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Abstract

This survey explores the evolution of learning
algorithms for text summarization, focusing on
the transition from Supervised Learning (SL)
to Reinforcement Learning (RL). Text summa-
rization, the task of generating concise sum-
maries from larger documents, has traditionally
relied on SL, which uses labeled datasets to
train models by maximizing the likelihood of
producing specific outputs given certain inputs.
However, SL’s limitations in handling the vari-
ability and diversity of natural language have
prompted a shift towards RL. RL allows for
the incorporation of diverse and meaningful re-
wards, promoting output diversity and semantic
similarity. The survey highlights key advance-
ments in RL for text summarization, including
the development of several reward functions
beyond traditional metrics like ROUGE, such
as BERTSCORE for semantic similarity and
rewards for factual accuracy. By examining
the relevant datasets, evaluation schemes, and
emerging trends in reward design, this survey
provides a comprehensive overview of the cur-
rent state and future directions of RL in text
summarization. Key challenges and potential
areas for further research are also discussed.

1 Introduction

Supervised Learning and Reinforcement Learning
have both been used across the spectrum of Nat-
ural Language Generation Tasks (Nallapati et al.
(2016); Rush et al. (2015); Paulus et al. (2017);
Roit et al. (2023), inter alia). Supervised Learn-
ing (SL) uses labeled datasets, that is, the datasets
have both inputs (Xi) and outputs (Yi); of the form:
D = {(Xi, Yi)}. SL trains the model by using
the following objective: maximize the likelihood
of observing the output Yi, given the input Xi. In
essence, SL attempts to train a model to do a task
by showing demonstrations for the task. On the
other hand, Reinforcement Learning (RL) goes be-
yond this objective, and allows the programmer

(developer of the model) to use other rewards. For
instance, RL for Text Summarization (the task of
automatically generating concise summaries from
large documents) has historically used lexical over-
lap between generated and ground truth summary
as a reward (Paulus et al., 2017). Concretely, RL
trains the model by using the following objective:
generate such an output Y ′

i , on the input Xi, which
maximizes the obtained reward. In essence, RL
attempts to encourage the model to generate out-
puts that maximize the reward. Notice that such an
objective removes the constraint of having ground
truth outputs (Yi). We demonstrate the working
of SL and RL by taking a paraphrasing example1

below:

An Example. Say we have a dataset with just
one instance, with the input (X) and output (Y )
given below. Y represents a paraphrased version
of X .
X: “The quick brown fox jumps over the lazy

dog.”
Y : “The agile brown fox leaps across the slug-

gish dog.”
Supervised Learning (SL) trains the paraphraser

model to maximize the likelihood of Y (The agile
brown fox leaps across the sluggish dog.) given X ,
over all possible combinations.

Reinforcement Learning (RL) goes beyond such
a training scheme. We can appreciate that there can
be several paraphrases for X , all equally valid and
correct. RL can help promote this diversity-based
behaviour, by letting the user choose an appropriate
reward function. Say, for this example, we have
some reward function (f ) which can compute the
similarity of meaning between some generation
by the paraphraser model Y ′ and the given input
X . RL can use this f to help train the paraphraser
model. The paraphraser model generates several

1The choice of paraphrasing as an example task is guided
by the fact that inputs and outputs are small in size.



paraphrases, which are then rewarded by f . This
feedback is used to maximize the likelihoods for
generations with high similarity, not just the Y .

Through the example above, we understand a
crucial drawback in employing Supervised Learn-
ing for Natural Language Generation tasks. There
is inherent variability and diversity in Natural Lan-
guage, where the same meaning can be conveyed
through different lexical and syntactic construc-
tions. Supervised Learning, with the objective of
maximizing the likelihood of a single output for
an input, fails to uphold this property of Natural
Language. This is a significant reason for explor-
ing Reinforcement Learning in Natural Language
Generation tasks.

With the motivation of promoting diversity in
outputs, several works have explored Reinforce-
ment Learning (RL) for Natural Language Gen-
eration tasks. In the task of Text Summarization,
Paulus et al. (2017); Pasunuru and Bansal (2018);
Li et al. (2019) are a few representative works.
Paulus et al. (2017) explore the usage of ROUGE
(which is a lexical overlap based scoring function)
as a reward function. Pasunuru and Bansal (2018);
Li et al. (2019) provide follow-up works with bet-
ter reward functions. Both these works stress that
ROUGE is not a sufficiently good reward for Sum-
marization, as it does not promote properties like
semantic similarity, or penalize properties like re-
dundancy within the generated summary. Pasunuru
and Bansal (2018) provide an additional reward
Saliency that checks if the summary incorporates
important aspects. Li et al. (2019) propose the
usage of BERTSCORE as an additional reward, to
promote semantic similarity. In a similar way, Roit
et al. (2023); Tang et al. (2023) attempted to reward
factuality within generated summaries.

In this survey we look at how Learning algo-
rithms have evolved for Text Summarization, from
Supervised Learning to Reinforcement Learning.
This has promoted a shift in focus from searching
for better and bigger architectures, to designing bet-
ter rewards for the Reinforcement Learning algo-
rithm. The survey is structured as follows: Section
2 introduces the Text Summarization tasks, Section
4 provides a listing of the relevant datasets, Section
5 highlights the popular evaluation schemes used in
these tasks, Section 6 introduces some Supervised
Learning methods, Section 7 highlights the recent
emergence of Reinforcement Learning methods,
and discusses the trends in the Rewards used, Sec-

tion 8 highlights the challenges existent in current
approachs, and finally Section 9 summarizes our
Survey.

2 Background: Text Summarization

Text Summarization is a field of research that aims
to generate a concise and coherent summary of a
single document or multiple documents. The goal
is to produce a summary that captures the most im-
portant information from the source text, providing
a clear and brief overview without requiring the
reader to go through the entire document.

A practical example includes:
Document2 - Climate change affects the social

and environmental determinants of health – clean
air, safe drinking water, sufficient food and secure
shelter. Between 2030 and 2050, climate change
is expected to cause approximately 250,000 addi-
tional deaths per year, from malnutrition, malaria,
diarrhea and heat stress. · · · The direct damage
costs to health are estimated to be between USD
2-4 billion per year by 2030. · · · Areas with weak
health infrastructure – mostly in developing coun-
tries – will be the least able to cope without as-
sistance to prepare and respond. Reducing emis-
sions of greenhouse gases through better transport,
food and energy-use choices can result in improved
health, particularly through reduced air pollution.

Summary - Climate change impacts health by af-
fecting air, water, food, and shelter. It is expected to
cause 250,000 additional deaths annually between
2030 and 2050 and cost USD 2-4 billion per year in
health damages. Developing countries with weak
health infrastructure are most vulnerable. Reduc-
ing greenhouse gas emissions can improve health
by decreasing air pollution.

Text summarization has significant applications
and potential impacts across various domains. In
news aggregation, it helps users quickly grasp key
points of articles, making information consumption
more efficient. In document management, summa-
rization assists in handling large volumes of text,
enabling quicker access to essential information. In
scientific research, it allows researchers to stay up-
dated with the latest findings by providing concise
summaries of academic papers.

According to Statista (Figure 1), the global
data volume is projected to grow from 33 zettabytes
in 2018 to 181 zettabytes by 2025. This exponential

2The document has been taken from
who.int/news-room/climate-change-and-health

https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health


increase highlights the necessity for efficient infor-
mation processing tools like text summarization.
Summarization can manage this information over-
load, enhancing productivity and decision-making.
By distilling essential information from vast texts,
summarization tools make information more acces-
sible and actionable, significantly impacting educa-
tion, healthcare, business, and beyond.

Figure 1: Growth of the volume of digital data (in
zettabytes) from 2010 to 2025 (forecasted). We can
see that the volume crossed the 100 zettabytes mark
in 2023 (1 zettabyte = 1 billion terabyte). Source:
statista.com/digital-data

In this survey work, we look at two specific kinds
of summarization — (a) Query-focused Summa-
rization (Section 2.1), and (b) Opinion Summa-
rization (Section 2.2).

2.1 Query-focused Summarization
Query-focused Summarization (QfS) is a special-
ized field of research withing Text Summarization
that aims to generate a summary from a single doc-
ument or multiple documents based on a provided
query. This type of summarization is particularly
useful when dealing with open-ended questions,
which require more comprehensive and context-
specific responses compared to straightforward fac-
tual queries. The input and output are concretely
stated below:
Input: Query and Document.
Output: A summary pertaining to the query, from
the document.

A practical example of QfS is as follows:
Query: What is String Pool in Java?
Document3: String pool is nothing but a storage

area in Java heap where string literals store. It is
also known as String Intern Pool or String Con-
stant Pool. · · · It is just like object allocation. By

3The document has been taken from
javatpoint.com/string-pool-in-java

default, it is empty and privately maintained by the
Java String class. Whenever we create a string, the
string object occupies some space in the heap mem-
ory. Creating a number of strings may increase
the cost and memory too, which may reduce the
performance. · · · The JVM performs some steps
during the initialization of string literals that in-
crease the performance and decrease the memory
load. To decrease the number of String objects cre-
ated in the JVM, the String class keeps a pool of
strings. When we create a string literal, the JVM
first checks that literal in the String pool. · · · If the
literal is already present in the pool, it returns a
reference to the pooled instance. If the literal is not
present in the pool, a new String object takes place
in the String pool.

Summary: A String Pool in Java is a specific
area in memory allocated to store string literals.
It optimizes memory usage and improves perfor-
mance by reusing existing string instances.

Query-focused Summarization has several im-
portant applications, making it highly valuable in
various domains:

• Customized Search Engine Results: Such
systems can be deployed to produce coherent
summaries of top-ranked websites based on
the user’s query. Companies like Google and
You.com are exploring this application to en-
hance search engine results by providing more
relevant and concise information.

• Summarization in Conversational Question
Answering (CoQA): Exploring summariza-
tion capabilities in Conversational Agents has
been a long-standing research interest. Re-
cent surge of Large Language Model based
chatbots (ChatGPT, OpenAI (2023); Gemini,
DeepMind (2023); Claude, Anthropic (2023))
has shown the importance of Query-focused
Summarization within Conversational Agents.

2.2 Opinion Summarization
Opinion Summarization is another specialized field
of research within Text Summarization that aims to
generate a coherent summary of opinions expressed
towards a product (such as phones, laptops, books,
etc.) or a service (such as movies). This type of
summarization is particularly useful for aggregat-
ing and condensing subjective viewpoints, such
as product reviews, customer feedback, or social
media posts. The input and output are concretely
stated below:

https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.javatpoint.com/string-pool-in-java
https://www.google.com
https://www.you.com


Input: Reviews containing opinions about a prod-
uct/service from the users.
Output: A summary that encapsulates the overall
sentiment and key points from the reviews.

A practical example of Opinion Summarization
is as follows:

Input Reviews:

Review 1: The new smartphone model
has a fantastic battery life and an impres-
sive camera. However, the screen size is
too large for my liking.

Review 2: I love the sleek design and the
battery life is outstanding. But, the phone
is a bit too expensive for the features it
offers.

Review 3: Great camera quality and the
battery lasts all day. The large screen
makes it difficult to use with one hand
though.

Opinion Summary: The new smartphone is
praised for its excellent battery life and camera
quality. However, users find the large screen size
inconvenient and consider the phone to be over-
priced.

Opinion Summarization has several important
applications, making it highly valuable in various
domains:

• Product Reviews Analysis: This system can
be deployed to aggregate and summarize cus-
tomer reviews on e-commerce platforms. For
example, it can provide a comprehensive sum-
mary of user opinions on a new product, help-
ing potential buyers make informed decisions.

• Customer Feedback Insights: Companies
can use opinion summarization to analyze cus-
tomer feedback from surveys or support tick-
ets, identifying common themes and areas for
improvement. This can significantly enhance
customer satisfaction by addressing frequent
issues and improving services.

• Social Media Monitoring: In the realm of
social media, opinion summarization can help
track public sentiment about brands, products,
or events. It can condense vast amounts of
social media posts into a digestible format, al-
lowing businesses to quickly understand pub-
lic perception and react accordingly.

By distilling subjective content into concise and
insightful summaries, Opinion Summarization en-
hances the accessibility and utility of opinion data,
providing actionable insights that can drive better
decision-making across various sectors.

3 Background: Reinforcement Learning

Reinforcement Learning (RL) is a framework
for learning optimal decision-making strategies
through interaction with an environment. In RL, an
agent takes actions in an environment and receives
feedback in the form of rewards or penalties, which
it uses to learn a policy that maximizes cumula-
tive rewards over time. We describe the necessary
terminologies below. This section formalizes the
key concepts of Reinforcement Learning, including
Markov Decision Processes (MDPs), Value Func-
tions, and Policy Optimization.

Necessary Terminologies. Before diving into the
depths of Reinforcement Learning, let us look at
a few important definitions that are frequently ob-
served in the literature:

Agent: This is the entity we are trying to train
to take rational and intelligent decisions. For ex-
ample, in the context of text summarization, the
Summarizer Model is the Agent.

Environment: Environment is the surrounding
that the agent interacts with. Environment is what
provides a reward/penalty to the agent. For ex-
ample, in the context of text summarization, the
Input Document and the Oracle that judges the
summary form the Environment.

State: State defines the current situation the
agent is in. For example, in the context of text
summarization, the Partially Generated Summary
at any time-step t and the Input Document form
the State.

Action: Action is the choice that the agent takes
while in a state. This takes the agent from one state
to another. For example, in the context of text sum-
marization, the Generated Token represents the Ac-
tion.

Policy: Policy is the thought process that the
agent follows to take an action while in a state.

Trajectory: Trajectory is the sequence of actions
taken by the agent. For example, in the context of
text summarization, the Generated Summary rep-
resents the Trajectory.



3.1 Markov Decision Processes
A Markov decision process (MDP) is a for-
mal framework for modeling sequential decision-
making problems. An MDP is defined by a tuple
(S,A, P,R, γ), where:

• S is the state space, representing all possible
states of the environment.

• A is the action space, representing all possible
actions the agent can take.

• P : S × A × S → [0, 1] is the transition
function, which specifies the probability of
transitioning from one state to another given
an action.

• R : S ×A → R is the reward function, which
maps state-action pairs to immediate rewards.

• γ ∈ [0, 1] is the discount factor, which deter-
mines the importance of future rewards rela-
tive to immediate rewards.

The goal in an MDP is to find a policy π : S →
A that maps states to actions, maximizing the ex-
pected cumulative reward over time.

3.2 Value Functions
Value functions provide a way to evaluate the qual-
ity of states and state-action pairs under a given
policy. The state-value function V π(s) represents
the expected cumulative reward starting from state
s and following policy π:

V π(s) = E

[ ∞∑
t=0

γtR(st, at) | s0 = s, π

]

where at ∼ π(st) and st+1 ∼ P (st+1 | st, at).
The action-value function Qπ(s, a) represents the
expected cumulative reward starting from state s,
taking action a, and following policy π:

Qπ(s, a) = E

[ ∞∑
t=0

γtR(st, at) | s0 = s, a0 = a, π

]
Value functions satisfy recursive relationships

known as Bellman equations. For the state-value
function, the Bellman equation is:

V π(s) =
∑
a∈A

π(a|s)
(
R(s, a)

+ γ
∑
s′∈S

P (s′|s, a)V π(s′)
)

For the action-value function, the Bellman equation
is:

Qπ(s, a) = R(s, a) + γ
(∑

s′∈S
P (s′|s, a)

∑
a′∈A

π(a′|s′)Qπ(s′, a′)
)

3.3 Policy Optimization
Policy Optimization involves finding the policy
that maximizes the expected cumulative reward.
One common approach is policy iteration, which
alternates between policy evaluation and policy im-
provement. In policy evaluation, the value function
under the current policy is computed using the Bell-
man equations. In policy improvement, the policy
is updated to be greedy with respect to the current
value function:

π′(s) = argmax
a∈A

Qπ(s, a)

This process iterates until convergence, resulting
in an optimal policy π∗ that maximizes cumulative
rewards.

Another approach is value iteration, which di-
rectly updates the value function using the Bellman
optimality equation:

V ∗(s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

)
The optimal policy is then derived from the optimal
value function:

π∗(s) = argmax
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

)
3.4 Exploration vs. Exploitation
A fundamental challenge in Reinforcement Learn-
ing is the exploration-exploitation trade-off, where
the agent must balance between exploring new ac-
tions to discover potentially better policies and
exploiting known actions to maximize immediate
rewards. Strategies such as epsilon-greedy explo-
ration and upper confidence bound (UCB) methods
are commonly used to address this trade-off (Sutton
and Barto, 2018).

In epsilon-greedy exploration, the agent selects
a random action with probability ϵ and the best-
known action with probability 1− ϵ. This ensures
a balance between exploration and exploitation:

at =

{
random action with probability ϵ

argmaxa∈AQ(st, a) with probability 1− ϵ



Upper confidence bound (UCB) methods select
actions based on both their estimated value and the
uncertainty in their estimates, encouraging explo-
ration of less certain actions:

at = argmax
a∈A

(
Q(st, a) + c

√
log t

N(st, a)

)

where c is a constant controlling the degree of ex-
ploration, t is the time step, and N(st, a) is the
number of times action a has been taken in state st.

3.5 Examples of Reinforcement Learning
Applications

Reinforcement Learning has a wide range of ap-
plications, demonstrating its versatility and effec-
tiveness in solving complex decision-making prob-
lems:

1. Game Playing: RL has been successfully ap-
plied to games, such as AlphaGo (Silver et al.,
2016), where the agent learns to play the game
at a superhuman level.

2. Robotics: RL is used in robotics for tasks like
robotic arm manipulation and autonomous
driving, where the robot learns to perform
tasks through trial and error.

3. Summarization: RL has beeen used to im-
prove text summarization (Paulus et al., 2017)
by optimizing the summary based on reward
signals derived from human feedback or spe-
cific summarization metrics.

Reinforcement Learning offers a powerful
paradigm for developing intelligent agents capable
of learning from interaction with their environment.
By leveraging mathematical formulations and al-
gorithms, RL enables agents to make sequential
decisions that maximize long-term rewards.

Reward Hypothesis (Sutton and Barto, 2018; Sil-
ver et al., 2021) is a foundational principle in Re-
inforcement Learning, positing that all goals and
tasks can be encapsulated by a reward function.
Formally, this hypothesis asserts that the objective
of an agent is to maximize the expected cumula-
tive reward, which is defined by a scalar signal
received from the environment. The reward func-
tion R : S ×A → R assigns a numerical value to
each state-action pair, guiding the agent towards
desirable behaviors. In our work, we categorize
the rewards into three categories: (a) those that are

computable and differentiable, (b) those that are
computable but non-differentiable, and (c) those
that are non-computable. This categorization is
helpful for Natural Language Generation tasks.

3.5.1 Computable and Differentiable Rewards
Computable and Differentiable reward functions
can be explicitly calculated and have smooth gra-
dients, making them amenable to gradient-based
optimization methods.

• Robotics Example: Consider a robot tasked
with reaching a target location. The reward
function could be defined as the negative Eu-
clidean distance to the target:

R(s, a) = −∥scurrent − starget∥

where scurrent is the robot’s current position
and starget is the target position. This reward
function is both computable and differentiable,
allowing for the application of methods like
gradient descent to optimize the robot’s trajec-
tory.

• Summarization Example: In text summa-
rization, a differentiable reward might be
based on the cosine similarity between the
generated summary and a reference summary,
embedding both using a pre-trained language
model:

R(s, a) = cos(emb(sgenerated), emb(sreference))

Here, emb(·) represents the embedding func-
tion, and sgenerated and sreference are the em-
beddings of the generated and reference sum-
maries, respectively (Zhang et al., 2019).

3.5.2 Computable and Non-Differentiable
Computable but Non-Differentiable rewards are ex-
plicitly calculable but lack smooth gradients, pos-
ing challenges for gradient-based methods.

• Game Playing Example: In a board game,
the reward might be +1 for a win, 0 for a draw,
and −1 for a loss:

R(s, a) =


1 if win
0 if draw
−1 if loss

This reward is computable at the end of the
game but non-differentiable, as it provides
discrete feedback.



• Summarization Example: Using ROUGE-L,
which measures the longest common subse-
quence between the generated summary and
the reference, provides a computable but non-
differentiable reward:

R(s, a) = ROUGE-L(sgenerated, sreference)

This metric is computable but requires al-
ternative optimization techniques such as
REINFORCE to handle non-differentiability
(Paulus et al., 2017).

3.5.3 Non-Computable
Non-computable rewards are those that cannot be
directly calculated from state-action pairs and often
involve subjective or complex evaluations.

• User Satisfaction Example: In recommen-
dation systems, the reward might be based
on user satisfaction, which is inherently sub-
jective and cannot be directly computed from
the system’s states and actions. Surveys or
feedback mechanisms are often used to ap-
proximate this reward.

• Summarization Example: Human evalua-
tions of summary quality, coherence, and in-
formativeness fall into this category. These
evaluations are often gathered using Likert
scales or comparative assessments (e.g., Best-
Worst Scaling):

R(s, a) = LikertScore(sgenerated)

or

R(s, a) = ComparativeScore(sgenerated, sreference)

These methods rely on human judgement,
which can be subjective and variable (Bhan-
dari et al., 2020).

3.6 Reinforcement Learning from Human
Feedback

Reinforcement Learning from Human Feedback
(RLHF) is an approach where an agent learns opti-
mal behavior through evaluative feedback provided
by humans. This method is particularly useful for
tasks where it is difficult to specify a reward func-
tion explicitly (non-computable rewards). Instead
of relying on a predefined reward signal, RLHF
leverages human judgments to dynamically shape
the reward function.

Mathematical Formulation. In the RLHF
framework, the standard reinforcement learning
setup is modified to include human feedback. Con-
sider a partial Markov Decision Process (MDP)
M = (S,A, P, γ), where:

• S is the set of states,

• A is the set of actions,

• P is the state transition probability function
P (s′|s, a),

• γ is the discount factor.

In RLHF, the reward function R : S × A → R
is learned from human feedback rather than being
predefined. The human feedback is used to train a
reward model R̂ that approximates the true underly-
ing reward function. Let D = {(si, ai, ri)}Ni=1 be a
dataset of state-action pairs and their corresponding
rewards provided by humans. The objective is to
minimize the error between the predicted rewards
and the human-provided rewards:

min
R̂

E(s,a,r)∼D

[(
R̂(s, a)− r

)2]
Once the reward model R̂ is learned, we have the

full MDP: M = (S,A, P, R̂, γ). It is now used
within the Reinforcement Learning framework to
optimize the policy π. The policy π : S → A
aims to maximize the expected cumulative reward
as given by the learned reward model:

π∗ = argmax
π

Eπ

[ ∞∑
t=0

γtR̂(st, at)

]

Examples. We provide a few examples below,
where RLHF can benefit the policy learning pro-
cess:

1. Robotics: In robotic manipulation tasks, defin-
ing a precise reward function can be challeng-
ing. Human feedback, in the form of binary
success/failure signals or scalar ratings on task
performance, can be used to train a reward
model. For example, a human might pro-
vide feedback on how well a robot grasps and
moves objects, enabling the robot to refine its
actions based on these evaluations.

2. Summarization: In the context of text summa-
rization, human feedback can be used to train



models to generate more coherent and relevant
summaries (Ziegler et al., 2019). Humans can
provide feedback on generated summaries by
rating them on aspects such as informative-
ness, fluency, and relevance. This feedback
can be used to train a reward model R̂, which
the summarization model uses to optimize its
policy for generating better summaries.

Learning from Comparisons. An effective ap-
proach within RLHF is to use human comparisons
to derive rewards. In this setup, humans are pre-
sented with two or more options and asked to in-
dicate which one is better. These comparisons can
be used to infer a reward model by training on
pairwise preferences.

Formally, given pairs (si, ai) and (sj , aj) with
feedback indicating a preference for (si, ai) over
(sj , aj), we can use a logistic regression model to
learn the reward function:

P ((si, ai) ≻ (sj , aj)) =

exp(R̂(si, ai))

exp(R̂(si, ai)) + exp(R̂(sj , aj))

The objective is then to maximize the likelihood
of observed human preferences:

max
R̂

∑
k

logP ((sik , aik) ≻ (sjk , ajk))

By incorporating human feedback in this manner,
RLHF allows for the development of more flexible
and adaptive agents capable of learning complex
behaviors that are aligned with human expectations
and preferences.

4 Datasets

4.1 Query-focused Summarization
The availability and size of datasets have signifi-
cantly influenced research in QfS. Initial datasets
like DUC 2005 and DUC 2006 (Dang, 2005, 2006)
provided a foundational benchmark but were lim-
ited in size, making them insufficient for training
large neural models.

To address this limitation, Nema et al. (2017)
introduced the DebatePedia dataset, which con-
sists of 12, 695 samples, providing a larger scale
resource for training neural models. Despite this
advancement, the need for even larger datasets re-
mains.

Several notable datasets for QfS include:
DebatePedia: Contains 12, 695 samples designed
for QfS tasks, facilitating the development of more
robust neural models (Nema et al., 2017).
Natural Questions: A dataset by Kwiatkowski
et al. (2019) initially created for extractive question
answering but applicable for extractive QfS due to
its inclusion of long-form answers.
ELI5: Presented by Fan et al. (2019), this dataset,
though designed for long-form question answering
(LfQA), is suitable for QfS as it provides detailed
responses to specific queries. The ELI5 dataset,
particularly the version not included in the KILT
framework (Petroni et al., 2021), is utilized due
to its provision of gold documents for summary
generation.
QMDSCNN and QMDSIR: Introduced by Pa-
sunuru et al. (2021), these datasets are designed
for multi-document abstractive QfS, providing new
avenues for research in this area.
RQFT: Reliable QfS Tester (RQFT) was intro-
duced by Nath et al. (2023) as a benchmark for
testing QfS solutions. The proposed dataset con-
tains human queries on topics from high-school
text books and Wikipedia articles, containing 250
instance. The dataset also tackles topic centraliza-
tion (Baumel et al., 2016), a common drawback in
several QfS benchmarks.

4.2 Opinion Summarization

Flipkart (Siledar et al., 2023b): Flipkart dataset
contains product reviews from three domains: lap-
tops, mobiles, and tablets. The test set contains
around 147 products with one summary per prod-
uct. Each summary consists of multiple aspect-
specific summaries. There are around 676 aspect-
specific summaries in total. The original test set
contains around 1000 reviews per product on aver-
age. Siledar et al. (2023a) downsample this to 10
reviews per product to compare different models.
They first remove all the reviews with less than 20
and more than 100 words. For filtering out 10 re-
views they use a simple approach of first checking
if the reviews contain the aspects for which sum-
maries need to be created. After the filtering step,
they randomly selected 10 reviews to form input
for our test set.
GPT-R/GPT-RDQ (Siledar et al., 2024) extended
the already available Amazon, Oposum+, and Flip-
kart test sets by leveraging ChatGPT for anno-
tation. GPT-R used only reviews while generat-



ing the summary whereas GPT-RDQ used reviews,
description, and question-answers for generating
summaries. They curated 6 new test sets: Ama-
zon GPT-R, Amazon GPT-RDQ, Oposum+ GPT-R,
Oposum+ GPT-RDQ, Flipkart GPT-R, and Flipkart
GPT-RDQ containing 662 opinion summaries in
total.
AmaSum (Bražinskas et al., 2021): The AmaSum
dataset is a large-scale abstractive opinion sum-
marization dataset containing over 33, 000 human-
written summaries for Amazon products. Each
summary is paired with more than 320 customer
reviews and includes three types of summaries: ver-
dict, pros, and cons.
Space (Angelidis et al., 2021): The Space dataset
is a large-scale benchmark for evaluating unsuper-
vised opinion summarizers, built on TripAdvisor
hotel reviews. It includes a training set of approxi-
mately 1.1 million reviews for over 11, 000 hotels,
along with 1, 050 human-written summaries for 50
hotels. The dataset is designed to evaluate both
general and aspect-specific opinion summarization
models, with six popular aspects such as building,
cleanliness, food, location, rooms, and service.

5 Evaluation Measures for
Summarization

5.1 Automatic Evaluation Measures
ROUGE (Lin, 2004) The ROUGE score is a set
of metrics used to evaluate the quality of automatic
summarization and machine translation systems
in natural language processing. It compares an
automatically generated summary or translation
with a reference or a set of reference summaries
(typically human-produced). The ROUGE score
ranges from 0 to 1, with higher scores indicating
higher similarity between the generated summary
and the reference. The most common ROUGE
metrics to evaluate the summaries are:

1. ROUGE-1: This metric measures the over-
lap of unigrams (single words) between the
system and reference summaries. It is defined
as:

ROUGE-1 =

∑|R|
i=1min(C(wi, S),C(wi, R))∑|R|

i=1 C(wi, R)

where wi is the i-th word in the reference sum-
mary R, S is the system-generated summary,
and C(wi, X) is the number of times wi ap-
pears in summary X .

2. ROUGE-2: This metric measures the overlap
of bigrams (sequences of two words) between
the system and reference summaries. It is
defined as:

ROUGE-2 =

∑|R|
i=1min(C(bii, S),C(bii, R))∑|R|

i=1 C(bii, R)

where bii is the i-th bigram in the reference
summary R, and the counts are similar to
those in ROUGE-1.

3. ROUGE-L: This metric measures the longest
common subsequence (LCS) between the sys-
tem and reference summaries. It is based on
sentence-level structure similarity and identi-
fies the longest co-occurring in sequence n-
grams automatically. The ROUGE-L score is
computed as:

ROUGE-L =
LCS(R,S)

|R|

where LCS(R,S) is the length of the longest
common subsequence between the reference
summary R and the system summary S, and
|R| is the length of the reference summary.

The ROUGE metrics provide a robust measure
of the overlap between the generated summaries
and the reference summaries, with ROUGE-1
and ROUGE-2 focusing on n-gram overlap and
ROUGE-L emphasizing sequence similarity.

BLEU BLEU (BiLingual Evaluation Understudy)
(Papineni et al., 2002), evaluates the similarity be-
tween candidate and reference summaries based
on n-gram precision. It measures how many n-
grams in the candidate summary match those in the
ground truth summary. BLEU-1 assesses word-by-
word matches, while BLEU-2 and higher consider
matching pairs and longer sequences, respectively.
Unigram scores gauge summary adequacy, indicat-
ing whether the model captures essential features,
while higher n-grams assess fluency.

Despite its popularity in Natural Language Gen-
eration (NLG) systems, BLEU has limitations.
Techniques like clipped precision address issues
such as artificially inflated scores from repeated
words, where each word is counted only up to its oc-
currence in the reference summary. Additionally, a
brevity penalty discourages overly short summaries
with mainly stop words, calculated based on the
lengths of the predicted and reference sentences:



Brevity Penalty =

{
1, if c > r

e(1−
r
c
), if c ≤ r

BERTScore (Zhang et al., 2019) BERTScore is
a metric used to evaluate the quality of machine-
generated text, particularly in tasks like summariza-
tion and machine translation. It leverages BERT
(Bidirectional Encoder Representations from Trans-
formers) embeddings to measure the similarity be-
tween the generated summary and the reference
summary.

The BERTScore ranges from 0 to 1, with higher
scores indicating better quality and greater simi-
larity to the reference summary. The BERTScore
metric consists of the following components:

1. BERT EMBEDDINGS: BERT embeddings are
computed for both the generated summary S
and the reference summary R.

2. COSINE SIMILARITY: The cosine similarity
between the BERT embeddings of S and R is
calculated to measure their similarity:

Cosine Similarity =
emb(S) · emb(R)

∥emb(S)∥ · ∥emb(R)∥

where emb(X) represents the BERT embed-
ding of summary X .

3. PRECISION: BERTScore also computes pre-
cision by comparing how well the generated
summary captures important tokens from the
reference summary:

Precision =

∑
i∈R maxj∈S emb(ri) · emb(sj)∑

i∈R emb(ri)

where ri and sj are tokens in R and S, respec-
tively.

4. RECALL: BERTScore evaluates recall by mea-
suring how well the reference summary tokens
are captured by the generated summary:

Recall =

∑
j∈S maxi∈R emb(ri) · emb(sj)∑

j∈S emb(sj)

5. F1 SCORE: The harmonic mean of precision
and recall provides the overall BERTScore:

F1 =
2 · Precision · Recall
Precision + Recall

The BERTScore metric integrates BERT embed-
dings to assess both the content overlap and the
quality of summary generation, making it a robust
evaluation measure for tasks requiring semantic
understanding and linguistic fluency.

5.2 Human Evaluation
Human evaluations, while more resource-intensive,
provide critical insights into the quality of sum-
marization that automatic metrics might overlook.
Likert-scale evaluations (Likert, 1932) involve rat-
ing summaries on a numerical scale, typically from
1 to 5, based on criteria such as coherence, rele-
vance, and readability. These scores are averaged
across multiple human judges to obtain a reliable
assessment of summary quality.

Best-Worst Scaling (BWS) (Louviere et al.,
2015) is another human evaluation method that ad-
dresses some limitations of Likert scales. In BWS,
evaluators are presented with sets of summaries
and asked to identify the best and worst summaries
based on specific criteria. This method reduces
the cognitive load on evaluators and provides more
discriminative results.

Comparative evaluations, including Win, Loss,
and Tie assessments, involve directly comparing
pairs of summaries. Evaluators determine which
summary in each pair is better, worse, or if they
are of equal quality. This method provides a rela-
tive evaluation that can be particularly useful when
comparing different summarization models or ap-
proaches.

5.3 Large Language Model based Evaluation
The emergence of LLM-based evaluations repre-
sents a promising direction for summarization as-
sessment. These evaluations utilize large language
models to automatically assess the quality of gen-
erated summaries. For instance, GPT-3 and GPT-4
can be fine-tuned or prompted to evaluate sum-
maries based on various criteria, such as coherence,
relevance, and factual accuracy. These models can
also generate detailed feedback, providing insights
that go beyond simple scoring.

A recent study (Liu et al., 2023) has explored the
use of LLMs for evaluation, leveraging their under-
standing of context and language to provide more
accurate and nuanced assessments. Specifically,
Liu et al. (2023) show that GPT-4 can be used as
an evaluator in several tasks, including summariza-
tion. It shows great correlations with human-based
evaluations of the tasks.



In summary, evaluation metrics for summa-
rization encompass a range of methodologies,
each with its strengths and limitations. Tradi-
tional reference-based metrics like ROUGE and
BERTScore provide efficient and objective evalu-
ations based on lexical and semantic similarities.
Human evaluations offer critical insights into sum-
mary quality through direct human judgment, em-
ploying methods like Likert scales, Best-Worst
Scaling, and comparative assessments. The ad-
vent of LLM-based evaluations introduces a pow-
erful new tool for summarization assessment, com-
bining the scalability of automatic methods with
the nuanced understanding of human evaluations.
Together, these metrics provide a comprehensive
toolkit for evaluating the quality and effectiveness
of summarization models.

6 Likelihood Maximization Approaches
to Query-focused and Opinion
Summarization

6.1 Query-focused Summarization

Various approaches have been proposed for QfS,
ranging from extractive methods to sophisticated
neural architectures.

Extractive Approaches. Wu et al. (2019) pro-
posed an unsupervised extractive methodology us-
ing Latent Dirichlet Allocation (LDA) (Blei et al.,
2003; Blei and Lafferty, 2006) for topic modeling
and pattern mining to score sentences. Sentences
were selected based on these scores and a prede-
fined compression ratio. This method alleviates
the necessity for large datasets by leveraging un-
supervised learning techniques. Mollá and Jones
(2020) explored the domain of biomedical articles
by utilizing a variety of machine learning and deep
learning models for extractive QfS. They posed the
task as a supervised learning problem where the
model predicts the likelihood of a sentence being
included in the final summary. Their experiments
demonstrated the superiority of classification-based
approaches over regression-based ones for this task.
Additionally, Mollá and Jones (2020) highlighted
that a Reinforcement Learning (RL) based train-
ing regimen, which trained a binary classifier to
decide whether a sentence should be included in
the summary, achieved better performance in hu-
man evaluations compared to supervised systems
with similar ROUGE scores. The classifier uti-
lized TF-IDF features of candidate sentences, the

input text, the partially generated summary, remain-
ing candidate sentences, the query, and the current
length of the summary in sentences. The system
was rewarded based on the ROUGE score of the
generated summary.

Abstractive Approaches. Xu and Lapata (2021)
addressed the challenge of data scarcity by gener-
ating proxy queries from generic summarization
datasets using a Unified Masked Representation.
This approach allowed for the training of an ab-
stractive QfS model without the need for extensive
QfS-specific datasets. They developed a mecha-
nism that generates proxy queries to simulate the
QfS task, enabling the use of existing large-scale
generic summarization datasets for training. Laskar
et al. (2020) leveraged transfer learning to improve
QfS performance. They fine-tuned an abstractive
summarizer, initially trained on the XSum dataset
(Narayan et al., 2018), on the DebatePedia dataset.
This method benefits from the robustness of models
pre-trained on large datasets and further fine-tunes
them on more specific QfS tasks, enhancing per-
formance. Su et al. (2021) proposed enhancing
QfS quality by incorporating an answer relevance
representation into the decoder of a standard Trans-
former model. They employed a separate trained
Question-Answering (QA) model to score each
word’s relevance in the context of the query, im-
proving the relevance and coherence of the gen-
erated summaries. This method ensures that the
generated summaries are more focused and directly
answer the query.

6.2 Opinion Summarization

General Opinion Summarization. General
opinion summarization aims to distill large sets of
opinions into concise, coherent general summaries.
Early methods focused on extractive techniques.
For instance, Ganesan et al. (2010) leveraged redun-
dancy in reviews to generate concise summaries,
while Erkan and Radev (2004) used graph-based
models to identify and select the most relevant sen-
tences. More recent approaches have shifted to-
wards neural network-based abstractive methods.
Chu and Liu (2019); Bražinskas et al. (2020) use
autoencoders (Kingma and Welling, 2013) and its
variants to learn a review decoder through recon-
struction which is then used to generate summaries
using the averaged representations of input reviews.
Another approach is to curate synthetic datasets
using one of the reviews as a pseudo-summary and



pair it with input reviews using different strategies.
Bražinskas et al. (2020) uses random sampling,
Amplayo and Lapata (2020) generates noisy ver-
sion of the pseudo-summary, Elsahar et al. (2021)
ranks reviews using similarity and relevance, and
Amplayo and Lapata (2020) uses content plans to
generate synthetic datasets. Im et al. (2021) ran-
domly selects a review as a pseudo-summary and
proposes a pipeline to generate summaries using
multimodal input such as text, image, and meta-
data. Ke et al. (2022) captures the consistency of as-
pects and sentiment between reviews and summary,
whereas Wang and Wan (2021) learns aspect and
sentiment embeddings to generate relevant pairs.
Iso et al. (2021) searches for convex combinations
of latent vectors to generate summaries.

Aspect-specific Opinion Summarization.
Aspect-specific opinion summarization focuses on
generating summaries for specific aspects within
reviews. Angelidis et al. (2021) proposed the
first approach to generate both aspect-specific
and general summaries. They utilize a Vector
Quantized Variational Autoencoder (van den
Oord et al., 2017) for clustering review sentences
followed by a popularity-driven extraction algo-
rithm to summarize. (Basu Roy Chowdhury et al.,
2022) utilizes dictionary learning (Dumitrescu and
Irofti, 2018) to acquire representations of texts
based on latent semantic units. Amplayo et al.
(2021) proposed the first abstractive approach for
generating aspect-specific and general summaries.
They generate synthetic datasets by identifying
aspect-bearing elements (words, phrases, sen-
tences) using a multiple instance learning (MIL)
(Keeler and Rumelhart, 1991) model trained on
silver-labeled data obtained through seed words.
Shen et al. (2023) proposes two simple solutions
for generating synthetic datasets that do not
rely on complex MIL modules. The SW-LOO
simply matches the aspect seed words to construct
synthetic datasets, whereas NLI-LOO uses an
off-the-shelf NLI model to do so using only aspects
and no seed words. Mukherjee et al. (2020) takes
an unsupervised approach to extract aspects and
manually create a mapping between fine-grained
and coarse-grained aspects using Integer Linear
Programming (ILP) based extractive subset of
opinions.

Self-Supervised Opinion Summarization. Re-
cent approaches use self-supervision by consid-

ering one of the reviews as a pseudo-summary.
Bražinskas et al. (2020) randomly selected N re-
views per entity to construct N pseudo-summary,
reviews pairs. Amplayo and Lapata (2020) sampled
a review randomly and generated noisy versions of
it as input reviews. Amplayo et al. (2020) used as-
pect and sentiment distributions to sample pseudo-
summaries. Elsahar et al. (2021) selected reviews
similar to a randomly sampled pseudo-summary as
input reviews, based on TF-IDF cosine similarity.
Wang and Wan (2021) aimed at reducing opinion re-
dundancy and constructed highly relevant reviews
pseudo-summary pairs by learning aspect and sen-
timent embeddings to generate relevant pairs. Im
et al. (2021) used synthetic dataset creation strategy
similar to Bražinskas et al. (2020) and extended it
to multimodal version. Ke et al. (2022) captured
the consistency of aspects and sentiment between
reviews and pseudo-summary using constrained
sampling. Siledar et al. (2023a) use lexical and se-
mantic similarities for creating synthetic datasets.

Multi-Source Opinion Summarization. Multi-
source summarization integrates information from
various sources to generate more comprehensive
summaries. Zhao and Chaturvedi (2020) used as-
pects identified from product description to per-
form extractive aspect-based opinion summariza-
tion. Li et al. (2020) proposed a supervised multi-
modal summarization model to effectively generate
summaries using reviews, product image, product
title, and product details. Im et al. (2021) proposed
a self-supervised multimodal training pipeline to
generate summaries using reviews, images, and
meta-data. Siledar et al. (2023b) did supervised
opinion summarization using simple rules to gen-
erate summaries separately in the form of verdict,
pros, cons, and additional information using re-
views, description, specifications, and question-
answers.

7 Reward-based Approaches to
Query-focused and Opinion
Summarization

Supervised Learning has been frequently used for
several tasks that involve Text Generation (Nalla-
pati et al., 2016; Nema et al., 2017; Siledar et al.,
2023c). We have seen a few works using Su-
pervised Learning specifically for Queruy-focused
Summarization and Opinion Summarization in Sec-
tion 6. However, for such tasks, Supervised learn-
ing suffers from several crucial problems. Two of



the most prominent ones are listed below:

• Exposure Bias: Traditional Sequence-to-
Sequence models are trained using Teacher
Forcing (Williams and Zipser, 1989). This en-
ables faster training, which requires less mem-
ory, by reducing the length of the gradient
chain in the Back Propagation Through Time
(BPTT) algorithm. Teacher Forcing refers
to the usage of ground truth tokens (y1, y2,
· · · , yt−1) for generating the yt token during
training. Such a formulation helps in parallel
generation of tokens of all time-steps, thereby
reducing the time of training. However, such
a training leads to a bias during inference time
within the model: “whatever has been thus-far
is good enough, there is no need to rethink”.
This bias is known as exposure bias.

• Train/Test Mismatch: Supervised Learning
uses Cross-Entropy loss to train the Text Gen-
eration models. It does not easily allow any
task-specific properties into the training ob-
jective. This leads to a mismatch between the
true objective (promoting task-specific prop-
erties) and the train objective (maximizing
likelihood of the given dataset).

These problems within Supervised Learning (es-
pecially the second one) can be mitigated using
Reinforcement Learning. This motivation has been
used by several works in contribution to the Rein-
forcement Learning for Text Generation literature.
In this section, we will look at a few such represen-
tative works; however, we will be concentrated on
Reinforcement Learning for Text Summarization,
as that is more relevant to our survey.

We find an abundance of precedence of Rein-
forcement Learning (RL) for abstractive summa-
rization. Paulus et al. (2017) provide first work
in employing RL to train LSTM models, with-
out Teacher Forcing, for abstractive summariza-
tion. The authors employ a mixed-objective loss
(cross-entropy loss + policy gradient loss). This
was done because cross-entropy loss objective kept
the model grounded to the language properties,
while the policy gradient loss objective helped pro-
mote the summarization specific properties within
the model. The authors used ROUGE as the only
reward in the Reinforcement Learning framework.
Pasunuru and Bansal (2018); Li et al. (2019) pro-
vide follow-up works with better reward functions.

Both these works stress that ROUGE is not a suffi-
ciently good reward for Summarization, as it does
not promote properties like semantic similarity, or
penalize properties like redundancy within the gen-
erated summary. Pasunuru and Bansal (2018) pro-
vide an additional reward Saliency that checks if
the summary incorporates important aspects. Li
et al. (2019) propose the usage of BERTSCORE as
an additional reward, to promote semantic similar-
ity. In a similar way, Roit et al. (2023); Tang et al.
(2023) attempted to reward factuality within gen-
erated summaries. Specifically, Roit et al. (2023)
used Natural Language Inference (does the docu-
ment entail the summary?) to promote factuality
within generated summaries. Tang et al. (2023)
attempt using a similar factuality metric to promote
grounded summary generation in the Clinical Text
domain. Recently, Nath et al. (2023) have proposed
a novel reward mechanism based on a new Passage
Embedding approach, which promotes better se-
mantic similarity with the ground truth summaries-.
All of these works have been faithful to the follow-
ing theme: “Finding better rewards for the Task”.

Recently Reinforcement Learning from Human
Feedback (RLHF; Ziegler et al. (2019); Bai et al.
(2022); Ouyang et al. (2022); Rafailov et al. (2023))
has emerged as a new paradigm in applying Rein-
forcement Learning to Natural Language Genera-
tion. In this approach, a separate Reward Model
is learned to grant rewards to generated text in the
Reinforcement Learning training pipeline. This
reward model is learned using human preference
data (preference over which text humans prefer
for a given input). A big challenge, however, in
RLHF is that the reward model needs additional
data for training (typically tens of thousands in size;
Nakano et al. (2021); Bai et al. (2022); Ethayarajh
et al. (2022)). Recently, Nath et al. (2024) provide
a way to mitigate such a requirement. Specifically,
Nath et al. (2024) demonstrate this in the domain
of Opinion Summarization, where they achieve a
reduction in dataset requirement by 21×.

8 Open Challenges and Future Reserach
Directions

While there has been significant growth in employ-
ing Reinforcement Learning for Text Summariza-
tion, these approaches lack discipline in choosing
the rewards. There is no governing principle which
states the necessary and sufficient set of rewards
for a tasks. Reinforcement Learning from Human



Feedback has attempted to mitigate this by directly
aligning with human goals. It has, to some ex-
tent, mitigated the necessity of such a governing
principle. Recently, Nath et al. (2024) attempt at
arriving a necessary set of rewards, further show-
ing how these rewards correlate with human notion
of a good Opinion Summary. Developing such a
governing framework has two fold benefits:

• It provides a trust on the set of rewards used
for the task—since the rewards are arrived
at through the framework, they are trivially
trustworthy.

• It provides an evaluation framework for tech-
niques such as RLHF—how does a model
trained using RLHF fare on these reward met-
rics?

9 Summary and Conclusion

In this comprehensive we have covered several
works that have advanced the state-of-the-art in re-
search on Query-focused Summarization and Opin-
ion Summarization, through the lens of Reinforce-
ment. We provide a view on how the works shifted
their focus from Supervised Learning to Reinforce-
ment Learning, gradually arriving at the conclu-
sion that designing task-aligned rewards leads to
better performance. We have seen how simpler
Reinforcement Learning approaches with ROUGE
as the reward were gradually replaced by more so-
phisticated rewards, such as BERTSCORE, Passage
Embedding, etc. Finally, we have concluded this
survey by providing a long-term future research
direction which can significantly impact the state
of Reinforcement Learning in Natural Language
Generation.
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