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Abstract
This survey paper provides a compre-
hensive overview of Disfluency Correction
(DC), emphasizing on the key concepts,
techniques and datasets used in this sub-
ject. DC is the process of removing
disfluent elements like fillers, repetitions
and corrections from spoken utterances
to create readable and interpretable text.
DC is a vital post-processing step applied
to Automatic Speech Recognition (ASR)
outputs, before subsequent processing by
downstream language understanding tasks.
Existing DC research has primarily focused
on English due to the unavailability of
large-scale open-source datasets. Through
this survey paper, we also present a high-
quality human-annotated DC corpus cov-
ering four important Indo-European lan-
guages: English, Hindi, German and
French.

1 Introduction
Humans often think and speak simultaneously
in conversations, introducing erroneous words
in utterances (Gupta et al., 2021). These
words do not contribute to semantics of a sen-
tence and hence can be removed to create flu-
ent and easy-to-interpret utterances. Disflu-
ency Correction (DC) is defined as the removal
of such disfluent elements from spoken utter-
ances (Shriberg, 1994). Different types of dis-
fluencies are described in table 2.
Apart from making sentences readable and

interpretable, DC also helps downstream nat-
ural language processing tasks like Machine
Translation (MT) (Rao et al., 2007; Wang
et al., 2010). Removing disfluencies shortens
sentences, making it easier for automatic MT
systems to translate these utterances. More-
over, the removed erroneous words are not
translated which makes the output translation
fluent containing all semantics from the source

sentence. Table 1 illustrates examples where
Google MT produces disfluent and difficult-to-
read English translations of disfluent sentences
in 3 languages - Hindi, German and French, es-
tablishing the need for DC.

Disfluent Sentence Google MT output
वाच में र नग अह्ह्ह स्माटर्
वॉच में रोका हुआ र नग
टाइमर रज्यूम करो

running in watch
ahhh resume run-
ning paused timer in
smart watch

je veux je veux euh
enregistrer une une
euh vidéo sur insta-
gram

I want I want uh
record a uh video on
instagram

ich brauche eine
fahrt äh eine fahrt
zum bahnhof in einer
stunde

I need a ride er a ride
to the train station
in an hour

Table 1: English translations produced by Google
MT for disfluent sentences in Hindi, French and
German. All disfluent words are marked in red.

1.1 Problem Statement
Disfluency correction is a significant challenge
in speech-to-speech machine translation. The
fundamental problem it aims to address is the
identification and removal or correction of dis-
fluencies in the translation process. Disfluen-
cies are often described as breaks in the fluid-
ity of speech, including phenomena like filled
pauses (e.g., ”um,” ”uh”), false starts, repeti-
tions, or repairs. These phenomena, which are
very common in natural spoken language, can
cause confusion or misunderstandings when a
machine tries to interpret and translate the
spoken text.
The overarching goal in disfluency cor-

rection is to construct a machine learning
model that can accurately discard disfluencies,



thereby ensuring the downstream translated
output is both grammatically correct and se-
mantically accurate. This area of research be-
comes even more vital in real-world applica-
tions where seamless, efficient, and effective
communication is paramount, such as in inter-
national diplomacy, business meetings, health-
care, and more.

1.2 Motivation
The impact of disfluencies in spoken language,
particularly in the context of machine transla-
tion, is significant. The presence of disfluen-
cies can significantly degrade the performance
of machine translation systems. First, disflu-
encies can cause the translation to be incor-
rect or hard to understand. Second, they can
confuse the syntax and semantics of the origi-
nal speech, causing misinterpretations. Lastly,
disfluencies can make the translated speech
seem unnatural or stilted, thereby undermin-
ing the goal of achieving natural, human-like
speech in translation.

Hence, addressing the disfluency problem is
crucial for improving the quality of speech-to-
speech machine translation. A system that
can effectively remove or correct disfluencies
will not only increase translation accuracy but
will also improve the naturalness and fluidity
of the translated speech, making the conversa-
tion more human-like.

Developing machine learning models for dis-
fluency correction in speech-to-speech transla-
tion presents several notable challenges:

• Lack of Quality Training Data: There
is a scarcity of comprehensive, high-
quality training datasets that contain
both fluent and disfluent speech for
various languages. Constructing such
datasets requires time-consuming manual
annotation.

• Contextual Understanding: Disfluen-
cies are heavily reliant on the context in
which they occur. For a machine to iden-
tify disfluencies accurately, it requires a
deep understanding of the language, topic,
and even the speaker’s intent, which is dif-
ficult to achieve.

• Complexity of Disfluencies: Disflu-
encies can take many forms and aren’t

limited to mere hesitations or repetitions.
They can encompass complex language
phenomena like self-corrections or sen-
tence reformulations. The sheer variety
of these patterns adds to the complexity
of the problem.

• Balancing Accuracy and Fluency:
Striking the right balance between remov-
ing disfluencies and preserving the origi-
nal meaning can be challenging. Overcor-
rection might lead to the loss of crucial in-
formation or distort the original message.

• Real-Time Processing: For many ap-
plications, translations need to be per-
formed in real-time, which puts con-
straints on the processing time. This
makes the task more challenging as the
model needs to detect and correct disflu-
encies on the fly.

2 Background

In this section, we cover all important termi-
nologies needed to study disfluency correction
and perform a variety of experiments.

2.1 Disfluency Correction
Disfluency correction is the task of correct-
ing non-fluent conversational elements such as
filler words and pauses in speech transcripts.
In day-to-day spontaneous conversations, hu-
mans are tasked with thinking, developing
constructive thoughts and speaking almost si-
multaneously resulting in disfluent words and
pauses like uh, um, ah, etc. as a part of spoken
language. These irregularities significantly im-
pact conversational clarity & affect readability
in speech transcripts when Automatic Speech
Recognition (ASR) systems convert spoken ut-
terances to text. If these transcriptions are
not fluent, it may lead to further problems
in downstream processing of speech records.
Here is an example of a disfluent sentence with
all the filler words marked in bold -
Well, this is this is you know a good plan.
In the above example, the essence of the sen-

tence is represented only through the phrase -
”This is a good plan”. Rest of the words act as
filler words and should be removed by a disflu-
ency correction system.



2.2 Speech to Speech Machine
Translation

Speech to Speech Machine Translation inte-
grates all the above mentioned modules to-
gether to convert speech in source language
to speech in target language. Cascaded ap-
proaches to solve this problem use a pipeline
of ASR, DC, MT and TTS models whereas
End-to-End approaches use a deep neural net-
work capable of directly learning the mapping
between the speech in source-target language
pair.

We aim to find the most likely target trans-
lation T* from the set T of possible transla-
tions in the MT hypothesis space using input
speech features X. S denotes the transcription
of of the speech features X.

2.2.1 Cascaded Approach
Our goal is to calculate the following -

T ∗ = argmax(P (T |X)) (1)

Marginalizing over all transcriptions S ∈ H
, we can rewrite this equation as -

T ∗ = argmax(
∑
S∈H

P (T, S|X)) (2)

Using chain rule,

T ∗ = argmax(
∑
S∈H

P (T |S,X)P (S|X)) (3)

We use the conditional independence assump-
tion of the input S and output T given the
transcript X to write the following final equa-
tion -

T ∗ = argmax(
∑
S∈H

PMT (T |S,X)PASR(S|X))

(4)
The predicted text T* then passes through the
TTS model to produce the required speech
output. The figure below demonstrates the
pipeline used for training -

2.2.2 End-to-End Approach
Cascaded approaches to SSMT often have a
problem of propogating errors. Any errors in
the ASR system may lead to bad transcrip-
tion which causes further translations to be er-
roneous. End-to-end approaches aim to solve

this problem by training the model directly to
learn speech from source language to speech
in target language. Vanilla RNNs are used for
this purpose in an encoder-decoder architec-
ture. The encoder converts the variable length
input (speech features in source language) to
a fixed length context vector. This vector is
then used by the the decoder to produce the
speech features in the target language.
Consider the input sequence X =

(x1, x2, ...xn). The encoder RNN processes
each input timestep xt one step at a time
and changes its hidden state with using the
following equation -

ht = f(ht−1, xt) (5)

Once the entire input is processed and the
context vector c is created, the RNN decoder
changes its hidden state using the equation -

ht = f(ht−1, yt−1, c) (6)

Thus the decoder uses the previous hidden
state, the previously generated output and the
context vector to change the current hidden
state and predict the final output. Probability
of the next output token is given by -

P (yt|y1, y2, ...yt−2, yt−1, c) = g(ht, yt−1, c) (7)

where f and g are the activation functions.
The figure below demonstrates a typical

encoder-decoder architecture that can be used
-

2.2.3 Attention Mechanism
Since the encoder-decoder architectures use a
fixed context vector to encode information, in
case of a long input the context vector might
lose out on long term dependencies. To solve
this problem we use attention mechanism. In-
stead of predicted a fixed vector c, we predict
distinct context vectors ci using the following
formula -

ci =
T∑
t=1

αijhj (8)

where,

αij =
exp(eij)∑T
t=1 exp(eit)

(9)



eij = a(si−1, hj) (10)

and a is a feed forward network.S

2.3 Models
In this section, we describe all the models we
use for our experiments.

2.3.1 Conditional Random Fields
Conditional Random Fields (CRFs) are a class
of statistical modeling methods often applied
in pattern recognition and machine learning,
where they are used for structured prediction.
Unlike other techniques that make their pre-
dictions independently, CRFs make their pre-
dictions based on the context within the input,
considering the correlations between adjacent
predictions. They were introduced in (Lafferty
et al., 2001).

The key defining property of a CRF is that
it models the conditional distribution p(y|x) of
the output y given the input x, and thus the
dependencies among the y are modeled, given
the x. CRFs are undirected graphical models,
a special case of which are commonly used for
sequence modeling.

The standard form of CRF applicable to
sequence modeling and natural language pro-
cessing (NLP) tasks is the linear-chain CRF,
where the graph structure forms a simple
chain. The conditional probability of a state
sequence (y) given an observation sequence (x)
in linear-chain CRFs is defined as:

Here, Z(x) is a normalization factor ensur-
ing the probabilities sum to 1, fk is a feature
function which maps input-output pairs to real
values, and λk is the learned weight associated
with feature fk. The functions fk are usually
chosen to express the intuition about the task
at hand.

2.3.2 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a type
of artificial neural network designed to recog-
nize patterns in sequences of data, such as text,
genomes, handwriting, or spoken words. A dis-
tinctive feature of RNNs is their internal mem-
ory used to process sequences, making them
uniquely suitable for tasks where context from
earlier inputs is required to understand current
ones.

The standard RNN updates its hidden state
h at each time step t using both the current

input xt and the previous hidden state ht−1,
computed as:
Here, W and U are weight matrices, b is

a bias vector, and f is an activation function
like tanh or ReLU. The output yt at each time
step can be computed using a separate weight
matrix V:
where g is typically a softmax function for

classification problems, and c is another bias
vector.

Despite their expressiveness, standard
RNNs suffer from a significant drawback:
they struggle to learn long-range depen-
dencies due to the ”vanishing or exploding
gradients” problem. This limitation has
been largely addressed by variants like Long
Short-Term Memory (LSTM) and Gated Re-
current Unit (GRU), which introduce gating
mechanisms to control and manage the flow
of information (Hochreiter and Schmidhuber,
1997; Cho et al., 2014). Figure 1 depicts the
structure of RNN.

2.3.3 Transformers
Recurrent Neural Networks process input to-
kens sequentially and hence cannot be par-
allelized. Transformers were introduced in
[(Vaswani et al., 2017)] and provided a method
to parallelize learning context vectors through
self attention mechanisms thereby reducing
the time taken to train models. We discuss
the key components of a transformer model
below.
Encoder and Decoder Stack: Transform-
ers fall under the category of encoder-decoder
architectures. The encoder consists of a stack
of six identical encoder layers with different
weights. Each encoder layer consists of two
sub layers - Multi head self attention layer and
Feed Forward network layer. The decoder also
consists of 6 identical layers and has another
additional sub layer called Multi head encoder-
decoder attention layer in addition to the other
sub layers. The figure below shows an example
of a simple transformer model.
Self Attention Layers: Self attention layers
use the query and a set of key-value pairs to
calculate the output token. These three vari-
ables are obtained from the previous layer or
from the input in case of the first layer and
thus the encoder/decoder layers attend over
all the positions of the output of the previous



Figure 1: Unfolding of RNNs

encoder/decoder layer. Let Q be the matrix of
query vectors, K be the matrix of key vectors
and V be the matrix of value vectors. Atten-
tion is calculated using the formula -

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

(11)

2.3.4 Encoder - Decoder Attention
Layers

The encoder-decoder attention layer is similar
to the self attention layers but with a key dis-
tinction of the source of queries. The query for
these layers come is received from the last en-
coder layer whereas the key-value pair comes
from the last decoder layer. This mechanism
allows the decoder to attend over all the tokens
of the last encoder layer thereby attending over
all the tokens of the input.
Multi Head Attention Layers: Multi
head attention layers use weight matrices to
project the query, key and values. Attention
is calculated on each of these projected vectors
and is concatenated followed by a final pro-
jection to calculate the output token. Thus,
multi head attention layers allow the model to
attend over multiple positions of the input.
Positional Embeddings: Before transform-
ers, RNNs were used as an encoder-decoder
structure. They calculated the output by pro-
cessing each input token sequentially. Since
transformers do not do this process sequen-
tially, positional encodings need to be embed-
ded along with the input embeddings so that
the model remembers the position of each to-
ken. Positional embeddings are calculated us-
ing the formula below -

PE(pos, 2i) = sin(
pos

10000
2i

dmodel

) (12)

PE(pos, 2i+ 1) = cos(
pos

10000
2i

dmodel

) (13)

2.3.5 Multilingual Representations for
Indian Languages (MuRIL)
Transformer

MuRIL (Khanuja et al., 2021) is a variant
of the popular BERT model (Devlin et al.,
2019), a transformer-based model for natural
language understanding. Similar to BERT,
MuRIL is trained on large amounts of text
data and produces context-sensitive represen-
tations of text, meaning that the same word
can be represented differently depending on
the context it is used in. These representa-
tions can be used in various downstream tasks
such as text classification, named entity recog-
nition, or sentiment analysis.
What makes MuRIL stand out is its ability

to handle transliterated text and its strong per-
formance on Indian languages. Transliterated
text is text that has been converted from one
writing system to another. This is a common
occurrence in Indian languages, many of which
are often written using the Latin alphabet on
digital platforms.
MuRIL is trained not only on English text

but also on text in several Indian languages.
Importantly, it treats transliterated text as
belonging to the same language as the origi-
nal text. For example, Hindi written in the
Latin script is treated as Hindi, not as English.
This ability to handle both native scripts and
transliteration makes MuRIL particularly use-
ful for processing Indian language data, where
transliteration is common.
Another advantage of MuRIL is that it pro-

vides representations for the so-called ”zero-
shot” languages. That is, even for Indian lan-
guages for which no training data was avail-
able, MuRIL is able to generate useful repre-
sentations based on its multilingual training,



allowing it to be used with these languages.
The addition of MuRIL to the range of mul-

tilingual models marks a step forward in the
ability to process less-resourced languages and
brings us closer to the goal of universal lan-
guage understanding.

2.3.6 Generative Adversarial Neural
Networks

Generative Adversarial Networks (GANs) are
a class of artificial intelligence algorithms, in-
troduced by Ian Goodfellow and his colleagues
in 2014 (Goodfellow et al., 2014). They are
used in unsupervised machine learning, em-
ploying two neural networks contesting with
each other in a zero-sum game framework.
This setup enables the generation of new, pre-
viously unseen data that mimic the distribu-
tion of the training data.
GANs consist of two parts: a generator net-

work and a discriminator network. The gen-
erator network attempts to create synthetic
data samples that mimic the original data,
while the discriminator network attempts to
differentiate between real and synthetic (gen-
erated) data. The generator’s goal is to gener-
ate data so that it is indistinguishable from the
real data in the discriminator’s view. On the
other hand, the discriminator improves itself
to differentiate between the real and the gen-
erated data better. This mutual competition
results in the generator producing high-quality
synthetic data that resemble the original data
closely.
The objective function of a GAN can be de-

scribed by the following minimax game:
Here, D(x) represents the discriminator’s es-

timate of the probability that real data in-
stance x is real. Ex Pdata(x) denotes the ex-
pected value over all real data instances. G(z)
represents the data generated by the generator
network, z is a noise variable, and Ez Pz(z)
denotes the expected value over all noise vari-
ables z.
GANs in Textual Machine Learning:
While GANs have been quite successful for
continuous data such as images, their appli-
cation to discrete data like text is nontrivial,
primarily due to the discontinuity of discrete
data, which poses challenges for backpropaga-
tion in training. However, researchers have de-
vised various methods to apply GANs in text

generation tasks.
One approach is the SeqGAN model pro-

posed by (Yu et al., 2017). SeqGAN (figure 2)
uses Reinforcement Learning (RL) to bypass
the generator’s differentiation problem and di-
rectly performs gradient policy update. Seq-
GANmodels the data generator as a stochastic
policy in reinforcement learning and uses a dis-
criminator to return reward signals. However,
unlike traditional reinforcement learning, in
SeqGAN, rewards are sparse and delayed due
to the long generation sequences, for which a
Monte Carlo search is used to approximate the
reward for intermediate state-actions.
Another approach is the Gumbel-Softmax

GANs (Jang et al., 2016). They introduce a
Gumbel-Softmax approximation that lets the
model generate discrete tokens while still al-
lowing gradients to flow backward through the
generator.
GANs in textual machine learning have

been applied to various tasks such as text
generation, machine translation, text summa-
rization, dialogue systems, etc. While there
are still challenges to be overcome, such as
mode collapse and training instability, these
networks have shown the capability to gener-
ate high-quality, diverse text, making them a
promising direction for future research in nat-
ural language processing.

3 Related Work

The study of disfluencies as a spoken language
phenomenon was first proposed in Shriberg
(1994). DC has been established as a vital
post-processing task for ASR transcripts (Rao
et al., 2007; Wang et al., 2010). Although
earlier DC systems were based on translation
methods (Honal and Schultz, 2003), current re-
search covers two additional methods: parsing-
based and sequence tagging-based techniques.
Translation-based methods use a noisy chan-
nel approach towards DC hypothesizing that
disfluent sentences are fluent sentences with
noisy elements (Jamshid Lou and Johnson,
2017; Johnson and Charniak, 2004; Zwarts
and Johnson, 2011). Parsing-based methods
use techniques such as dependency parsing
to predict syntactic structure of an utterance
along with disfluent elements (Rasooli and
Tetreault, 2015; Honnibal and Johnson, 2014;



Figure 2: The illustration of SeqGAN. Left: D is trained over the real data and the generated data by G.
Right: G is trained by policy gradient where the final reward signal is provided by D and is passed back
to the intermediate action value via Monte Carlo search.

Wu et al., 2015). Sequence tagging methods
work well for disfluency removal from real-life
spoken utterances, assigning disfluent/fluent
label to every word in the sentence (Hough
and Schlangen, 2015; Ostendorf and Hahn,
2013; Zayats et al., 2016; Chen et al., 2022).
There is a notable gap in literature regard-
ing real data annotation in DC, with Switch-
board (Godfrey et al., 1992) being the most
extensive open-source labeled dataset for DC
in English. Although Gupta et al. (2021) in-
troduced a dataset for disfluencies in English
question answering, they have not been an-
notated for disfluent words. Without labeled
data, various zero-shot, few-shot, and multi-
task learning techniques have been proposed,
which train on multilingual data, creating and
utilizing synthetically generated disfluent sen-
tences (Wang et al., 2018; Passali et al., 2022;
Kundu et al., 2022; Bhat et al., 2023). In
this work, we experiment with sequence tag-
ging methods for DC.

4 Types of Disfluencies

We study four types of disfluencies observed:
Filler, Repetition, Correction and False Start.
Additionally, there are some fluent sentences
present in our datasets. Table 2 describes each
type of sentence with some real examples.

5 Surface Structure of Disfluencies

Shriberg (1994) defines disfluencies as a com-
position of Reparandum, Interregnum and Re-

pair (Figure 3). Reparandum refers to words
erroneously uttered by the speaker. The
speaker acknowledges that a previous utter-
ance might be incorrect using interregnum,
whereas repair contains words spoken to cor-
rect mis-spoken words. Disfluent utterances
might consist of an interruption point- a spo-
ken phenomena like speech pauses. DC re-
moves reparandum and interregnum while re-
taining repair to make the output sentence
more fluent.

Reschedule, no sorry, cancel my cab ride

Reparandum

Interruption Point

Interregnum

Repair

Figure 3: A disfluent utterance in English, marked
with various components of disfluencies.

6 DISCO: A dataset for Disfluency
Correction in Indo-European
Languages

This section analyzes the DISCO corpus, cre-
ated with the help of English, Hindi, German
and French language experts. DISCO contains
parallel disfluent-fluent sentence pairs in the
above four languages and English translations
of fluent sentences in Hindi and German along
with disfluency and domain labels.



Disfluency
Type

Description Example

Filler Words like uhh, err, uhmm that
are often uttered to retain turn
of speaking. Each language has
a different set of filler words com-
monly uttered.

EN: Write a message to um Sarah.
DE: Fortsetzen ähm meines Lauftrainings.
FR: Montre euh mes applications.
HI: मेरा उम्म पल्सरेट फट बत में चेक करो

Repetition Consists of words or phrases that
are repeated in conversational
speech

EN: Add this number to my to my con-
tacts.
DE: ein Instagram-Foto machen machen.
FR: Enregistre mes 400 calories enregistre.
HI: क्या तुम हॉ टलका हॉ टलका एक नोट बना
सकते हो?

Correction Disfluencies that consist of words
incorrectly spoken and immedi-
ately corrected with a fluent
phrase

EN: Get me the order my order status on
the desk chair I ordered from Overstock.
DE: HD Video auf aufnehmen.
FR: Reprendre l’exercice d’étirem
d’étirement
HI: रा राहु राहुल का मैसेज पढ़ो

False Start Examples where the speaker
changes their chain-of-thought
mid sentence to utter a com-
pletely different fluent phrase

EN: In an email let’s email Tom Hardy
about Saturday’s video shoot.
DE: Facebook uh Jahr Facebook bitte.
FR: Envoi de le envoi du SMS à maman.
HI: कल उम्म आज क ब्लड प्रेशर री डग बताओ

Fluent Examples which do not contain
any disfluent words or phrases

EN: Can you make a note for Johnny that
says dinner at eight on my laptop?
DE: Nummer zu Kontakten hinzufügen..
FR: Je veux j’aimerais ouvrir TikTok..
HI: क्या आप योसेमाइट नेशनल पाकर् को ईमेल कर
सकते हैं?

Table 2: Types of sentences observed in the DISCO corpus. All disfluencies are marked in red; EN-
English, DE-German, FR-French, HI-Hindi.

6.1 Data Collection Method
Goel et al. (2023) released an open-source
dataset containing real-life utterances of hu-
mans with AI agents for task-oriented dialogue
parsing. We extract disfluent sentences and
domain labels in English, Hindi, German and
French from this corpus. These utterances
consist of human dialogues like making notes,
monitoring fitness, adding new contacts, open-
ing apps, etc. All sentences are shared with
respective language experts for fluent sentence
creation and disfluency-type annotation.

6.2 Annotation Protocol and
Challenges

For each language, we hired external annota-
tors from reputed translation agencies with ex-

perience in data annotation. They were asked
to create fluent sentences corresponding to dis-
fluent utterances along with disfluency type la-
bels. Each annotator was paid competitively
based on current market standards (approxi-
mately $ 0.018 per word). Since we follow a
sequence tagging approach towards DC, the
annotators were asked to only remove disfluent
words from utterances without changing word
order or correcting original words/phrases.

Due to budget constraints, we could not uti-
lize the entire dataset in German and French
from Goel et al. (2023). However, we care-
fully select sentences in these languages to suf-
ficiently cover all disfluency types with varied
length and complexity of utterances. Table 3
summarizes the total amount of data created



and the amount of disfluency present in the
corpus.

Lang No. of
sentence
pairs

No.
of
words

% dis-
fluent
words

En 3479 31994 18.99
Hi 3180 32435 18.99
De 3096 22451 20.93
Fr 3005 22489 17.72

Table 3: Total count of disfluent-fluent pairs in
DISCO and percentage of disfluency present; En-
English, Hi-Hindi, De-German, Fr-French.

Since for every language, only one annotator
created fluent sentences and disfluency type
labels, ensuring high quality data was very
important. We strongly encouraged the an-
notators to flag all dubious instances, after
which the authors take a majority vote of re-
taining/removing doubtful disfluent words.

6.3 Key Statistics

The DISCO corpus is carefully created to en-
sure healthy representation of various disflu-
ency types and complexity of sentences. Table
4 describes average length of disfluent and flu-
ent sentences for each language. Our analysis
shows that in similar context, commands to
AI agents are shorter in German and French
than in English and Hindi. The standard devi-
ation of the disfluent sentences demonstrates
that the dataset also contains longer utter-
ances, more than ten words long, in each lan-
guage that are relatively difficult to correct.
We showcase the distribution of disfluent sen-
tences across disfluency types in figure 4.

Lang Mean length
of disfluent
sentences

Mean length
of fluent sen-
tences

En 9.19 ± 2.85 7.45 ± 2.59
Hi 10.18 ± 3.60 8.24 ± 3.12
De 7.25 ± 3.12 5.71 ± 2.84
Fr 7.42 ± 3.05 6.08 ± 2.87

Table 4: Average length of disfluent and fluent ut-
terances in the DISCO corpus for each language;
En-English, Hi-Hindi, De-German, Fr-French.

6.4 Domain Level Analysis
We use domain type labels from Goel et al.
(2023). To better understand our data, we de-
scribe each domain type under broader catego-
rization. In each example, disfluent utterances
are marked in red. The number of sentences
in each domain type for each language is spec-
ified in table 5.

• Health & Fitness: Sentence pairs be-
longing to this domain consist of utter-
ances where the user wants to perform a
fitness or health checkup task like record-
ing his/her exercises, nutrition or blood
sugar. Any interaction where the user
discusses any fitness query can be tagged
in this category. Domains such as Get
health stats, Log exercise, Log nutrition,
Start exercise, Stop exercise, Pause exer-
cise and Resume exercise fall under this
type.
Example - Go to Fitbit and show me my
um my blood sugar reading

• Order Status: Sentence pairs belong-
ing to this domain consist of utterances
where the user wants to check the status
of the already placed order. The Check
order status domain falls under this type.
Example - Check the status of um of my
Poshmark order with FedEx.

• Finance : Sentence pairs belonging to
this domain consist of utterances where
the user wants to perform a finance task
like checking stock market prices or get-
ting information from a finance app. The
domain Get security price falls under this
type.
Example - I want to um check stock
prices.

• Bill Payment or Purchase: Sen-
tence pairs belonging to this domain con-
sist of utterances where the user wants to
complete a bill payment or is instructing
the AI agent to purchase something for
him/her. Domains such as Get bill, Pay
bill, Get product, BuyEventTickets, Get-
GenericBusinessType, Order menu item
fall under this type.



Figure 4: Distribution of sentences across disfluency types for all four languages in DISCO.

Example - Pay my um my phone bill for
this month.

• Internal Task: Sentence pairs belong-
ing to this domain consist of utterances
where the user wants the AI agent to
perform a task which does not involve
any extra application. Examples could
be sending a message/email to someone,
cancelling some plan, taking some notes,
etc. If a third-party application is used
in the utterance, it is an ”External Task”;
if not, it is an ”Internal Task”. Domains
such as Get message content, Add con-
tact, Create note, Open app, Take photo,
Add item to list fall under this type.
Example - I want to e-mail Zane this
photo and cc um and cc Zach.

• External Task: Sentence pairs belong-
ing to this domain consist of utterances
where the user wants the AI agent to per-
form a task with the help of a third-party
application. In this domain, you will find
utterances where the user specifies the AI
agent and which application should the
AI agent use to complete the task. Do-
mains such as Cancel ride, Order ride,

Post message fall under this type.
Example - Use WhatsApp to to send lo-
cation to Jim.

6.5 Important plots
We also depict the word cloud of disfluent sen-
tences across the four languages. Our anal-
ysis shows the most common disfluent words
across four languages. Since the Filler class oc-
cupies a majority in the distribution, for each
language, we see filler words like um, uh, er,
and umm occupy a considerable size in the
cloud for English. Similarly, common fillers
in Hindi, German and French are the biggest
in the respective word clouds (figure 5).
Correlation analysis between original Hindi

and German sentences and their respective En-
glish translations was also performed to ensure
that the number of outliers was minimum and
the slope of points followed a natural straight
line. Figure 6 depicts the straight-line scatter
plots observed.
The disco corpus contains a good represen-

tation of shorter and longer disfluent sentences
across each language, increasing the complex-
ity of corrections needed. Figure 7 depicts the
box plot of disfluent sentences, indicating the



average sentence lengths of spoken utterances
across four languages.

7 Summary

In this paper, we thoroughly discuss disfluency
correction and the work done in CFILT lab
over the last two years. We cover all neces-
sary theory and terminologies in disfluencies
including common types of disfluencies and
its surface structure. We also provide a thor-
ough literature review of all papers in disflu-
ency correction. We motivate DC as a post
processing step to ASR transcripts to improve
machine translation accuracies. We introduce
our dataset for Indo-European languages DC
with details about disfluency types and some
preliminary data analysis. This corpus is rich
in many important disfluency phenomena and
future work must focus on experimenting with
this dataset using different types of techniques
in DC.
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Figure 5: Word cloud of disfluent sentences across each language in the DISCO corpus, showcasing the
most common disfluent words observed in spoken utterances

Figure 6: Plotting the correlation between disfluent sentences and their English translations. These
graphs indicate that the number of words in any English translation of Hindi or German sentences can
be estimated using a straight line slope as depicted with minimum outlier cases.



Figure 7: Box plot of disfluent sentence lengths across all languages in DISCO corpus


