR is fr(h,t) =
||(Mrh + r − Mrt||22. The model complex-
ity of TransR is O(Ned + Nrdk). TransR
increased the complexity of parameters due to
the projection matrix Mr.

Figure 6: TransR: Projection matrices are used to project
entities to relation space.

4. TransD: TransD projects the head and tail
entities from a k-dimensional space to a d-
dimensional space. Unlike TransR, TransD
uses a separate projection matrix for head and
tail entities. TransD reduces the number of pa-
rameters by obtaining the projection matrices
using vector multiplication.
The projection matrix for head entity is ob-
tained using vectors rp hT

p for tail using vec-
tors rp and tTp . The scoring function of
TransD is fr(h,t) = ||(rp hT

p +I)h +r -(rp tTp +I)t
||22. The model complexity of TransD is
O(Ned+Nrk).

3.1.2 Tensor Factorization Based Models
Tensor factorization-based methods represent enti-
ties and the relation between them as a tensor, as
shown in figure 8. The tensor representing the



Datasets WN18 FB15K
Metric Mean Rank HITS@10(%) Mean Rank Hits@10(%)

Raw Filter Raw Filter Raw Filter Raw Filter
TransE 263 251 75.4 89.2 243 125 34.9 47.1
TransH 401 388 73.0 82.3 212 87 45.7 64.4
TransR 238 225 79.8 92.0 198 77 48.2 68.7
TransD 224 212 79.6 92.2 194 91 53.4 77.3
RESCAL 1180 1163 37.2 52.8 828 683 28.4 44.1
DistMult - - - - 94.2 - - - 58.5
HOLE - - - 94.9 - - - 73.9
ComplEx - - - 94.7 - - - 84.0

Table 1: Evaluation of Knowledge Graph Embedding Models on WN18 and FB15K datasets

Figure 7: TransD: Sparse projection matrices are used to
project entities to relation space. The Sparse projection
matrices can be represented as the multiplication of two
vectors forming a projection matrix.

knowledge graph is a three-dimensional binary
matrix X ϵ Rn,n,m where n is the number of en-
tities and m is the number of relations. Tensor
factorization-based methods decompose the KG
tensor into a multiplication of factors as entities
and relations. The following are some Tensor-
factorization-based methods:

Figure 8: Entities and relation represented as a three-
dimensional tensor

1. RESCAL: RESCAL expresses the tensor into
representation of head, relation and tail.
The scoring function of RESCAL is fr(h,t) =
hTMrt. The model complexity of RESCAL
is O(Ned+Nrk

2)(d = k). The model com-
plexity of RESCAL is quadratic in k.

2. DistMult: DistMult restricts the relation ma-
trix to a diagonal matrix, hence reducing the
number of parameters required by a relation.
It allows symmetric relations between head
and tail entities.
The scoring function of DistMult is fr(h,t) =
hT diag(r)t. The model complexity of Dist-
Mult is O(Ned+Nrk)(d = k).

3. HolE: HolE simplifies the tensor product by
introducing circular correlation. The circu-
lar correlation operation is indicated using
⋆. For two entities, it can be calculated as
[h⋆t]k=

∑d−1
i=0 hit(k+i)modd. The operation is

asymmetric which allows the model to repre-
sent asymmetric relations. Also, the complex-
ity can be further improved using fast fourier
transform(FFT) using h ⋆ t = F−1(F(h) ⊙
F(t)).
The scoring function of HolE is fr(h,t) =
rT (h⋆t). The model complexity of HolE is
O(Ned+Nrk)(d = k).

4. ComplEx: ComplEx uses embeddings from
complex space i.e. Cd. Because of the com-
plex space, along with symmetric, asymmetric
relations can be modeled.
The scoring function of ComplEx is fr(h,t) =
Re(hT diag(r)t) where t is complex conjugate
of t and Re() returns the real part of a complex
value. The model complexity of ComplEx is
O(Ned+Nrk)(d = k).

3.2 Benchmark Knowledge Graphs

A knowledge graph (KG) is a structured collection
of data that represents entities and their relation-
ships. KGs are used to store and organize infor-
mation about the real world, and they can be used



for a variety of tasks, such as question-answering,
natural language processing, and machine learn-
ing. In this section, we will discuss popularly used
KGs for experiments from different domains and
provide statistics on their sizes.

3.2.1 WordNet

WordNet (Silva, 2019) is a lexical database that or-
ganizes words into sets of synonyms called synsets,
each representing a distinct concept. Synsets are
interlinked using conceptual-semantic and lexical
relations, such as "is-a" (hypernymy) and "part-of"
(meronymy). Hypernymy and hyponymy are two
of the most important semantic relations in Word-
Net. Hypernymy is a "is-a" relationship, and it in-
dicates that one concept is a more general concept
than another. For example, the word "apartment"
is a hyponym of the word "dwelling," because an
apartment is a type of dwelling. Hyponymy is
the opposite of hypernymy, and it indicates that
one concept is a more specific concept than an-
other. WordNet can be viewed as a knowledge
graph (KG), which is a structured collection of in-
formation about entities and their relationships. In
WordNet, the entities are words, and the relation-
ships are the semantic relations between them. For
example, the semantic relation "is-a" can be viewed
as a relationship between two entities, where one
entity is a more general concept and the other entity
is a more specific concept. WN18 is a benchmark
dataset for evaluating the performance of systems
that work with knowledge graphs. WN18 con-
tains 18 relations, 40K entities and 151K triples.
The triples in WN18 are extracted from WordNet,
and they represent the semantic relations between
words in WordNet. Following are a few examples
from WN18: The head and tail entities are in the
format entity(dot)part of speech(dot)sense. Let us
understand the meaning of the triple <future.n.01,
hypernym, time.n.05>. The head entity, future.n.01,
is a noun with the sense of "the time yet to come."
The tail entity, time.n.05, is a noun with the sense of
"the continuum of experience in which events pass
from the future through the present to the past."
The relation between the two entities is hypernym,
which means that future.n.01 is a type of time.n.05.
In other words, the future is a part of time. The
sense means of each entity can be understood using
Stanford’s WordNet Search

3.2.2 Wikidata
Wikidata is a free and open knowledge base that
anyone can edit. It contains information about
people, places, things, and events, and is used by
a wide variety of applications, including search
engines, virtual assistants, and educational tools.
Wikidata5m is a subset of Wikidata that contains 5
million entities and their associated properties. It
was created by the MilaGraph team at the Uni-
versity of Montreal and is used for research in
knowledge graph embedding and natural language
processing. Wikidata5M has 822 relations and 20
million KG triples.The knowledge graph is stored
in the triplet list format, where each line corre-
sponds to a triple of entity, relation, and value. For
example, the triple <Q22686, P39, Q11696> cor-
responds to the triple Donald Trump position held
as President of the United States. The corpus is
a collection of documents, indexed by entity ID.
Each document describes the entity. For example,
the document for Donald Trump is Q22686 Don-
ald John Trump (born June 14, 1946) is the 45th
and current president of the United States .... The
aliases file lists the aliases for entities and relations.
For example, the line Q22686 Donnie Trump 45th
President of the united states Donald John Trump
... lists the aliases for Donald Trump.

3.2.3 Freebase
Freebase (Bollacker et al., 2008) was a large-scale
knowledge base that was acquired by Google in
2010. Freebase contained information about a wide
variety of topics, including people, places, things,
and events. Freebase is no longer available, but
its data has been used to create other KG datasets,
such as Google Knowledge Graph. FB15k and
FB15k-237 are knowledge graph datasets that are
based on the Freebase knowledge base. They are
commonly used as benchmarks for evaluating the
performance of knowledge graph embedding mod-
els. FB15k contains 592,213 triples with 14,951
entities and 1,345 relationships. FB15k-237 is a
subset of FB15k that contains 237 relationships.
This was done to reduce the number of inverse re-
lations in the dataset, as it was found that a large
number of test triplets could be obtained by invert-
ing triplets in the training set.

4 Visual Question Answering

Visual Question Answering (VQA) is a challeng-
ing task that combines computer vision and natural



language processing. In VQA, a system is tasked
with answering questions related to an image based
on its content. These systems find practical appli-
cations in assisting visually impaired individuals
and improving image search capabilities for IoT
devices like smart hubs. There are two main types
of questions in VQA:
Image-Only Questions: These questions can be
answered using only the features extracted from the
image itself. For example, a question like “Who is
to the right of R. Madhavan?” falls into this cate-
gory.
Knowledge-Based Questions: These questions re-
quire external knowledge beyond just understand-
ing image features. For instance, questions like “In
which country was the person in the image born?”
fall into this category.
State-of-the-art multimodal language models are
adept at accurately answering Image-only ques-
tions, even without relying on external informa-
tion. However, knowledge-based questions neces-
sitate additional context beyond what the image
provides. Several open-source datasets are avail-
able for knowledge-based Visual Question Answer-
ing (VQA). These datasets play a crucial role in
advancing research in this field as shown in Table.

5 Knowledge Aware Visual Question
Answering

Knowledge-aware visual question answering
(VQA) seeks to answer questions that require ex-
ternal knowledge beyond what images alone can
provide. In general, works in this field fetch rele-
vant knowledge from external sources to answer
questions. Knowledge can be obtained from vari-
ous sources, such as knowledge graphs, fixed mul-
timodal knowledge bases and many more. Addi-
tionally, recent approaches leverage the parameters
of current large language models (LLMs), utilizing
prompting techniques to extract relevant knowl-
edge for answering questions. Broadly, KB-VQA
methods can be categorized into two main types:

5.1 Open Domain KB-VQA

Open-domain KB-VQA require knowledge from
an open knowledge base instead of a fixed knowl-
edge base i.e. the knowledge required to answer
these questions is not confined to a particular
knowledge base. The datasets released for this
task are shown in Table 3. This section will discuss
some of the latest works for the OD-KBVQA task.

Figure 9: Splitting the image into four patches to extract
relevant triples.

REVIVE (Lin et al., 2024): Previous works have
focused on extracting external information relevant
to objects in the image. These approaches typically
use either the whole image or a sliding window
to retrieve knowledge. In this paper, the authors
revisit visual representation in knowledge-based
Visual Question Answering (VQA) and argue that
the information from object regions and their re-
lationships should be considered and utilized in
a more dedicated way. Therefore, they propose
REVIVE to better utilize Regional Visual Repre-
sentation for knowledge-based VQA. REVIVE not
only exploits detailed regional information for en-
hanced knowledge retrieval but also integrates this
regional visual representation into the final answer-
ing model.
The architecture of their approach is illustrated in
the figure and is divided into three parts:
Regional Feature Extraction Module: The au-
thors employ the GLIP model (Li et al., 2022b)
to extract object-specific coordinates in the image.
They then use the CLIP model (Li et al., 2022b)
to find the most similar tag for each object and
compute captions using the VinVL (Zhang et al.,
2021) model to determine relationships among the
objects.
Object-Centric Knowledge Retrieval Module:
This stage involves both explicit and implicit
knowledge retrieval. For explicit knowledge re-
trieval, the authors extract the top-K relevant en-
tries from the WikiData knowledge base. For im-
plicit knowledge retrieval, they use context-aware
prompts with regional descriptions, providing over-
all context and regional tags to generate compre-
hensive descriptions.
Transformer Encoder-Decoder Model: The re-
gional features and object-centric knowledge re-
trieval results are fed into this model to produce the
final output.



Dataset Answer-Type Size Domain Evaluate Ability

CLEVR Open-ended 853K 3D CG Reasoning

RecipeQA Multi-Choice 36K Cooking Recipes Procedural

CRIC Open-ended 494K Visual Genome Scene Reasoning

DocVQA Open-ended 50,000 Document Recognition

FVQA Open-ended 5,826 Open Domain Knowledge

Visual Genome Open-ended 1,445,322 Open Domain Recognition

VCR Multi-choice 290K Movie Reasoning

GQA Open-ended/Yes/No 22M Visual Genome Reasoning

HowMany-QA Number 106,356 VG/VQA2.0 Counting

TallyQA Number 287,907 VG/COCO Counting

TDIUC Open-ended 1.6M VG/COCO Multiple

TextVQA Open-ended 45,336 Open Domain Text Recognition

VCOPA Multi-choice 380 Open Domain Causality

Visual7W Open-ended/Multi-choice 327,939 VG Reasoning

VizWiz Open-ended 31,000 Photo Recognition

VQA2.0 Open-ended 1.11M COCO Recognition

KVQA Open-ended 183,007 Wikipedia Knowledge

OK-VQA Open-ended 14,000 Open Domain Knowledge

R-VQA Open-ended 478,287 VG Reasoning

KB-VQA Open-ended 2,402 COCO/ImageNet Knowledge

WebQA Open-ended 25K Wikipedia Multi-hop

AQUA Open-ended 79,848 Art Knowledge

IndiFoodVQA Multi-Choice 16,716 Food Knowledge

Table 2: Statistics of VQA datasets. RC means Reading Comprehension, MC means Multi-choice.

Generate Then Select (Fu et al., 2023): Previous
works discuss retrieving from knowledge graphs
with the results being input to an answer genera-
tion model. Motivated by PLMs such as GPT3
more recent approaches PiCA (Yang et al., 2022)
and KAT (Gui et al., 2022) propose to retrieve
from GPT-3 and achieve better performance for
their neat and high-quality knowledge. While these
methods achieve SOTA the two models suffer from
low knowledge coverage caused by PLM bias, the
tendency to generate certain tokens over other to-
kens despite the prompt changes and the perfor-
mance depends on PLM quality.
The authors solved this problem by proposing a

two-stage pipeline to generate the answers.
Multiple choice generation: The authors draw on
(Yang et al., 2022) and (Gui et al., 2022) for the
methodology, using few-shot in-context learning
with a frozen PLM to generate answer choices for
image-question pairs. Each image is converted to
a textual context via a captioning model and tags
from Microsoft Azure. Authors created prompts
with context and few-shot examples, using CLIP
embeddings to select 16-shot examples. The PLM
generates outputs which are combined to form the
final answer choices for each pair.
Answer Selection: To train the model for selecting
an answer, authors first generate Chain-of-Thought



Figure 10: Splitting the image into four patches to ex-
tract relevant triples.

(CoT) rationales to guide the selection process. Us-
ing a fixed prompt, they created CoT rationales as
per (Wei et al., 2023) and (Schwenk et al., 2022).
Then the input for the answer selection model by
concatenating the question, the image representa-
tion or its CLIP embedding, the CoT rationale, and
the generated answer choices, formatted with sen-
tinel tokens.
UMAE (Whitehouse et al., 2023): The authors

proposed a multitask learning approach for multi-
modal transformer-based encoder-decoder models,
towards a United Model for Answer and Expla-
nation generation (UMAE). Previous approaches
have a separate answer prediction and explanation
module based on answers, authors add the capabil-
ity of jointly generating answers and explanations
together. The authors divided the answer prediction
and explanation into two modules:
Multitask Learning with Artificial Prompt: The
authors propose three generation settings for VQA:
answer prediction (Q→A), explanation generation
(QA→E), and joint answer-explanation generation
(Q→AE). Using a pre-trained multimodal trans-
former (OFA), enhance it with object and attribute
extraction for improved open-domain VQA perfor-
mance. Authors also incorporate artificial prompts
to signal tasks and mix training instances to the
ground, aligning generated answers and explana-
tions.
Perplexity as Multiple Choice Metric: Instead
of loosely matching predictions to multiple-choice
options using embedding similarity methods like
GloVe, authors evaluate each option as a text-
generation task. By providing the model with
the same information used for generating answers,
they calculate the likelihood of each option’s to-
kens being generated. Then compared their ap-
proach’s performance, measured by perplexity,
against the GloVe embedding similarity method

Figure 11: Splitting the image into four patches to ex-
tract relevant triples.

for A-OKVQA (Marino et al., 2019).

5.2 Closed Domain KB-VQA

Closed Domain KB-VQA involves questions that
depend on information from a fixed knowledge
base. These questions can be answered using the
knowledge contained within a static knowledge
base, such as knowledge graphs or other similar
sources.
Cross-modal Retrieval for Knowledge-based
Visual Question Answering (Lerner et al., 2024):
The paper focussed on KB-VQA about named
Entities (KVQAE) in Multimodal Information
Retrieval. It addresses the challenge of answering
questions about named entities using a visual
context, where images represent the entities
and multimodal interactions between text and
images are complex. The authors propose a
multimodal dual encoder, CLIP, for mono-modal
and cross-modal retrieval. They demonstrate the
complementarity of both retrieval approaches and
compare their performance on several datasets.
Additionally, they explore different strategies for
fine-tuning the model in this context: mono-modal,
cross-modal, or joint training.
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Given an image of the question iq and a collection
of entities (tp,iq), where tp denotes the name of
the entity and ip its reference image. The authors
define the similarity function as:
s(iq, tp, ip) = αIsI(iq, ip) + αCsC(iq, tp)
αI,C weigh each similarity
sC(iq, tp) = cos(CLIPV (iq), CLIPT (tp))
Where CLIP denotes clip embedding To implement
this approach, authors jointly trained sI(iq, ip)



and sC(iq, tp) for each iq image of the batch by
minimizing the following objective, given the
temperature τ :

6 Zero-Shot Visual Question Answering

Zero-shot VQA methodologies enable models
to predict answers without requiring additional
training. With the advent of large language models
like ChatGPT, training these models becomes
unnecessary, as they possess extensive knowledge
embedded within their parameters. Utilizing these
models without extra training has proven beneficial
for numerous tasks. Recently, several innovative
zero-shot methods for VQA have been proposed.
In this section, we will explore some of the latest
and most unique approaches for VQA that do not
require any extra training.
Plug-and-Play VQA (Tiong et al., 2023): In this
work, authors proposed a zero-shot vqa approach
where instead of providing a caption for the whole
image authors provide question-guided informative
image captions, and pass the captions to a PLM as
context for question answering. The architecture is
divided into three modules:
Image Question Matching Module: Authors
generated heatmaps where the heatmap is dense
in the parts where the image is related to the
question. The heatmaps are generated using
GRADCAM (Selvaraju et al., 2017). This is
done to get captions relevant to questions and the
context is more related and useful.
Image Captioning Module: Even with relevant
image regions, descriptions can vary, with some
containing the desired answer and others not.
To cover possible answers, we generate diverse
captions using BLIP’s (Li et al., 2022a) image
captioning network and stochastic top-k sampling,
which avoids repetitive outputs. We sample image
patches based on relevance and use a prompt,
generating multiple captions to ensure coverage of
visual content, and retaining only non-repetitive
captions.
Prediction Module: The authors provide ques-
tions and diverse captions generated above to get
the predictions.
LAnguage MOdel guided Captioning
(LAMOC) (Du et al., 2023): In this paper,
the authors leverage the guidance and feedback of
the prediction model to improve the capability of
the captioning model. In this way, the captioning

model can become aware of the task goal and
information needed from the PLM. The captions
will be used as the context for answer prediction.
Formally we predict the answer as:
p(y|xi, xq) =

∑
z∈Z p(z|xi, xq; θC).p(y|xq, z; θP )

The process of answer prediction is divided into
two steps:

• Captioning adaptation aims to adjust θC to
produce informative captions that are suitable
for θP .

• Feedback-based learning aims to optimize θC
according to task-specific feedback from θP .

Once the captioning model is well trained, we em-
ploy the prediction model for predicting the final
answer as in Eq. (1), based on the captions pro-
vided by the captioning model.
K-GEN-VQA (Cao and Jiang, 2024): In this pa-
per, authors propose a knowledge generation-based
K-VQA method, which first generates knowledge
from an LLM and then incorporates the gener-
ated knowledge for K-VQA in a zero-shot manner.
There are two modules for question-answering:
Knowledge Generation: It involves two steps.
First, the authors generate a single knowledge state-
ment for each (image, question) pair in the K-VQA
test dataset. Then, we perform a self-supervised
knowledge diversification step, using a diverse set
of these initial statements as in-context demonstra-
tions. This second round of knowledge generation
aims to produce multiple knowledge statements per
(image, question) pair, leveraging the diversity to
increase the likelihood of covering different aspects
and improving the chances of obtaining the correct
answer.
Knowledge Integration: The final set of T knowl-
edge statements generated for each (image, ques-
tion) pair, authors combine them with the image
captions and the question and pass them to a pre-
trained text-based QA model for answer genera-
tion.

7 Evaluation Metrics

Performance is evaluated using several metrics for
Question Answering (QA) and Information Re-
trieval systems. Exact Match (EM) checks if the
predicted answer matches the ground truth exactly.
Semantic Match focuses on the meaning alignment
between predicted and ground truth answers. Preci-
sion measures accuracy, while Recall assesses the
system’s ability to retrieve relevant answers. Mean



Rank evaluates the average rank of the correct an-
swer, and Mean Reciprocal Rank (MRR) calculates
the average reciprocal rank of the correct answer.
Hits measure how often the correct answer appears
within the top-N ranked answers. These metrics
collectively assess QA system performance.

7.1 Exact Match and Semantic Match

Exact match and semantic match are two differ-
ent ways of matching text. While exact match
checks that the strings are the same, semantic
match checks if the meaning is the same. Both
metrics are explained below.

7.1.1 Exact Match

An exact match is when the text in the query
matches exactly the text in the document. Exact
match is a simple and straightforward way to match
text, but it can be limited in its ability to find rele-
vant documents. For example, if the query is “What
is the capital of France?”, an exact match would
only return documents that contain the exact phrase
“What is the capital of France?”. However, there
may be other documents that contain the same in-
formation, but in different words, such as “Paris is
the capital of France”. In the scenario with multi-
ple gold answers, (Rajpurkar et al., 2016) defines
Exact Match as the percentage of predictions that
match any of the ground truth answers exactly.

7.1.2 Semantic Match

Semantic match is when the text in the query has
the same meaning as the text in the document, even
if the words are not exactly the same. Semantic
match is a more sophisticated way to match text
that can overcome some of the limitations of an
exact match. Semantic match uses natural lan-
guage processing (NLP) techniques to understand
the meaning of the text in the query and the docu-
ment. This allows the semantic match to find rel-
evant documents that do not use exactly the same
words as the query.

7.2 Precision, Recall and F1

Precision, recall, and F1 score are commonly used
evaluation metrics in Question Answering (QA)
systems to measure their performance. These met-
rics help assess the accuracy and completeness of
the generated answers. Let’s delve into each met-
ric, provide their formulas, and offer examples to
illustrate their calculation.

7.2.1 Precision
Precision is a measure of how accurate a system is.
It is calculated as the number of correct answers
divided by the total number of answers returned
by the system. For example, if a system returns
10 answers and 8 of them are correct, then the
precision is 0.8.

Precision = TP
TP+FP

where TP is true positive and FP is false positive. A
high precision indicates that the system is returning
a lot of correct answers.
Precision@k is a variant of precision used to evalu-
ate the performance of ranking systems. It is calcu-
lated by counting the number of relevant documents
in the top k positions of a ranked list, divided by
the total number of documents in the ranked list. A
higher precision@k indicates better performance.
The formula for precision@k is as follows:

Precision@k = topk
total

where k is the number of positions considered, topk
is the number of documents in the top k positions
that are relevant to the query and total is the total
number of documents in the ranked list. For ex-
ample, if there are 10 documents in a ranked list
and 5 of them are relevant to the query, then the
precision@5 would be 0.5. Precision@k is a useful
metric for evaluating the performance of ranking
systems, as it considers the position of relevant doc-
uments in the ranked list. However, it is important
to note that precision@k is sensitive to the number
of relevant documents in the ranked list. A ranking
system with high precision@k on a dataset with
few relevant documents may not perform as well
on a dataset with many relevant documents.

7.2.2 Recall
Recall is a measure of how complete a system is.
It is calculated as the number of correct answers
divided by the total number of correct answers.
For example, if there are 10 correct answers and a
system returns 8, then the recall is 0.8.

Recall = TP
TP+FN

where TP is true positive, and FN is false negative.
A high recall indicates that the system is returning
a lot of the correct answers.

7.2.3 F1-Score
The F1 score is a measure of both precision and
recall. It is calculated as the harmonic mean of
precision and recall. The harmonic mean is a more



sensitive measure of performance than the arith-
metic mean because it gives more weight to low
values. For example, if the precision is 0.8 and the
recall is 0.6, then the F1 score is 0.72.

F1 = 2∗(Precision+Recall)
(Precision+Recall)

A high F1 score indicates that the system returns a
good balance of correct answers and recall.

7.3 Mean Rank, MRR, Hits@k
Mean Rank, Mean Reciprocal Rank (MRR) and
Hits are three common metrics used to evaluate the
performance of ranking algorithms.

7.3.1 Mean Rank
Mean rank is the average rank of all relevant docu-
ments in a ranked list. A lower mean rank indicates
better performance. For example, a mean rank of 1
indicates that all relevant documents are at the top
of the ranked list, while a mean rank of 10 indicates
that all relevant documents are at the bottom of the
ranked list. The formula for mean rank is:

Meanrank = 1
N

∑
Rank

where rank is the rank of each relevant document
and n is the number of relevant documents. While
MR is simple, it can be sensitive to the number of
relevant documents in a ranked list. Let us say that
a few relevant documents are ranked very high due
to errors in the ranking system. It will pull down
the average. Also, it gives importance to lower
ranks. Many a time, for a system 20th rank, would
be equally bad as the 100th rank. At the same time,
ranks 1,3,5,7, and 10, even though they are close,
would make a huge difference while evaluating a
ranking system.

7.3.2 Mean Reciprocal Rank(MRR)
Mean reciprocal rank is the average of the recip-
rocal ranks of all relevant documents in a ranked
list. A higher mean reciprocal rank indicates better
performance. For example, a mean reciprocal rank
of 1 indicates that all relevant documents are at
the top of the ranked list, while a mean reciprocal
rank of 0.5 indicates that the relevant documents
are ranked in the middle of the ranked list. The
formula for MRR is:

MRR = 1
N

∑ 1
Rank

where rank is the rank of each relevant document
and n is the number of relevant documents. MRR
gives higher importance to the top ranks and lower
importance to the bottom ranks. In the case of
MRR, rank 1 and rank 2 has a difference of 0.5

while rank 10 and 100 have a difference of 0.09.
MRR is very useful in QA systems as the correct
answers to a question are only a few and when
ranked correctly we should ignore ranks away from
the top ranks.

7.3.3 Hits@k
Hits@k is the percentage of queries for which at
least one relevant document is ranked in the top
k positions. A higher hits@k indicates better per-
formance. For example, a hits@k of 1 indicates
that all queries returned at least one relevant docu-
ment in the top k positions, while a hits@k of 0.5
indicates that half of the queries returned at least
one relevant document in the top k positions. The
formula for hits@k is:

Hits@k= 1
N

∑
[1 if rank ≤ k else 0]

where rank is the rank of each relevant document
and n is the number of queries. For example, if
there are 5 queries and 2 relevant documents are
ranked in the top 3 positions, then the hits@3 would
be 2/5 = 0.4. Hits@k is useful in QA systems when
we want the answer to a question at top-k ranks.
When a QA model predicts multiple answers, a
gold answer might be at 2nd rank, but 1st rank
answer could be another gold answer. In such situa-
tions, we don’t want to penalize our model. Usually
when evaluating a system, hits are calculated with
different values of k and can be helpful in iden-
tifying how many top results should be shown to
ensure that the user gets the answer to its question
most of the time with less lookup through the k
results.

8 Summary

This paper provides a comprehensive overview of
the various approaches employed in knowledge-
based visual question answering (KB-VQA). We
delve into the fundamental concept of knowledge
graphs, exploring how they can serve as an exter-
nal knowledge source to enhance visual question-
answering systems. Additionally, we discuss a
range of question-answering datasets pertinent to
both visual and textual domains.
The KB-VQA task is categorized into two pri-
mary types: closed-domain and open-domain. In
a closed-domain KB-VQA task, the system is re-
stricted to a predefined set of knowledge, whereas
an open-domain KB-VQA task requires the sys-
tem to leverage a broader and potentially unlim-
ited range of external knowledge. Throughout the



paper, we review and analyze various methodolo-
gies that have been previously employed to tackle
these tasks. This includes a discussion on the inte-
gration of knowledge graphs with visual question-
answering systems, highlighting the strengths and
limitations of each approach.
Furthermore, the paper provides a detailed expla-
nation of the different evaluation metrics used to
assess the performance of QA and retrieval systems.
These metrics are crucial for understanding the ef-
fectiveness of various approaches and for bench-
marking progress in the field.
In summary, this paper not only outlines the cur-
rent state of KB-VQA research but also provides
insights into the challenges and potential future
directions for improving knowledge-based visual
question-answering systems.

9 Conclusion and Future Work

This paper examines various approaches for
knowledge-based visual question answering (KB-
VQA) tasks. Our findings indicate that incorporat-
ing real-time external knowledge as an additional
knowledge vector significantly enhances accuracy.
In open-domain visual question answering, accu-
racy improves substantially with the increase in
external knowledge sources. For closed-domain
KB-VQA tasks, effective filtering and the provi-
sion of relevant knowledge as an additional vector
markedly boost accuracy. Future work could fo-
cus on developing an end-to-end model that filters
knowledge and predicts answers based on the given
question and knowledge vector.
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Dataset Answer-Type Size Domain Evaluate Ability

ARC Multi-Choice 7,787 Science Reasoning

BoolQ Bool 16K Wikipedia Reasoning

BioASQ Span 282 Biomedical Articles Indexing

CaseHOLD Multi-Choice 53,137 Law Pre-training

bABi Bool/Entity 40K Open Domain Reasoning

CBT Entity 20K Children’s Book Model Memory

CliCR Entity 105K Medical Domain Knowledge

CNN and Daily Mail Entity 311K News Text Summarization

CODAH Multi-choice 4,149 Open Domain Commonsense

CommonsenseQA Multi-choice 12,247 ConceptNet Commonsense

ComplexWebQuestions Entity 34,689 Freebase Multi-hop

ConditionalQA Entity/Span 9983 Public Policy Multi-hop

COPA Multi-choice 1000 Commonsense Reasoning

CoQA Entity 127K Open Domain Conversation

DROP Span 96K Wikipedia Multi-hop

FinQA Number/Span 8,281 Finance Multi-hop

HotpotQA Entity 113K Wikipedia Multi-hop

JD Production QA Generation 469,953 E-commerce Domain Knowledge

LogiQA Multi-choice 8,678 Exam Reasoning

MCTest Multi-choice 2,000 Fictional Story Reading Comprehension

Mathematics Dataset Numeric 2.1 × 106 Mathematics Calculate

MS MARCO Generation 1,010,916 Web pages Search

NewsQA Span 100,000 CNN news Reading Comprehension

OpenBookQA Multi-choice 6000 Science Facts Reasoning

PIQA Multi-choice 21,000 Physical Physical

PubMedQA Multi-choice 1K Medical Summarization

RACE Multi-choice 100,000 Exam Reading Comprehension

ReClor Multi-choice 6138 Exam Logical

SCDE Exam 6K Exam Reading Comprehension

SimpleQuestions Entity 100K Freebase Knowledge

Squad Span 130,319 Wikipedia Reading Comprehension

TriviaQA Span 650K Open Domain Reading Comprehension

TweetQA Generation 13,757 Tweet Reading Comprehension

WikiHop Multi-choice 51,318 Wikipedia Multi-hop

WikiQA Sentence 3,047 Wikipedia Reading Comprehension

Table 3: Statistics of textual QA datasets


