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Abstract

Machine translation between linguistically dis-
similar languages poses a significant challenge,
particularly due to the scarcity of parallel cor-
pora. Neural machine translation (NMT) mod-
els represent the current state-of-the-art in this
field. However, NMT models demand vast
amounts of parallel training data to achieve op-
timal performance. For many languages, such
extensive parallel corpora are unavailable, lead-
ing to what is known as the low-resource prob-
lem. In this context, we describe techniques in
pivot-based machine translation, where a third
language, called pivot language, is employed to
enhance translation quality between the source
and target languages. We investigate the use of
a pivot language as one of the source languages
in a multi-source translation framework. This
paper presents a comprehensive survey of vari-
ous pivoting techniques, with a primary focus
on “Multi-source Pivot-based Neural Machine
Translation.” We extensively explore state-of-
the-art machine translation models and various
datasets for English-Indic language translation.
We aim to provide a comprehensive guide for
low-resource Machine Translation.

1 Introduction

India is a land with large linguistic diversity, with
22 languages recognized as scheduled languages
in its Constitution, alongside numerous local lan-
guages and dialects. Providing information in vari-
ous Indian languages, for domains such as health-
care, law, and tourism, is essential. While educa-
tional materials are mainly in English, many people
only understand their mother tongue or regional
language. Manual translation is time-consuming,
expensive, and requires domain knowledge, espe-
cially in fields like healthcare and education. Ma-
chine translation offers a promising solution, pro-
viding fast, cost-effective translations across vari-
ous domains.

The performance of Neural Machine Translation
(NMT) models has significantly improved with the
Transformer architecture (Vaswani et al., 2017).
However, they require large amounts of data, which
is often scarce for many language pairs (Arivazha-
gan et al., 2019). In such cases, Pivoting is useful,
where a source language is translated to an interme-
diate pivot language, which is then translated into
the target language (De Gispert and Marino, 2006;
Utiyama and Isahara, 2007). Toral et al. (2019);
Yeshpanov et al. (2024); Escolano et al. (2019);
Salloum and Habash (2013) suggests that pivoting
through a related high-resource language (HRL)
helps the translation into a low-resource language
(LRL).

Consider the case of language families such as
Indic, Turkic, Finnic, etc. where there will be a
few high-resource languages (HRL) and the rest
of them being low-resource (LRL). In the case of
Indic languages, Hindi and Marathi are HRL and
LRL, respectively, and in the case of Turkic lan-
guages Turkish and Turkmen are HRL and LRL,
respectively. In this case, English to HRL transla-
tion is of high quality, but English to LRL trans-
lation will fare poorly. However, given the high
similarity of the HRLs and LRLs, and therefore
the relative ease of translation between them, it
should be possible to leverage the HRL as a pivot
language when translating from English to LRL.
However, our preliminary exploration of English to
Indic LRL translation using Indic HRLs as pivots
yielded poorer results compared to state-of-the-art
systems, likely due to discarding the source lan-
guage sentence, prompting deeper exploration of
pivoting using both source and pivots jointly.

2 Background

Deep Neural Networks are powerful models for
machine learning that have demonstrated good per-
formance on various problems. However, they



face a challenge when used for machine transla-
tion, which is a sequence-to-sequence task where
the input and output sequences can have differ-
ent lengths. This is because deep neural networks
require fixed-size vectors for both the input and
output. To overcome this challenge, an encoder-
decoder architecture was introduced for neural ma-
chine translation. This architecture consists of an
encoder, which is a neural network that encodes the
input sequence into a fixed-length vector known as
the context vector. The context vector contains all
the information of the input sequence. The decoder,
which is another neural network, generates the out-
put sequence tokens based on the context vector.
By using this encoder-decoder architecture, deep
neural networks can be used for the sequence-to-
sequence task of machine translation, overcoming
the challenge of dealing with variable-length input
and output sequences.

2.1 Recurrent Neural Networks

Feed-forward neural networks do not consider the
sequential order of text data. On the other hand, Re-
current Neural Networks (RNNs) process the data
step by step in a sequential manner. This character-
istic of RNNs enables (Sutskever et al., 2014) them
to effectively capture the sequential information
present in the data. A notable paper by (Sutskever
et al., 2014) highlighted the effectiveness of RNNs
in processing sequential data. This is suitable for a
task involving sequential data like text.

The computation of Recurrent Neural Networks
(RNNs) involves calculating the hidden state for
each time step by considering both the input at
the current time step and the hidden state that was
generated at the previous time step. This enables
RNNs to incorporate information from past time
steps and use it to inform their processing at the
current time step.

ht = g(W hxxt +W hhht−1) (1)

In Recurrent Neural Networks used for sequence-
to-sequence tasks, such as neural machine transla-
tion, the weight matrices W hx and W hh are shared
across each time step. Additionally, the initial hid-
den state for the first time step is set to a zero vector.
Once the entire input sequence has been processed
by the encoder, the final hidden state at the last
time step is taken as the context vector. During the
decoding phase, the context vector is given as the
previous state to the first time step of the decoder,

and the input to the decoder is a start of sentence
token. For each subsequent time step, the hidden
state of the decoder is calculated based on the pre-
vious output token and the previous hidden state.
The output token is generated by passing the hid-
den state at each step through a linear layer with
an output size equal to the vocabulary size. After
applying a softmax function, a probability distribu-
tion over the vocabulary is obtained, and the word
with the highest probability is chosen as the output.

yt = W yhht (2)

2.2 Attention
Although Recurrent Neural Networks are capable
of capturing the sequential information of data, a
potential issue with RNNs is that they store the
entire context of the input sequence in a single
fixed-size vector. This can result in a bottleneck
problem, particularly for long input sequences, as
the fixed-size vector may not be able to fully con-
tain all the necessary contextual information. To
address this limitation, an attention mechanism was
introduced. This mechanism, introduced in a pa-
per by (Bahdanau et al., 2014) in 2014, allows the
model to focus on specific parts of the input se-
quence at each decoding step, rather than relying
on a single fixed-size vector to encode the entire
input sequence.

The function of the encoder in a Recurrent Neu-
ral Network remains unchanged, and its role is still
to encode the input sentence. At each time step,
the hidden state of the encoder is computed based
on the input at the current time step and the hidden
state generated at the previous time step. This en-
ables the encoder to take into account the sequential
nature of the input sequence and incorporate infor-
mation from previous time steps into the encoding
of the current time step.

ht = f(xt, ht − 1) (3)

In a Recurrent Neural Network, the decoder pro-
duces an output token at each time step based on
the decoder’s hidden state, which is determined by
the previous hidden state, the previous output token,
and the context vector. Unlike in a traditional RNN
where the context vector is a fixed-size vector com-
puted by the encoder, in the case of the attention
mechanism, the context vector changes for each
time step during the decoding process. It is calcu-
lated based on the weighted sum of the encoder’s
hidden states, where the weights are determined



Figure 1: Working of a RNN

Figure 2: Working of a bi-directional RNN using atten-
tion mechanism

by a soft alignment score between the decoder’s
hidden state at the current time step and each of the
encoder’s hidden states. This allows the decoder
to focus on different parts of the input sequence at
each time step and produce more accurate output
tokens.

si = f(si−1, yi−1, ci)yi = g(yi−1, si, ci) (4)

The context vector ci is computed as a weighted
sum of the hidden vectors hi at each time step.

ci =

Tx∑
j=1

αijhj (5)

The attention weights αij are computed by apply-
ing the softmax operation over the alignment scores
eij between the ith output position and the jth input
position.

αij =
exp(eij)∑Tx
k=1 exp(eik)

(6)

The attention scores, denoted as eij , are calculated
based on the relationship between the decoder hid-
den state at the previous time step and each of the
encoder hidden states at the current time step. For

each time step of the decoder, a set of attention
scores is computed that reflects the similarity be-
tween the decoder’s hidden state and each of the
encoder’s hidden states. These attention scores in-
dicate how relevant the input sequence is to the out-
put sequence at each time step of the decoder. By
weighting the encoder’s hidden states according to
these attention scores, the decoder can focus more
on the most relevant parts of the input sequence
and produce more accurate output tokens.

The attention mechanism enhances the decoder’s
ability to focus on key elements of the input se-
quence that are particularly relevant for generating
the current output token. These relevant elements
are assigned higher attention scores, causing their
associated hidden states to have a greater influence
on the context vector at the current decoding time
step.

2.3 Transformers

Recurrent neural networks compute the hidden
state at each time step sequentially, which means
that the current hidden state depends on the pre-
vious hidden state. This sequential computation
causes a delay, as the hidden state at time step
t cannot be computed until the hidden states till
time (t-1) are computed. This makes the encoding
process slow and non-parallelizable. To address
this limitation, the Transformer architecture was
introduced. The Transformer architecture has sig-
nificantly improved the performance of neural ma-
chine translation and has achieved state-of-the-art
results on translation tasks for different language
pairs.

The Transformer architecture(Vaswani et al.,
2017) introduced a novel approach to encode input
sequences using only the attention mechanism. In
contrast to recurrent neural networks, the Trans-
former performs self-attention over the entire input
sequence to compute the hidden state at the current
time step, which allows for parallel computation
of hidden states for all time steps. This eliminates



the need for sequential processing, making both
training and inference faster than with recurrent
neural networks. The Transformer has achieved
state-of-the-art results on machine translation tasks
for various language pairs.

Figure 3: Transformer Architecture

2.3.1 Encoder

The transformer encoder is made up of multiple
encoder layers, where the output of one layer serves
as the input to the next layer. Each encoder layer
has two sublayers - a multi-head self-attention layer
and a feed-forward neural network layer. Residual
connections are made around each encoder layer,
and layer normalization is applied at the end.

2.3.2 Decoder

The transformer decoder is composed of stacked
decoder layers. Each decoder layer contains three
sublayers: multi-head self-attention, multi-head
cross-attention, and a feed-forward neural network.
Like the encoder, residual connections are estab-
lished around each decoder layer, and then layer
normalization is performed.

Figure 4: Scaled Dot Product Attention

2.3.3 Scaled Dot-Product Attention
The Transformer model uses two types of atten-
tion mechanisms, namely self-attention and cross-
attention. Both these mechanisms employ scaled
dot-product attention, which is based on three input
vectors - Query, Key and Value - obtained by matrix
multiplication with their respective weight matrices.
The attention mechanism computes the compati-
bility of the query vector with all the key vectors,
which generates the attention scores. These scores
are then used to compute the weighted sum of all
the value vectors, which represent the input posi-
tions. The attention computation is as follows,

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (7)

The attention mechanism in the Transformer ar-
chitecture computes the compatibility between the
query and key vectors by performing the dot prod-
uct of the two vectors, and then scaling the value
by the square root of the dimensionality of the key
vectors, denoted as

√
dk. This is why this atten-

tion mechanism is referred to as scaled dot product
attention.

2.3.4 Self-Attention
The self-attention mechanism in the Transformer
computes the query, key, and value vectors from
the same input sequence, allowing it to attend to
different positions in the input sequence and gener-
ate a representation for each position based on the
information from other positions in the sequence.
In other words, the self-attention mechanism at-
tends to the input sequence itself to compute the
output representation.

2.3.5 Cross-Attention
Cross attention mechanism involves computing the
query vector from the decoder inputs, and key-



value vectors from the encoder outputs. This en-
ables the decoder to attend over the encoder outputs
while generating the output. Therefore, the decoder
attends to the input sequence using a cross attention
mechanism.

2.3.6 Multi-head Attention

Figure 5: Multi-head Attention

In the Transformer architecture, the attention
mechanism is not performed just once, but multiple
times using different weight matrices for query, key,
and value. Each set of weight matrices is called
an attention head. Multiple attention heads allow
the model to capture different patterns in the input
sequence. The outputs of each attention head are
concatenated and passed through a linear layer to
get the final attention output.

2.4 Pivot language

In MT the language from the text is translated is
called source and the language to the text is trans-
lated is called target, but in Pivot-based MT a third
language called pivot is introduced. This language
is usually relatively high-resource and linguistically
closer to the low-resource language. This language
acts as an intermediate assistant in translation and
helps to improve the translation quality.

2.5 Parallel Corpus

A Parallel Corpus is a corpus in which there are
pairs of sentences, the first sentence in the pair is a
sentence in language L1 and the second sentence
in the pair is the corresponding translation of the
sentence in language L2.

2.6 Machine Translation Evaluation

There are two types of evaluation, Human evalu-
ation and Automatic evaluation discussed as fol-

lows:

2.6.1 Human Evaluation
An individual evaluator who is fluent in both the
source and target languages reviews the machine-
translation output. The human evaluator assigns
a score to each translated output depending on a
predetermined factor. The evaluation conducted
might produce a single or several scores based on
predetermined criteria. Human evaluation is an
expensive and time-consuming process. Human
evaluation necessitates the recruitment of human
evaluators who are proficient in both the source and
target languages. However, human judgment gives
a high-quality assessment of machine-translation
output. The prevalent scoring technique for ma-
chine translation output is based on adequacy and
fluency.

Adequacy The adequacy of the translation is
determined by how well the information or mean-
ing in the source sentence is conveyed in the tar-
get sentence. Adequacy is an important criterion
for evaluating machine-generated translations be-
cause the target sentence must accurately reflect
the essence of the source sentence. An evaluator
manually assigns an adequacy score depending on
whether or not the source sentence’s essence is
correctly translated to the target sentence.

Fluency The fluency of a sentence is calculated
by judging how well-structured the sentence is in
that language. An extremely fluent sentence is one
that a native speaker of the language would pro-
duce. A human evaluator scores the fluency of a
translated sentence based solely on the quality of
the target sentence. A sentence’s fluency is deter-
mined by the words used the order in which they
appear, and the naturalness of the sentence to the
native speaker.

2.7 Automatic Evaluation
2.7.1 BLEU
Bilingual Evaluation Understudy or BLEU (Pap-
ineni et al., 2002), is a metric for assessing the
quality of translations produced by machine transla-
tion systems. It calculates a score by comparing the
machine-generated hypothesis sentences with refer-
ence sentences created by human translators. This
score reflects how closely the hypothesis matches
the reference.



pn =

∑
C∈Candidates

∑
n-gram∈C Countclip(n-gram)∑

C′∈Candidates
∑

n-gram′∈C′ Countclip(n-gram′)
(8)

BLEU employs modified n-gram precision,
which involves capping the count of a word in the
candidate translation to the word’s count in the ref-
erence sentence. The BLEU score is determined
by calculating the weighted sum of n-gram preci-
sion. To address the issue of overly long hypothesis
sentences, a brevity penalty factor is applied.

BP =

{
1 if c > r

e(1−r/c) if c ≤ r
(9)

BLEU = BP.exp(

N∑
n=1

wnlogpn) (10)

2.7.2 Subword BLEU
Subword BLEU is an adaptation of the BLEU score
that evaluates sentences based on subwords instead
of whole words. This method is particularly ad-
vantageous for assessing languages with complex
morphology, such as those found in India. To calcu-
late Subword BLEU, words in both hypothesis and
reference sentences are first segmented into sub-
words using techniques like Byte Pair Encoding
(BPE). The BLEU score is then determined using
these subword sequences.

2.7.3 chrF
(Popović, 2015) introduces the chrF score, short for
Character level N-gram F-score, which is employed
in the automatic evaluation of Machine Translation
(MT) systems. The score ranges from 0 to 100 and
is computed using the following formula:

CHRFβ =
(
1 + β2) CHRP · CHRR

β2 · CHRP+ CHRR
(11)

3 Dataset

The Bharat Parallel Corpus Collection (BPCC) is
a comprehensive and publicly available parallel
corpus that includes both human-labeled data and
automatically mined data, totaling approximately
230 million bitext pairs. This collection covers all
22 scheduled Indic languages and is divided into
two main parts: BPCC-Mined and BPCC-Human.

BPCC-Mined contains around 228 million pairs,
with nearly 126 million pairs newly added as part
of the current work. BPCC-Human comprises 2.2
million gold standard English-Indic pairs, includ-
ing an additional 644K bitext pairs from English

Wikipedia sentences (forming the BPCC-H-Wiki
subset) and 139K sentences covering everyday use
cases (forming the BPCC-H-Daily subset). No-
tably, BPCC provides the first available datasets
for seven languages and significantly increases the
available data for all covered languages.

The contribution from different sources is de-
tailed in the table 1

Additionally, the BPCC includes augmented
back-translation data generated by intermediate In-
dicTrans2 models for training purposes. Detailed
information on the selection of sample proportions
and sources can be found Gala et al. (2023).

4 IndicTransV2

IndicTrans2 (IT2) is the first translation model to
support all 22 scheduled Indian languages, trained
on the BPCC dataset. The advancements in trans-
lation quality achieved in this work, using existing
open models, are illustrated in Figure 6

5 Pivot-based Neural Machine
Translation

In this section, we discuss works related to pivoting
and multi-source pivot-based NMT.

Low-resource scenarios lack a direct parallel cor-
pus between source and target languages, meaning
there are limited linguistic resources for these lan-
guage pairs, rendering traditional translation mod-
els less effective. This challenge is common in
machine translation for many Indian languages spo-
ken by small communities. These languages often
share similarities in vocabulary and grammar with
more widely spoken Indian languages and can be
local variations of high-resource languages. How-
ever, they lack good translation tools due to insuf-
ficient matching text data for training models. To
address this, pivot-based methods can be employed.
In these methods, a high-resource language acts
as a bridge, or "pivot," between the low-resource
language and the target language, leveraging its
parallel corpora with both languages to enhance
the translation process.

5.1 Cascade-based approaches

In the paper titled “A Comparison of Pivot-Based
Methods for Machine Translation" authored by



Figure 6: BLEU scores of all the systems on the IN22-Gen Evaluation set in the En-Indic and Indic-En direction.
The best-performing system is bolded, while underlined results indicate significant performance differences where
IT2 outperforms the system. Avg means the average score of all the languages that system X supports. ∆ represents
the difference between the average scores of IT2 and the average scores of system X for the subset of languages that
both X and IT2 support. A positive value for ∆ indicates IT2 is better than X and vice-versa. † indicates completely
off-target translations



BPCC-Mined
Existing

Samanantar 19.4M
NLLB 85M

Newly Added
Samanantar++ 121.6M
Comparable 4.3M

BPCC-Human

Existing
NLLB 18.5K
ICLI 1.3M

Newly Added
Massive 115K

Wiki 644K
Daily 139K

Table 1: Data for BPCC-Mined and BPCC-Human

Utiyama and Isahara (2007), two distinct pivot-
based methods for machine translation are ex-
plored, and their performance is evaluated through
a comparative analysis with direct translation meth-
ods.

Phrase translation To create the source-to-
target phrase table, the researchers rely on phrase
translation probabilities in both directions, along
with lexical translation probabilities in both direc-
tions for source-to-pivot and pivot-to-target trans-
lations. The phrase translation probability is deter-
mined using the formula detailed in the paper.

φ(f̄ | ē) = count(f̄ , ē)∑
f̄ ′ count(f̄ ′, ē)

(12)

The calculation of the lexical translation probabil-
ity is carried out using the following formula:

w(f | e) = count(f, e)∑
f ′ count(f ′, e)

(13)

Ew(fi | ē, a) =
1

|{j | (i, j) ∈ a}|
∑

∀(i,j)∈a

w(fi | ej)

(14)

pw(f̄ | ē, a) =
n∏

i=1

Ew(fi | ē, a) (15)

pw(f̄ | ē) = max
a

pw(f̄ | ē, a) (16)

The process for determining the lexical transla-
tion probability involves several steps. First, the
maximum likelihood of an English word translat-
ing to a French word is computed based on word
counts using a function denoted as ‘w.’ Following

this, the expectation of a specific word alignment,
represented as ‘a,’ between English and French
phrase pairs is calculated. Finally, the probability
of the lexical translation is determined by utilizing
the alignment that yields the maximum probability.

The calculation of the forward phrase transla-
tion probability from the source language to the
target language involves utilizing both the forward
phrase translation probability from the source lan-
guage to the pivot language and the forward phrase
translation probability from the pivot language to
the target language. This combination of proba-
bilities is employed to estimate the likelihood of a
given phrase being translated effectively from the
source language to the target language via the pivot
language, as explained in the study.

θ(f |e) =
∑
pi

θ(f |pi) ∗ θ(pi|e) (17)

To calculate the reverse phrase translation prob-
ability from the source language to the target lan-
guage, the study employs the reverse phrase transla-
tion probability obtained from the source language
to the pivot language and the reverse phrase trans-
lation probability from the pivot language to the
target language. These probabilities are used in
tandem to estimate the likelihood of a phrase being
translated in the reverse direction, from the source
language to the target language, by way of the pivot
language. This approach provides insight into the
bidirectional translation dynamics, as outlined in
the research.

θ(e|f) =
∑
pi

θ(e|pi) ∗ θ(pi|f) (18)

The forward lexical translation probability from
the source language to the target language is de-
termined by combining the forward lexical trans-
lation probability from the source language to the



pivot language with the forward lexical translation
probability from the pivot language to the target
language. This combination of probabilities allows
for the estimation of the likelihood of a word or
phrase being effectively translated from the source
language to the target language via the pivot lan-
guage, as described in the research.

pw(f̄ | ḡ) =
∑

ē∈TF ∩TEG

pw(f̄ | ē) pw(ē | ḡ)

(19)
To calculate the reverse lexical translation prob-

ability from the source language to the target lan-
guage, the study employs both the reverse lexical
translation probability from the source language
to the pivot language and the reverse lexical trans-
lation probability from the pivot language to the
target language. This combination of probabili-
ties is used to estimate the likelihood of a word or
phrase being effectively translated from the source
language to the target language in the reverse di-
rection, through the intermediary of the pivot lan-
guage, as outlined in the research.

pw(ḡ | f̄) =
∑

ē∈TF ∩TEG

pw(ḡ | ē) pw(ē | f̄)

(20)
Sentence translation In the sentence translation

method, the entire source sentence is initially trans-
lated into the pivot language, which serves as an
intermediary. This pivot language translation is
then employed to generate the final translation in
the target language. This technique necessitates the
use of two distinct statistical machine translation
systems: one for source-to-pivot translation and
another for pivot-to-target translation.

To translate a source sentence into a target sen-
tence, it’s first rendered into ‘n’ pivot language
sentences using a source-to-pivot model trained
on the source-to-pivot corpus. Here, ‘n’ is a hy-
perparameter, and it determines the number of
alternative translations produced. Each of these
translations is evaluated and assigned scores based
on various features, which include forward and
reverse phrase translation probabilities, forward
and reverse lexical translation probabilities, trigram
language model probability, word penalty, phrase
penalty, and linear reordering penalty.

The word penalty reflects the cost associated
with generating an incorrect word in the translation,
while the sentence penalty accounts for the penalty
incurred for generating the wrong sentence. The

word reordering penalty is applied when the trans-
lation places words in an incorrect order. These fea-
tures collectively contribute to assessing the quality
and accuracy of the translation produced by the
sentence translation method.

f → ei(hi1, hi2, . . . , hi8) (21)

→ gij(hij1, hij2, . . . , hij8) (22)

S(gij) =
8∑

m=1

(λe,mh
(e)
i,m + λg,mh

(g)
ij,m) (23)

g = argmax
gij

S(gij) (24)

In the sentence translation method, a compre-
hensive function that takes into account all the
specified features is computed separately for both
the source-to-pivot translation and the pivot-to-
target translation. Subsequently, these functions
are scaled using weights that are trained. This pro-
cess results in the selection of the highest-scoring
translation for the source-to-target language pair.
By weighing the various features and considering
both the source-to-pivot and pivot-to-target phases,
the method aims to generate the most accurate and
contextually relevant translation from the source
language to the target language.

Multiple pivot-based Machine Translation
The paper titled “Leveraging Small Multilingual
Corpora for SMT Using Many Pivot Languages"
by Dabre et al. (2015) introduces an innovative ap-
proach to pivot-based machine translation. This
technique leverages multilingual corpora to facil-
itate translation through the use of multiple pivot
languages. The key idea is to address the com-
mon problem of insufficient or unavailable parallel
corpora between the source and pivot languages
by tapping into multilingual data, which is often
more accessible in smaller quantities. By doing
so, the authors argue that it’s possible to create a
more robust parallel corpus compared to using a
single pivot language, and they provide evidence to
support this assertion through their implementation
and results.

The study’s focus centers on the task of trans-
lating from Hindi to Japanese. To achieve this,
they employ a three-step method. First, they align



the multilingual corpora using phrase table trian-
gulation. Then, they construct a phrase table, and
finally, they build the actual translation system.

In the phrase table triangulation step, the paper
discusses the calculation of forward and reverse
probabilities. Forward probabilities represent the
likelihood of a source phrase being translated into
a specific target phrase, while reverse probabilities
capture the probability of the target phrase translat-
ing back into the source phrase.

Crucially, the paper explains that the forward
phrase translation probability from source-to-target
is computed by utilizing the forward phrase transla-
tion probability of source-to-pivot and the forward
phrase translation probability of pivot-to-target.
This approach offers an intriguing glimpse into
the complexities of their methodology and the way
they tackle the challenges associated with multilin-
gual pivot-based translation.

θ(f |e) =
∑
pi

θ(f |pi) ∗ θ(pi|e) (25)

Pw(f |e, a) =
∑
pi

Pw(f |pi, a1) ∗ Pw(pi|e, a2)

(26)
The calculation of reverse phrase translation

probability, which pertains to translating from the
source language to the target language, involves
utilizing the reverse phrase translation probabil-
ity derived from source-to-pivot and the reverse
phrase translation probability obtained from pivot-
to-target. This process underlines the intricate in-
terplay between the source language, the pivot lan-
guage, and the target language in the translation
model, as explained in the paper.

θ(e|f) =
∑
pi

θ(e|pi) ∗ θ(pi|f) (27)

Pw(e|f, a) =
∑
pi

Pw(e|pi, a2) ∗ Pw(pi|f, a1)

(28)
In their work, the process is iterated for each in-

dividual pivot language, resulting in the generation
of a substantial parallel corpus that encompasses a
wide array of potential translations for every phrase.
Simultaneously, the researchers compute the for-
ward and reverse probabilities for these translations.
The paper discusses several techniques for fusing
these distinct phrase tables, including linear inter-
polation, fillup interpolation, and the incorporation
of multiple decoding paths.

Within the context of linear interpolation, the
researchers adopt an approach where they multiply
the probabilities obtained from direct translation
with those stemming from pivot-based translation,
effectively scaling the probabilities. This method
enables them to assign different weights to the prob-
abilities derived from direct translation and the var-
ious pivot languages. Notably, the research places
a high emphasis on the direct translation probabil-
ity, while allocating relatively lower weightage to
the pivot translation probabilities. This strategic
choice aims to strike a balance that optimally com-
bines the strengths of both direct and pivot-based
translations, as elucidated in the paper.

θ(f |e) = α0 ∗ θdirect(f |e) +
∑
li

αli ∗ θli(f |e)

(29)
The fillup interpolation technique operates with

a distinct focus. Instead of altering the probabilities
associated with phrase translations already existing
in the direct translation table, it concentrates on
populating the vacant slots within the table. Essen-
tially, it introduces phrase pairs that are missing
in the direct phrase table and assigns them proba-
bilities calculated using data from pivot languages.
This approach aims to comprehensively augment
the direct translation table by incorporating phrase
translations that would otherwise be absent.

In contrast, the multiple decoding path technique
takes a different route. It sidesteps the process
of merging tables and, during the decoding stage,
refers to all available decoding paths stemming
from both the direct and pivot-based phrase tables.
By doing so, it strives to yield the most optimal
results by considering multiple avenues for transla-
tion, thus potentially enhancing the overall transla-
tion quality.

5.2 Transfer learning

Zoph et al. (2016) introduced a new paradigm in
pivoting, called “Pivoting via Transfer learning."
The basic approach involves training the model for
HRL and then fine-tuning it for LRL.

In the paper titled “Pivot-based Transfer Learn-
ing for Neural Machine Translation between Non-
English Languages" authored by Kim et al. (2019),
a novel approach is introduced, centering around
transfer learning, to enhance the performance of
neural machine translation (NMT) systems. Trans-
fer learning is a technique that revolves around
leveraging knowledge acquired while performing



one task and applying it to a related but distinct
task.

Figure 7: Plain transfer learning

The proposed method is structured into two key
stages: pretraining and fine-tuning. In the pretrain-
ing stage, the source-to-pivot encoder-decoder is
trained using the source-to-pivot parallel corpus. Si-
multaneously, the pivot-to-target encoder-decoder
is also trained using the pivot-to-target parallel cor-
pus.

Moving on to the fine-tuning stage, the source-
to-target encoder-decoder model is initialized. This
initialization is accomplished by using two main
components: the source-to-pivot encoder-decoder
and the pivot-to-target encoder-decoder. This step
of initializing the source-to-target model can be
achieved through three distinct approaches: step-
wise pretraining, pivot adapter, and cross-lingual
encoder. These techniques play a pivotal role in
adapting the model for effective translation be-
tween non-English languages, as described in the
paper.

Figure 8: Step-wise pretraining

Step-wise pretraining In the step-wise pretrain-
ing approach, the process unfolds in a sequential
manner. First, the source-to-pivot encoder-decoder
is trained using the source-to-pivot parallel data.
Subsequently, the pivot-to-target encoder-decoder
is trained using the pivot-to-target parallel data. In
this method, the model is initialized using the pa-
rameters of the source-to-pivot encoder-decoder
model.

During the training phase of the pivot-to-target
encoder-decoder, a particular strategy is employed.

Only the decoder parameters are updated, while the
encoder parameters are held constant (frozen). By
implementing this, the result is an encoder-decoder
model wherein the encoder is adept at encoding the
source language, and the decoder excels at translat-
ing into the target language. Following this train-
ing, the encoder parameters from this model are
transferred to the encoder of the source-to-target
model, and the decoder parameters are copied to
the source-to-target decoder. Consequently, the
source-to-target model is fine-tuned using a smaller
dataset of source-to-target parallel data, aiming to
enhance its performance for translation between
non-English languages.

Figure 9: Adapter-based method

Pivot adapter In the pivot adapter method, the
process follows a specific sequence. Initially, the
source-to-pivot encoder-decoder is trained using
the source-to-pivot parallel data. Subsequently, the
pivot-to-target encoder-decoder is trained using the
pivot-to-target parallel data.

Following these training phases, the adaptation
process takes place. Specifically, the encoder pa-
rameters from the source-to-pivot model are copied
into the encoder of the source-to-target model. Si-
multaneously, the decoder parameters from the
pivot-to-target decoder are transferred to the source-
to-target decoder.

However, the unique aspect of the pivot adapter
method lies in the subsequent adaptation using a
source-pivot adapter. This adapter is designed to
fine-tune the encoded embeddings of a sentence
from the source encoder and the corresponding
embeddings from the pivot encoder. Its goal is to
scale the source encoder embeddings within the
pivot encoder embedding space and minimize the
distance between these embeddings.

Once this adaptation process is complete, the
model is prepared to perform source-to-target trans-
lation, having been adjusted to effectively leverage
information from the pivot language in the transla-



tion process.

M = argmin
M

∑
s,p

∥Ms− p∥2 (30)

Figure 10: Cross-lingual encoder method

Cross-lingual encoder In the cross-lingual en-
coder approach, the process begins with the train-
ing of the source-to-pivot encoder-decoder using
the source-to-pivot parallel data. Subsequently,
the model undergoes an additional training phase,
wherein it learns to encode and decode mono-
lingual pivot data by attempting to decode the
same sentences. Following this, the pivot-to-target
encoder-decoder is trained using the pivot-to-target
parallel data.

Once these training steps are complete, the en-
coder parameters from the source-to-pivot model
are transferred to the encoder of the source-to-
target model. Similarly, the decoder parameters
from the pivot-to-target decoder are copied to the
source-to-target decoder. Notably, the results in-
dicate that the different methods employed to per-
form translation without the availability of paral-
lel data yield comparable performance to models
trained on parallel data.

Among the methods tested, the models that com-
bine step-wise pretraining and cross-lingual en-
coder exhibit the most promising results, perform-
ing exceptionally well. Models trained using the
pivot adapter method also deliver competitive re-
sults and closely follow the top-performing models.
These findings suggest that the proposed approach,
which involves combining various techniques and
leveraging transfer learning, can be highly effec-
tive in improving the performance of neural ma-
chine translation systems between non-English lan-
guages, as demonstrated in the experiments.

5.3 Multi-source approaches
Multi-source NMT is a paradigm where multiple se-
mantically equivalent source sentences from differ-

ent languages are used to produce translation in tar-
get language. We discuss multiple Multi-sourcing
techniques through lens of pivoting.

5.3.1 Multi-Source Neural Translation
Zoph and Knight (2016); Firat et al. (2016) intro-
duced the multi-source technique in NMT, which
exploits multiple source languages to improve
translation accuracy in the target language. This
method involves using multiple parallel source sen-
tences to produce the target sentence. They em-
ployed an encoder-decoder framework with multi-
ple encoders, each dedicated to one of the source
languages. The combined representation of these
encoders is fed to the decoder to generate the target
sentence.

They experimented with three different methods
for combining the encoder representations of mul-
tiple sources. The first method involves concatenat-
ing the encoder representations and feeding them
to the decoder. The second approach adds a hidden
layer before the decoder, allowing the model to
learn weights for this layer, thus giving weightage
to each source. The third approach includes an at-
tention mechanism, where hidden states from the
top decoder layer can look back at the top hidden
states from the encoder. The top decoder hidden
state is then combined with a weighted sum of the
encoder hidden states to create a better-hidden state
vector.

These methods resulted in a significant im-
provement over the one-to-one translation baseline,
demonstrating the effectiveness of the multi-source
approach.

5.3.2 Multi-Source Neural Machine
Translation with Missing Data

Nishimura et al. (2018b) leverage an incomplete
multilingual corpus to enhance translation qual-
ity using multi-source neural machine translation
(NMT). In practical scenarios, it’s common to have
parallel data in multiple languages, while some
data is only available in a subset of these languages.
They use this incomplete multiway parallel data
with the Multi-encoder NMT method proposed by
Zoph and Knight (2016) and the mixture of NMT
expert techniques from Garmash and Monz (2016)
to outperform conventional one-to-one NMT sys-
tems. By incorporating a <NULL> token for miss-
ing sources during training, their approach effec-
tively utilizes partially available multiway paral-
lel data, resulting in significant improvements in



machine-translation output.

5.3.3 Input Combination Strategies for
Multi-Source approach

Libovický and Helcl (2017) investigate various at-
tention mechanisms in the context of multi-source
NMT. They present three strategies: serial, par-
allel, and hierarchical. In the serial strategy,
encoder-decoder attention is computed sequentially
for each input encoder. The query set for each
cross-attention is derived from the preceding self-
attention’s context vectors. In the parallel combina-
tion strategy, each encoder is attended to indepen-
dently, with the resulting context vectors summed
up. All encoders are attended using the same set
of queries from the self-attention sub-layer. The
hierarchical combination involves computing at-
tention independently for each input, treating the
resulting contexts as states for another input, and
then computing attention again over these states.

Their evaluation of multi-source MT demon-
strates significant enhancements over single-source
baselines. However, adversarial evaluation reveals
heavy reliance on the English input, with additional
source languages primarily influencing minor out-
put modifications.

5.3.4 Transfer Learning for Multi-source
approach

Huang et al. (2020) introduced a novel approach to
leverage pre-trained models for multi-source Neu-
ral Machine Translation (NMT). They noted that
directly employing pre-trained models and fine-
tuning them for multi-sourcing might lead to catas-
trophic forgetting. To address this, they proposed a
two-stage pre-training method.

In the first stage, the model is trained on mono-
lingual corpora to learn the sequence generation
task. Subsequently, in the second stage, the model
is trained using parallel data for translation tasks.
Finally, fine-tuning is conducted for multi-sourcing.
This gradual training process ensures better perfor-
mance compared to baseline multi-source models.

Their approach demonstrates that this phased
pre-training significantly enhances the model’s abil-
ity to handle multi-source translation tasks effec-
tively.

5.3.5 Multi-Source Neural Machine
Translation with Data Augmentation

(Nishimura et al., 2018a) highlight the challenge
of training multi-source Neural Machine Transla-
tion (NMT) systems due to the scarcity of complete

parallel corpora in multiple source languages and
the target language. To address this issue, they
propose a data augmentation technique wherein
they iteratively train two multi-source NMT sys-
tems. Initially, they trained the first system to gen-
erate synthetic data for missing source languages.
Then, they utilize this synthetic data to train a sec-
ond multi-source NMT system. Subsequently, the
second system generates additional synthetic data,
which is used to further train the first system. This
iterative process continues until both systems’ per-
formance converges.

Their approach demonstrates superior perfor-
mance compared to both traditional multi-source
systems trained solely on complete data and one-
to-one translation systems.

6 Summary and Conclusion

In this paper, we explore pivot-based machine trans-
lation for English to low-resource Indic languages
using multi-source techniques. We begin by trac-
ing advancements in Neural Machine Translation
and discussing the challenges in this field. Next,
we review the current state-of-the-art methods and
available datasets for English to Indic translation.
Focusing on the low-resource scenario, we delve
into pivot-based approaches used to address this
issue and provide a detailed discussion on multi-
source pivoting. We aim for this paper to serve as
a valuable guide for those embarking on research
in low-resource Machine Translation.
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