
Knowledge Graph and Deep Learning Assisted Question Answering and
Ontology Construction: A Survey

Sakharam Gawade, Pushpak Bhattacharyya
IIT Bombay

{sakharamg, pb}@cse.iitb.ac.in

Abstract
Knowledge graphs have emerged as a powerful
framework for representing structured knowl-
edge and capturing the relationships between
entities in various domains. They provide a
comprehensive and interconnected view of in-
formation, enabling efficient reasoning, search,
and data integration. Language models are
trained on a lot of data and perform well on
tasks from the general domain. Knowledge
graph infusion is a method to teach the do-
main to a language model and perform better
on domain-specific tasks. While KGs from spe-
cialized domains are rare to obtain and difficult
to create, many OpenIE techniques can accel-
erate the process. This survey paper presents
an overview of knowledge graphs, focusing on
their construction, representation, and utiliza-
tion in QA for specialized domains.

1 Introduction

Knowledge graphs (KGs) are a powerful tool for
representing and reasoning over knowledge. They
can be used to answer questions, generate text, and
make predictions. However, KGs are often incom-
plete and noisy. This can make it difficult to an-
swer questions that require reasoning over multiple
pieces of knowledge.
Deep learning (DL) has been shown to be effective
for question answering (QA) tasks. However, DL
models typically require large amounts of training
data. This can be a challenge for KG-based QA
tasks, as there is often limited labeled data avail-
able.
Knowledge infusion is a technique that can be used
to improve the performance of DL models on KG-
based QA tasks. Knowledge infusion involves in-
jecting knowledge from a KG into a DL model.
This can help the model to learn better representa-
tions of the knowledge and to reason more effec-
tively over it.
There are a number of ways to infuse knowledge
into a DL model. One common approach is to

use a knowledge base embedding (KBE) technique.
KBE techniques map entities and relations from a
KG to a vector space. This allows the DL model
to learn the meaning of the entities and relations in
the KG.
Another approach to knowledge infusion is to use
a knowledge guided attention mechanism. Knowl-
edge guided attention mechanisms allow the DL
model to focus its attention on the most relevant
parts of the KG when answering a question.
This paper discusses the construction of KGs, KG
embeddings, IR, and knowledge infusion into lan-
guage models. It provides an overview of the state
of the art in these areas and identifies some of the
challenges that remain in domain-specific knowl-
edge infusion.

2 Motivation

Domain specific datasets are scarce and highly
sought after, posing challenges for building
question-answering (QA) systems capable of rea-
soning over knowledge graphs like AviationKG.
Large Language Models (LLMs) have demon-
strated efficient performance across various down-
stream NLP tasks. However, the high computa-
tional requirements associated with LLMs have
raised concerns. Furthermore, LLMs are typi-
cally trained on generic datasets, so their suitability
for domain-specific tasks is limited. Knowledge
graphs (KGs) are a powerful tool for representing
and reasoning over knowledge. They can be used
to answer questions, generate text, and make pre-
dictions. However, KGs are often incomplete and
noisy. This can make it difficult to answer ques-
tions that require reasoning over multiple pieces
of knowledge. Knowledge infusion is a technique
that can be used to improve the performance of DL
models on KG-based QA tasks. Knowledge infu-
sion involves injecting knowledge from a KG into
a DL model. This can help the model to learn bet-
ter representations of the knowledge and to reason

more effectively over it.

3 Knowledge Graphs

A Knowledge Graph represents triplets Ω =
< h, r, t > in a structured matter. Entities E are
represented as nodes, and relations R are defined
using a directed edge between the nodes in the head
and tail. Knowledge Graphs need not be limited

Figure 1: Relation between head and tail showed using
a CVT node. The relation “position” has “start” and the
start date as additional information
.

to edges between head and tail entities. The edge
representing the relation may include more infor-
mation. Figure 1 shows the head entity as “Naren-
dra Modi” and the tail entity as “Prime Minister
of India”. The figure also has a relation “position”
that mentions the start date. This additional infor-
mation is represented using nodes to the relations,
and the relations are represented as nodes. A node
representing relations attaching additional informa-
tion is known as a Compound Value Type (CVT)
node. The figreffig:KnowledgeGraph shows a part
of a knowledge graph containing entities as nodes
and relations as CVT nodes.

Figure 2: Knowledge graph containing entities and
relations. Relations are also shown as nodes instead
of edges. Relations also have additional information.
Green nodes are entities, blue nodes are relations, and
yellow nodes are additional information connecting to
the relation’s CVT node.

Facts in the Knowledge Graph can be associated
with a time stamp. A Knowledge Graph that incor-
porates timestamps or time intervals is known as
Temporal Knowledge Graph. To include time, we
add another field to the triplet, i.e., <h,r,t,τ> to get
a new tuple. Example: Narendra Modi was born

Figure 3: The relation “bornIn” has the date of birth as
temporal information

in India in 1950 and is represented as <Narendra
Modi, bornIn, India, 1950> and figure 3 shows how
it is represented in a Knowledge Graph.

3.1 Ontology

Figure 4: COVID Ontology containing hierarchy ‘is-a’
and has other relations such as ‘infects’ and ‘treatment
for’ (He et al., 2020)

An ontology in a knowledge graph (KG) is a
formal description of the entities and relationships
that exist in a particular domain. It is a way of
representing knowledge about a particular domain
in a way that is machine-readable.
An ontology typically includes the following:

1. Classes: A class is a collection of entities
that share some common properties. For ex-
ample, the class "Animal" would include all
entities that are animals, such as dogs, cats,
and horses.

2. Properties: A property is a relationship be-
tween two entities. For example, the property
"has_color" could be used to relate an entity
of class "Animal" to an entity of class "Color".

3. Individuals: Individuals are specific instances
of classes. For example, the individual "Spot"
is an individual of class "Dog".

Ontologies are used in KGs to provide a common
vocabulary for describing the entities and relation-
ships that exist in a particular domain.

3.2 Open Information Extraction Systems
Open information extraction (OIE) is a subfield of
natural language processing (NLP) that deals with
the automatic extraction of structured information
from unstructured text. OIE systems are typically
trained on a large corpus of text that has been anno-
tated with the desired information, such as named
entities, relations, and events. Once trained, OIE
systems can be used to extract information from
new text.
OIE systems can be used for a variety of applica-
tions, such as question-answering, summarization,
and machine learning. For example, an OIE system
could be used to extract the following information
from the sentence "Barack Obama was born in
Honolulu, Hawaii":

1. Named entities: Barack Obama, Honolulu,
Hawaii

2. Relations: was born in

3. Events: birth

This information could then be used to answer
questions about Barack Obama, such as "Where
was Barack Obama born?" or "What is Barack
Obama’s birthplace?" Stanford OpenIE and Ope-
nIE6 are open-source information extraction (IE)
systems that can be used to extract structured infor-
mation from text. They are both based on the Stan-
ford CoreNLP natural language processing (NLP)
toolkit.
Stanford OpenIE was released in 2010 and is based
on a rule-based approach to IE. It can extract a
variety of information from text, including named
entities, relations, and events.
OpenIE6 is an advanced neural Open Information
Extraction (OpenIE) system that introduces a novel
iterative labeling-based architecture for OpenIE
extraction. It improves the performance and capa-
bilities of the OpenIE6 model by incorporating an
iterative labeling approach, applying coverage con-
straints during the training process, and employing
the CALMIE model to facilitate the detection of
coordination boundaries. These improvements lead
to more accurate and comprehensive extractions.

3.3 Entity Linking and Relation Extraction
Entity linking is the task of identifying real-world
entities in text and linking them to corresponding
entities in a KG. Relation extraction is the task of
identifying relationships between entities in text

Figure 5: Entity Linking: Given a sentence “Michael
Jordan was also named the NBA Defensive Player of
the Year”, determining which Michael Jordan is the text
referring to using the context in the sentence

Figure 6: Relation Extraction: After identifying entities
as “Michael Jordan” and “NBA Defence Player of the
Year”, extracting the relation between the two using the
text that includes both the entities

and linking them to corresponding relations in a
KG. (Li et al., 2020) identifies entity mentions in
a question and scores the entity mention. (Wu
et al., 2020) uses a bi-encoder and cross-encoder
to disambiguate the entity mentioned. For instance,
Jaguar could mean Jaguar vehicle or the animal
jaguar. BLINK used Wikidata’s description of enti-
ties to check semantic similarities with the context
in the query.

3.4 Knowledge Graph Construction

Knowledge Graphs can be constructed in a number
of ways, but one common approach is first to build
an ontology. An ontology is a formal description
of the entities and relationships in a domain. It
provides a common vocabulary that represents the
domain and helps to ensure that the data in the KG
is consistent (Weikum et al., 2021).

Once an ontology has been built, triples can be
created. Often ontologies for general domain are
created by merging multiple existing ontologies
and generic KGs such as Cyc (Lenat, 1995), Con-
ceptNet (Speer et al., 2017) and Wordnet (Miller,
1992). Triples can be created manually or automat-
ically using techniques such as open information
extraction (refer section 3.2). Manually creating
triples can be time-consuming, but it allows for
more control over the quality of the data. Auto-
matic triple creation can be faster but may not be
as accurate.

3.5 Link Prediction and Knowledge Graph
Completion

Figure 7: Link Prediction: The solid lines are existing
edges in the KG, and dotted lines are missing edges.
Link prediction uses a scoring function to predict if a
relation should exist between two entities (Huang et al.,
2021)

Often Knowledge Graphs are sparse i.e., a knowl-
edge graph may have many facts missing. Such
facts can be reasoned using the existing facts.
Given an entity and a relation, link prediction is
predicting the tail entity. Traversing a knowledge
graph is computationally expensive. Knowledge
Graph embeddings capture information about their
neighbors due to their scoring function. Knowl-
edge Graph Embeddings that capture more prop-
erties of relations such as symmetry, asymmetry,
anti-symmetry, transitive and n-ary relationships
are preferred for the task of completion. Tempo-
ral Knowledge Graphs assign timestamps or time-
interval to facts. Temporal Knowledge Graph em-
beddings incorporate time explicitly which is help-
ful in predicting time and using causal patterns to
complete the knowledge graph.

3.6 KG Embeddings

Figure 8: KG Embeddings are trained with the objec-
tive of link prediction, Using KGE in a deep learning
network allows the DL model to do multihop reasoning
over graph (Commons, 2022)

Knowledge graph embeddings are a type of repre-
sentation learning that maps entities and relations

in a knowledge graph to a continuous vector space.
This allows us to represent the meaning of entities
and relations in a way that can be used by machine
learning algorithms. There are two main types of
knowledge graph embeddings: translation-based
and tensor factorization-based.

1. Translation-based embeddings use a scoring
function that measures the distance between
the embedding of the head entity, the embed-
ding of the relation, and the embedding of
the tail entity. The goal is to minimize the
distance between the head entity and the tail
entity when they are connected by the relation.
Translation-based embeddings are relatively
simple to train and can be effective for a vari-
ety of tasks. However, they can be sensitive to
noise in the data and may not be able to cap-
ture complex relationships between entities.

Figure 9: Entities and Relations are represented as vec-
tors, relation is a translation from one entity to another.
(Dai et al., 2020)

2. Tensor factorization-based embeddings use
a tensor factorization model to learn the em-
bedding of entities and relations. The tensor
factorization model is trained to predict the ex-
istence of a relation between two entities. Ten-
sor factorization-based embeddings are more
complex to train than translation-based em-
beddings, but they can be more effective for
capturing complex relationships between en-
tities. However, they can be more computa-
tionally expensive to train and may not be as
effective for tasks that require real-time infer-
ence.

Some popular translation-based embeddings are
TransE (Bordes et al., 2013), TransH (Wang et al.,

Figure 10: Knowledge Graph represented as tensor,
where entities are two of the dimensions and the third
dimension is relation (Dai et al., 2020)

2014), TransR (Lin et al., 2015), and HyTE (Wang
et al., 2014). Some popular tensor factorization-
based embeddings are RESCAL (Nickel et al.,
2011), DistMult (Yang et al., 2015), and ComplEx
(Trouillon et al., 2016). Knowledge graph embed-
dings have been shown to be effective for a variety
of tasks, including link prediction and question
answering.

3.6.1 Translation Based Models
Translation-based Knowledge Graph Embedding
models represent relation as a translation from a
head entity to a tail entity in an embedding space.
The proposed translation-based models vary in the
space these elements are projected. The following
are some translation-based models:

1. TransE: TransE (Bordes et al., 2013)is the first
Knowledge Graph Embedding method which
translates head by the relation to reach the tail
entity keeping both head and tail entities in
the same dimension i.e. k=d. The figure 11
shows the translation from head to tail using a
relation.
The scoring function of TransE is fr(h,t) =
||h + r + t||l1/l2 . The model complexity of
TransE is O(Ned + Nrk)(d = k). TransE
fails to model the one-to-many, many-to-one
and many-to-many relationship between enti-
ties. It can’t model symmetric and reflexive
relations.

2. TransH: TransH (Wang et al., 2014) projects
the head and tail entities onto a relation spe-
cific hyperplane and then uses translation on
the hyperplane to translate the projected head
to obtain the projected tail entity. Since multi-
ple entities can be projected to the same point
on the hyperplane, it can model one-to-many,

Figure 11: TransE: Translation over hyperplane, here r
is translation from h to t. (Dai et al., 2020)

many-to-one, and many-to-many relations.
The scoring function of TransH is fr(h,t) =
||(h − wT

r hwr) + dr − (t − wT
r twr)||22. The

model complexity of TransH is O(Ned +
Nrk)(d = k). The ability to model n-ary rela-
tionship is limited due to the projection onto
a hyperplane in the same space as entities.

Figure 12: TransH: Entities are first projected onto hy-
perplaned then translated over it. (Dai et al., 2020)

3. TransR: TransR (Lin et al., 2015) projects the
head and tail entities from a k-dimensional
space to a d-dimensional space. Projection
into a seperate space allows TransR to model
more n-ary relations. The projection is per-
formed using a relation-specific projection ma-
trix.
The scoring function of TransR is fr(h,t) =
||(Mrh + r − Mrt||22. The model complex-
ity of TransR is O(Ned + Nrdk). TransR
increased the complexity of parameters due to
the projection matrix Mr.

Figure 13: TransR: Projection matrices are used to
project entities to relation space. (Dai et al., 2020)

4. TransD: TransD (Ji et al., 2015) projects the
head and tail entities from a k-dimensional
space to a d-dimensional space. Unlike
TransR, TransD uses seperate projection ma-
trix for head and tail entity. TransD reduces
the number of parameters by obtaining the
projection matrices using vector multiplica-
tion.
The projection matrix for head entity is ob-
tained using vectors rp hT

p for tail using vec-
tors rp and tTp . The scoring function of
TransD is fr(h,t) = ||(rp hT

p +I)h +r -(rp tTp +I)t
||22. The model complexity of TransD is
O(Ned+Nrk).

Figure 14: TransD: Sparse projection matrices are used
to project entities to relation space.The Sparse projec-
tion matrices can be represented as multiplication of two
vectors forming a projection matrix. (Dai et al., 2020)

3.6.2 Tensor Factorization Based Models
Tensor factorization-based methods represent enti-
ties and relation between them as a tensor, as shown
in figure 15. The tensor representing the knowl-
edge graph is a three-dimensional binary matrix
X ϵ Rn,n,m where n is the number of entities and
m is the number of relations. Tensor factorization-
based methods decompose the KG tensor into a
multiplication of factors as entities and relation.
The following are some Tensor-factorization based
methods:

Figure 15: Entities and relation represented as a three-
dimensional tensor (Dai et al., 2020)

1. RESCAL: RESCAL expresses the tensor into
representation of head, relation and tail.
The scoring function of RESCAL is fr(h,t) =
hTMrt. The model complexity of RESCAL
is O(Ned+Nrk

2)(d = k). The model com-
plexity of RESCAL is quadratic in k.

2. DistMult: DistMult restricts the relation ma-
trix to a diagonal matrix, hence reducing the
number of parameters required by a relation.
It allows symmetric relations between head
and tail entities.
The scoring function of DistMult is fr(h,t) =
hT diag(r)t. The model complexity of Dist-
Mult is O(Ned+Nrk)(d = k).

3. HolE: HolE simplifies the tensor product by
introducing circular correlation. The circu-
lar correlation operation is indicated using
⋆. For two entities, it can be calculated as
[h⋆t]k=

∑d−1
i=0 hit(k+i)modd. The operation is

asymmetric which allows the model to repre-
sent asymmetric relations. Also, the complex-
ity can be further improved using fast fourier
transform(FFT) using h ⋆ t = F−1(F(h) ⊙
F(t)) .
The scoring function of HolE is fr(h,t) =
rT (h⋆t). The model complexity of HolE is
O(Ned+Nrk)(d = k).

4. ComplEx: ComplEx uses embeddings from
complex space i.e. Cd. Because of the com-
plex space, along with symmetric, asymmetric
relations can be modeled.
The scoring function of ComplEx is fr(h,t) =
Re(hT diag(r)t) where t is complex conjugate
of t and Re() returns the real part of a complex

Datasets WN18 FB15K
Metric Mean Rank HITS@10(%) Mean Rank Hits@10(%)

Raw Filter Raw Filter Raw Filter Raw Filter
TransE 263 251 75.4 89.2 243 125 34.9 47.1
TransH 401 388 73.0 82.3 212 87 45.7 64.4
TransR 238 225 79.8 92.0 198 77 48.2 68.7
TransD 224 212 79.6 92.2 194 91 53.4 77.3
RESCAL 1180 1163 37.2 52.8 828 683 28.4 44.1
DistMult - - - - 94.2 - - - 58.5
HOLE - - - 94.9 - - - 73.9
ComplEx - - - 94.7 - - - 84.0

Table 1: Evaluation of Knowledge Graph Embedding Models on WN18 and FB15K datasets (Dai et al., 2020)

value. The model complexity of ComplEx is
O(Ned+Nrk)(d = k).

4 Deep Learning for NLP

Deep learning in natural language processing
(NLP) is a subfield of artificial intelligence that
focuses on using neural networks to process and un-
derstand human language. It leverages deep neural
networks, which are composed of multiple layers of
interconnected artificial neurons, to automatically
learn intricate patterns and representations from
textual data. The combination of linguistics and
deep learning in NLP has revolutionized various
NLP tasks, including question-answering, machine
translation, sentiment analysis, text summarization,
and more. Deep learning for NLP uses word em-
beddings, RNNs, and attention mechanisms to cap-
ture meaning and dependencies in text. Transform-
ers are a newer architecture that can parallelize
computation and capture long-range dependencies
more effectively. Pretraining and transfer learning
improve performance on downstream tasks with
smaller datasets.

4.1 Word Embeddings

Word embeddings are dense vector representations
of words that capture their semantic and syntactic
relationships. They are a key component of many
deep learning models for natural language process-
ing (NLP) tasks, such as machine translation, text
classification, and question answering. There are
two main approaches to learning word embeddings:
continuous bag-of-words (CBOW) and skip-gram.
CBOW predicts the target word given its context
words, while skip-gram predicts the context words
given the target word. Both CBOW and skip-gram
are neural network models that are trained on large

Figure 16: Skipgram: The input is a one-hot vector, here
the vector is set at the position of ‘ant’ and 0 elsewhere.
The output is one hot vector for each of its contexts.
(Bhattacharyya, 2022)

corpora of text. The input to the model is a se-
quence of words, and the output is a vector repre-
sentation of the target word. The model is trained
to minimize the error between the predicted vector
representation and the ground truth vector represen-
tation. Word embeddings have been shown to be
effective because of their ability to capture the se-
mantic and syntactic relationships between words,
which allows models to learn more complex repre-
sentations of language.

4.2 Recurrent Neural Networks and
Transformers

Recurrent Neural Networks (RNNs) are a type of
neural network that are designed to process sequen-
tial data by utilizing the concept of feedback loops.
They are particularly effective in tasks that involve
sequential or temporal dependencies.
The key idea of RNNs is their ability is that they
maintain an internal state or memory which cap-
tures previous history previous inputs in the se-

Figure 17: The basic architecture of a recurrent neural
network (RNN). (Bhattacharyya, 2022)

quence. This internal state is passed along through
the network, allowing it to retain information about
the context and history of the sequence. This
is achieved by introducing recurrent connections,
where the output of a hidden layer at a given time
step is fed back as an input to the same layer at the
next time step.
As shown in figure 17, at each time step, an RNN
takes an input vector and combines it with the inter-
nal state from the previous time step to produce an
output and update the internal state. This process is
repeated for each element in the sequence, allowing
the network to capture the sequential dependencies.
An RNN can be described by the following equa-
tions:

Hidden state update:st = f(W ∗st−1+U∗xt+bh)
(1)

Output computation:yt = f(V ∗ st + bo) (2)

Here, st represents the hidden state at time step t,
xt is the input at time step t, yt is the output at time
step t, and f() is an activation function. W , U , V ,
bh, and bo are weight matrices and bias vectors that
are learned during the training process.
One important variant of RNNs is the Long Short-
Term Memory (LSTM) network. LSTMs address
the issue of vanishing or exploding gradients that
can occur in traditional RNNs by incorporating
memory cells and gating mechanisms. These mem-
ory cells allow LSTMs to selectively remember or
forget information over long sequences, making
them more effective in capturing long-term depen-
dencies.
In natural language processing, RNNs are used for
tasks such as language modeling, machine transla-
tion, sentiment analysis, and question answering.

Unlike traditional recurrent neural networks

Figure 18: Architecture of a Transformer model
(Vaswani et al., 2017)

(RNNs) that process sequential data, transformers
(Vaswani et al., 2017) are based on a self-attention
mechanism that enables parallel processing of in-
put sequences, making them highly efficient and
effective. Self-attention is a mechanism that allows
the model to focus on different parts of the input
sequence when encoding or decoding. It assigns
weights to each input position based on its rele-
vance to other positions in the sequence, capturing
dependencies and relationships. RNNs often suf-
fer from the vanishing gradient problem, where
gradients diminish exponentially as they propagate
through multiple time steps. This limitation ham-
pers the ability of RNNs to capture long-range de-
pendencies effectively. Transformers alleviate this
issue by employing residual connections and layer
normalization.

4.3 Language Models

A language model is a statistical method that pre-
dicts the next word in a sequence. Language mod-
els are used in a variety of natural language pro-
cessing (NLP) tasks, such as question-answering,
machine translation, and text generation.

4.3.1 Pretraining and Finetuning
In pretraining, a language model is trained on a
large corpus of text with a general objective, such

as predicting the next word in a sequence. This
helps the model learn the statistical relationships
between words and phrases. In finetuning, the lan-
guage model is trained on a smaller dataset of text
with a specific task, such as question answering or
machine translation. This helps the model learn
the specific features of the task and improve its
performance.

4.3.2 Architectures of Language Models
There are different architectures for language mod-
els, each serving specific purposes in natural lan-
guage processing tasks.

1. Encoder-Only Models:

(a) Encoder-only models focus on encoding
input sequences into meaningful repre-
sentations.

(b) These models capture contextual infor-
mation from the input and create fixed-
length representations, often referred to
as embeddings.

(c) Examples of encoder-only models in-
clude XLNet (Yang et al., 2019),
RoBERTa (Liu et al., 2019) and BERT
(Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019).

(d) Encoder-only models are widely used for
tasks such as text classification, named
entity recognition, and sentiment analy-
sis, where the focus is on understanding
the input.

2. Decoder-Only Models:

(a) Decoder-only models concentrate on
generating output sequences based on
given input or context.

(b) These models take an initial input or rep-
resentation and generate sequences step
by step, often using autoregressive ap-
proaches.

(c) Decoder-only models are commonly
used in tasks like machine translation,
text generation, and image captioning.

(d) Prominent examples include the de-
coder part of sequence-to-sequence mod-
els and generative language models
like GPT (Generative Pre-trained Trans-
former) and BLOOM

3. Encoder-Decoder Models:

(a) Encoder-decoder models combine both
encoding and decoding components to
handle tasks involving input and output
sequences.

(b) These models encode the input sequence
into a fixed-length representation and
then use the decoder to generate the out-
put sequence.

(c) Encoder-decoder models are widely
used in machine translation, question-
answering, and text summarization.

(d) Popular architectures include the
sequence-to-sequence model with
attention mechanisms (e.g. T5) and the
transformer-based model for machine
translation (e.g., Transformer for Neural
Machine Translation - NMT).

5 Information Retrieval

Information retrieval plays a vital role in manag-
ing and extracting relevant information from vast
amounts of textual data. We delve into differ-
ent types of neural ranking models, including bi-
encoder and cross-encoder models, and discuss
their architectures and training strategies.

5.1 Early and Late Interaction Models

Early and late interaction models are two different
approaches used in information retrieval systems
for ranking passages based on a given query.

5.1.1 Early Interaction Models

Early interaction models process the query and
passages together from the beginning of the ranking
process. In these models, the query and passage
representations are combined or fused early on,
usually before any scoring or ranking is performed.
One common approach in early interaction models
is to concatenate the query and passage represen-
tations into a single vector or matrix. This con-
catenated representation is then fed into a scoring
function such as a model like BERT to determine
the relevance between the query and passage. The
scores obtained from the model are used to rank
the passages.
Early interaction models have the advantage of
capturing the interaction between the query and
passage from the start. Early interaction methods
perform well but since for k passages, the similarity
is to be computed k times through a model, it is

very slow making it difficult to scale over large
number of documents.

5.1.2 Late Interaction Models

Late interaction models, on the other hand, pro-
cess the query and passages separately and perform
interaction at a later stage, typically after obtain-
ing individual representations for the query and
passages.
In late interaction models, the query and passage
representations are computed independently using
pre-trained language models such as BERT or GPT.
These representations capture the contextual infor-
mation of the query and passages. After obtaining
the representations, a scoring function is applied
to measure the relevance or similarity between the
query and each passage separately.
The scores obtained for each passage are then used
for ranking. The late interaction allows for more
flexibility in capturing the interaction patterns be-
tween the query and passages. It allow the model
to precompute the embeddings for each passage
allowing it to scale. The scoring function is usually
a dot product or cosine similarity which are faster
to compute.

5.2 BM25 and Elastic Search

BM25 is a ranking function used to determine the
relevance of documents to a query, while Elastic-
search is a scalable search and analytics engine that
utilizes BM25 and other algorithms for efficient
and powerful search capabilities.

5.2.1 BM25

BM25 (Robertson and Zaragoza, 2009), or the
Okapi BM25 algorithm, is a statistical method for
ranking documents in a search engine results page
(SERP) based on their relevance to a user’s query.
It is a term weighting algorithm, which means that
it assigns different weights to different terms in a
document, depending on how frequently they occur
in the document and in the corpus of documents as
a whole.
BM25 works by first calculating a document fre-
quency (DF) for each term in the document. The
DF is the number of documents in the corpus that
contain the term. BM25 then calculates a term fre-
quency (TF) for each term in the document. The
TF is the number of times the term occurs in the
document.

score(D,Q) =
n∑

i=1

IDF (qi)·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 ·
(
1− b+ b · |D|

avgdl

)
(3)

where D is the document, Q is the query, n is the
number of terms in the query, qi is the ith term in
the query, f(qi, D) is the frequency of qi in D, |D|
is the length of D in words, avgdl is the average
document length in the text collection, k1 and b are
free parameters and IDF (qi) is the IDF weight of
qi. Typically k1 ∈ [1.2, 2.0] and b = 0.75.
The IDF weight is calculated as follows:

IDF (qi) = ln

(
N − n(qi) + 0.5

n(qi) + 0.5
+ 1

)
(4)

where N is the total number of documents in the
collection and n(qi) is the number of documents
containing qi

5.2.2 Elastic Search
Elasticsearch is an open-source search engine built
on top of Apache Lucene, and it provides a power-
ful and flexible way to store, search, and analyze
data.
Elasticsearch is often used for a variety of tasks,
including:

1. Log analytics: Elasticsearch can be used to
collect, store, and analyze log data from ap-
plications and servers. This can be used to
troubleshoot problems, identify performance
bottlenecks, and monitor system health.

2. Full-text search: Elasticsearch can be used to
index and search large amounts of text data.
This can be used to power search features on
websites, applications, and internal systems.

3. Real-time analytics: Elasticsearch can be used
to analyze data in real time. This can be used
to track changes in data over time, identify
trends, and detect anomalies.

Elasticsearch is a distributed system, which means
that it can be scaled horizontally to handle large
amounts of data. Elasticsearch nodes are organized
into clusters, and each node can store and process
data.
Elasticsearch uses a document-oriented data model.
This means that data is stored in documents, which

are JSON objects. Documents are indexed into
shards, which are logical divisions of the data.
Shards can be distributed across multiple nodes
in the cluster.
When a user performs a search, Elasticsearch uses
a query language called Elasticsearch Query DSL
to find the documents that match the search criteria.
The search results are then ranked using a scoring
algorithm, such as BM25.

5.3 Bi-Encoder and Cross-Encoder
Bi-encoders and cross-encoders are both used in
information retrieval (IR) to find relevant passages
for a given query. In IR, a query is a short piece
of text that represents the user’s information needs.
A passage is a longer piece of text that contains
information that may be relevant to the user’s infor-
mation needs.

5.3.1 Bi-Encoder

Figure 19: Bi-encoder from (Khattab and Zaharia, 2020)
where representations of query and passage are used to
check similarity

A bi-encoder is a model that independently encodes
two pieces of text, such as a question and a passage,
into a vector representation. The vector representa-
tions are then used to calculate a similarity score,
which is used to determine whether the question
and passage are related.
Bi-encoders are relatively simple to train and can
be effective for a variety of NLP tasks, such as
question answering and natural language inference.
However, bi-encoders can be limited in their ability
to capture long-range dependencies between words
in a text.

5.3.2 Cross-Encoder
A cross-encoder is a model that jointly encodes two
pieces of text into a single vector representation.
The vector representation is then used to perform a
variety of NLP tasks, such as question answering,
natural language inference, and sentiment analysis.

Figure 20: Cross-encoder from (Khattab and Zaharia,
2020) where a BERT-like model is used to obtain sim-
ilarity by passing query and document as input to the
encoder and allow early interaction through attention.

Cross-encoders are more complex than bi-encoders,
but they can be more effective for tasks that require
the model to understand the relationship between
two pieces of text. Cross-encoders can also capture
long-range dependencies between words in a text,
which can be helpful for tasks such as question
answering.

5.4 Retrieve and Rerank

Retrieve and rerank is a mechanism used in infor-
mation retrieval (IR) to improve the accuracy of
the results. In retrieve, a bi-encoder is used to iden-
tify a set of relevant documents for a given query.
In rerank, a cross-encoder is used to rank the doc-
uments in the set according to their relevance to
the query. The retrieve and rerank mechanism can
be helpful because it allows the IR system to take
advantage of the strengths of both bi-encoders and
cross-encoders. Bi-encoders are fast and easy to
train, while cross-encoders are more accurate. By
using both bi-encoders and cross-encoders, the IR
system can identify a large set of relevant docu-
ments quickly and then rank the documents first
few documents in the set according to their rele-
vance to the query. The workflow of retrieve-rerank
is shown in figure 21. For example, a user enters
the query “What is the capital of France?” into a
search engine or QA system. The system uses a bi-
encoder to identify a set of relevant documents for
the query. The documents in the set are then ranked
by a cross-encoder according to their relevance to
the query. The document with the highest ranking
is the document that is most likely to contain the
answer to the query.
In this example, the bi-encoder would identify a set

of documents that contain the words "France" and
"capital." The cross-encoder would then rank the
documents in the set according to their similarity to
the query. The document with the highest ranking
would be the document that is most likely to contain
the answer to the query. In this case, the document
with the highest ranking would be the document
stating that France’s capital is Paris.

Figure 21: The retrieve-rerank retriever uses a bi-
encoder and then a cross-encoder to retrieve relevant
documents for a query. The bi-encoder uses cosine sim-
ilarity to fetch the top 20 documents, and then these
50 passages are reranked using a cross-encoder. The
top-5 documents ranked by cross-encoder are used for
question answering

5.5 ColBERT

Figure 22: ColBERT matching relevant text spans be-
tween query tokens and document tokens to obtain a
similarity score (Khattab and Zaharia, 2020)

ColBERT (Khattab and Zaharia, 2020) stands for
"Contextualized Late Interaction over BERT" and
is specifically designed for passage ranking in in-
formation retrieval. It aims to improve the effec-
tiveness of retrieving relevant passages from large
collections of documents given a user query.
The ColBERT model builds upon the BERT (Bidi-
rectional Encoder Representations from Transform-
ers) architecture, a widely used language represen-
tation model. BERT is trained on large amounts of
text data to generate contextualized word embed-
dings that capture the semantic meaning of words
based on their context.

ColBERT takes the BERT architecture and mod-
ifies it to optimize for the passage ranking task.
It processes the query and passages separately to
obtain their respective embeddings of tokens. As
shown in figure 22, it then applies a late interaction
mechanism, where the embeddings of the query
and passage are combined to compute relevance
scores. The spans of the query are matched with
the spans of the document. The similarity between
spans is summed up to obtain a similarity score.
This allows ColBERT to effectively capture the
interaction between the query and passage repre-
sentations.

6 Question Answering

Question-Answering (QA) is a natural language
processing task that seeks to provide the answer to
a given question. In this section, we will discuss
open-book and closed-book setting for QA. QA
models are often trained on general domain data
and perform poorly in specialized domains. We
will discuss the challenges in domain-specific QA.
Finally, we discuss the work on knowledge-infused
QA.

6.1 Open Book and Closed Book QA
Open book QA allows users to access any informa-
tion they want while answering the question. This
means that they can use any resources they have
available, such as books, articles, or the internet.
Closed book QA does not allow the user to ac-
cess any information while answering the question.
This means that they must rely on their own knowl-
edge and understanding of the topic to answer the
question.
Open-book QA is typically easier than closed-book
QA because the user has access to more informa-
tion. However, it can also be more time-consuming
because the user has to sift through all of the in-
formation to find the answer. Closed-book QA is
typically more challenging than open-book QA be-
cause the user has to rely on their own knowledge
and understanding of the topic. However, it can
also be more efficient because the user does not
have to waste time looking for information.

6.2 Challenges in Domain Specific QA
The following are the challenges that arise with
domain-specific QA:

1. Data scarcity: There is often less data avail-
able for training a domain-specific QA sys-

tem than for a general-purpose QA system.
This is because domain-specific data is of-
ten more specialized and difficult to collect.
For instance, in-depth investigation about acci-
dents or patients which might not be available
on Wikipedia or the news, which are primary
sources of data collection for pretraining data.
When less data is used to train models, the
model struggles to learn the domain knowl-
edge due to underfitting.

2. Domain knowledge: Domain-specific QA sys-
tems need to have a good understanding of
the domain in order to answer questions accu-
rately. This can be difficult to achieve, espe-
cially for domains that are complex or have a
lot of jargon. For. example Bear Market and
Limit Order are words from financial domain
that are not used in day-to-day conversations
and writing.

3. Closed-book QA: In real-world QA, the sys-
tem is not allowed to access external re-
sources, such as the Internet, to answer ques-
tions. This makes it more difficult for the sys-
tem to answer questions that require outside
knowledge.

4. Domain knowledge graphs (KGs): Domain
KGs can be helpful for domain-specific QA
systems, but they are often incomplete or inac-
curate and rare for specialized domains. This
can lead to the system providing incorrect or
incomplete answers.

5. Data distribution shift: The distribution of
data in the real world may be different from
the distribution of data used to train the
model, which can lead to the model perform-
ing poorly on real-world data.

6.3 Knowledge Graph and Deep Learning
based Question Answering Systems

Traditional approaches to querying KGs in Natural
Language (NL) involved rule-based and pattern-
based systems, along with semantic parsing tech-
niques that converted NL questions into symbolic
queries over the KG. However, recent advance-
ments have shifted towards the use of sequence-to-
sequence (seq2seq) architectures and pre-trained
models, leveraging the power of neural networks.
The integration of KGs and deep learning (DL)
has attracted significant research attention in the

field of natural language query retrieval, as it ad-
dresses the challenge of converting NL into graph
query language. One successful approach involves
combining structured knowledge with DL by con-
verting the knowledge into natural language text.
ERNIE 3.0 (Sun et al., 2021), for example, trains a
knowledge-enhanced model on a corpus that com-
bines triples (KG statements) and their correspond-
ing sentences. During training, random masking is
applied to either the relation in a triple or words in a
sentence. Other methods like QA-GNN (Yasunaga
et al., 2021) and GreaseLM (Zhang et al., 2022) em-
ploy knowledge infusion techniques, propagating
information through a graph to capture dependen-
cies and relationships among entities.
The synergy between KGs and DL can be catego-
rized into two groups. First, utilizing KGs during
inference, as shown in PullNet (Sun et al., 2019).
Second, infusing knowledge into model weights
during pre-training, as explored in approaches such
as K-BERT(Liu et al., 2020), KGT5(Saxena et al.,
2022), and SKILL (Moiseev et al., 2022).

7 Datasets

In this section, we will discuss important datasets
for Question Answering, Aviation documents, and
benchmark Knowledge Graphs used for link pre-
diction and knowledge infusion.

7.1 Aviation Documents
The National Transportation Safety Board (NTSB)1

and Airworthiness directives (ADs) 2 are two im-
portant safety organizations that work together to
improve aviation safety. The NTSB investigates
accidents and identifies unsafe conditions, while
the FAA issues ADs to address these unsafe con-
ditions. The ADREP taxonomy is a list of terms
and definitions used to describe and classify avia-
tion accidents and incidents. It is used by aviation
safety professionals to share information and de-
velop effective safety measures.

7.1.1 National Transport Safety Board
Reports

The National Transportation Safety Board (NTSB)
is an independent federal agency that investigates
transportation accidents, including airplane crashes.
The NTSB’s goal is to prevent future accidents by

1https://www.ntsb.gov/investigations/
Pages/Investigations.aspx

2https://www.faa.gov/regulations_
policies/airworthiness_directives

https://www.ntsb.gov/investigations/Pages/Investigations.aspx
https://www.ntsb.gov/investigations/Pages/Investigations.aspx
https://www.faa.gov/regulations_policies/airworthiness_directives
https://www.faa.gov/regulations_policies/airworthiness_directives

identifying the causes of accidents and making rec-
ommendations for safety improvements. NTSB
aviation reports are typically divided into four sec-
tions:

1. Summary: This section provides a brief
overview of the accident, including the date,
time, location, and number of fatalities.

2. Investigation: This section provides a detailed
description of the NTSB’s investigation, in-
cluding the interviews of witnesses, the exam-
ination of the wreckage, and the analysis of
the data.

3. Analysis: This section analyzes the accident
and identifies the probable cause.

4. Findings and Recommendations: This section
makes safety recommendations to prevent sim-
ilar accidents from happening in the future.

Figure 23: Structured part of NTSB report of accident
number SEA87LA080. It contains meteorological infor-
mation and flight plan

NTSB Reports has some information in structured
tabular format while rest in unstructured text for-
mat.

1. Structured information is organized in a con-
sistent format and extraction of specific de-
tails become easy to extract. NTSB reports
contains one or more tables that contains in-
formation on findings, history of flight, pi-
lot information, aircraft and owner/operator
information, meteorological information and
flight plan, airport information, wreckage and
impact information and administrative infor-
mation. Each table goes into further details.
Many of these details are present as unstruc-
tured format in the report as well. Struc-
tured information is very helpful to create a
database or a knowledge base to store infor-
mation about the accident. Figure 23 shows

Figure 24: Unstructured part of NTSB report of acci-
dent number CEN21LA104. It contains the events that
occurred before the accidents.
.

the meteorological information and flight plan,
and wreckage and impact information. The
meteorological information contains the data
about departure point and weather and visibil-
ity conditions. Wreckage information con-
tains details about the injuries and aircraft
damage.

2. Unstructured information is not organized
in a consistent format. The investigation, anal-
ysis and findings are explained in detail in
the form of sentences. This can include state-
ments by witnesses, details of the sequence of
events before the accident and that lead to ac-
cident, details of findings by inspections and
some preventive measures for new type of ac-
cidents. These details are specific information
to the accident and such information cannot
be generalized to a structure across all formats.
Figure 24 explains the events that took place
before the accident occurred.

7.1.2 Airworthiness Directives
An Airworthiness Directive (AD) is a document is-
sued by the Federal Aviation Administration (FAA)
that requires aircraft owners and operators to take
action to correct an unsafe condition in an aircraft.
ADs can be issued for a variety of reasons, includ-
ing design flaws, manufacturing defects, mainte-
nance errors, or in-service failures. ADs are issued
to help prevent accidents by addressing unsafe con-
ditions in aircraft. By requiring operators to take

action to correct these conditions, ADs help to en-
sure that the aviation industry is as safe as possible.
ADs are not always easy to comply with. Some-
times, the corrective action required by an AD can
be complex or expensive. Therefore typically ADs
mention the cost of compliance in their reports.

ADs can be emergency or regular based on the

Figure 25: Snapshot of Docket No. 2003-NE-68-AD,
the figure shows unsafe condition and compliance. The
information is unstructured. The format of the informa-
tion differs from report to report.
.

urgency and time of compliance. Emergency ADs
(EADs)are issued when there is an immediate
safety hazard. EADs must be complied with im-
mediately, or the aircraft may not be allowed to
fly. Regular ADs are issued when there is a less
urgent safety hazard. Regular ADs must be com-
plied with within a specified period of time, which
is usually 12 months. ADs are legally enforceable
regulations. This means that aircraft owners and
operators who do not comply with an AD may be
subject to civil penalties or criminal charges. Each
AD is associated with a unique docket number. Fig-
ure 25 shows a snapshot of Docket SEA87LA080.
It contains meteorological information and flight
plan No. 2003-NE-68-AD which contains the un-
safe condition, the part which caused the condition
and actions taken to resolve the unsafe condition.
ADs have information in unstructured format and
can be difficult to create a Knowledge Base from
it.

Unlike NTSB reports ADs are not the same as acci-
dent reports. Accident reports are typically issued
after an accident has occurred, and they are de-
signed to determine the cause of the accident. ADs,
on the other hand, are issued to prevent accidents
from happening in the first place.

7.1.3 ADREP Taxonomy

The ADREP taxonomy is a set of terms used by the
International Civil Aviation Organization (ICAO)
to categorize aircraft accidents and incidents. The
taxonomy is used to collect and analyze data on
aviation accidents and incidents, and to identify
trends and patterns that can be used to improve
aviation safety.
The ADREP taxonomy contains over 1000 terms,

Figure 26: Attribute values about aircraft damage in
ADERP. The damages are classified as destroyed, sub-
stantial, minor and none with explanation of each
.

which are organized into a hierarchy of categories
and subcategories. The categories include

1. Accidents: Events that result in the death or
serious injury of a person on board an aircraft,
or the destruction of the aircraft.

2. Incidents: Events that do not result in death or
serious injury, but that could have done so if
not for the actions of the crew or other factors.

The subcategories within each category provide
more detailed information about the accident or
incident. For example, the subcategories for ac-
cidents include Aircraft category, Aviation oper-
ations, Damage aircraft, Geographical areas, In-
jury level, etc. Figure 26 shows different types of
damages an aircraft can incur in an accident. The
damages namely destroyed, substantial, minor and
none are further explained in ADREP.
The ADREP taxonomy is used by ICAO member
states to collect and analyze data on aviation acci-
dents and incidents. The data is used to identify
trends and patterns that can be used to improve
aviation safety. For example, if a particular type of
aircraft is involved in a high number of accidents,
ICAO may recommend that the aircraft manufac-
turer take steps to improve the safety of the aircraft.

KG Entities Reln Triples

AviationKG 15,137 151 193,372
Wikimovies 40,150 4 134,741
Wikidata5m 4,594,485 822 20,624,575
FB15k 14,951 1,345 592,213
FB15k-237 14,505 237 310,079
WordNet18 41,000 18 141,442

Table 2: Statistics of Benchmark Knowledge Graphs

7.2 Benchmark Knowledge Graphs

A knowledge graph (KG) is a structured collection
of data that represents entities and their relation-
ships. KGs are used to store and organize infor-
mation about the real world, and they can be used
for a variety of tasks, such as question answering,
natural language processing, and machine learn-
ing. In this section, we will discuss popularly used
KGs for experiments from different domains and
provide statistics on their sizes.

7.2.1 WordNet
WordNet is a lexical database that organizes words
into sets of synonyms called synsets, each repre-
senting a distinct concept. Synsets are interlinked
by means of conceptual-semantic and lexical re-
lations, such as "is-a" (hypernymy) and "part-of"
(meronymy). Hypernymy and hyponymy are two
of the most important semantic relations in Word-
Net. Hypernymy is a "is-a" relationship, and it in-
dicates that one concept is a more general concept
than another. For example, the word "apartment" is
a hyponym of the word "dwelling," because apart-
ment is a type of dwelling. Hyponymy is the oppo-
site of hypernymy, and it indicates that one concept
is a more specific concept than another. WordNet
can be viewed as a knowledge graph (KG), which is
a structured collection of information about entities
and their relationships. In WordNet, the entities
are words, and the relationships are the semantic
relations between them. For example, the semantic
relation "is-a" can be viewed as a relationship be-
tween two entities, where one entity is a more gen-
eral concept and the other entity is a more specific
concept. WN18 3 is a benchmark dataset for eval-
uating the performance of systems that work with
knowledge graphs. WN18 contains 18 relations,
40K entities and 151K triples. The triples in WN18

3https://github.com/simonepri/
datasets-knowledge-embedding

are extracted from WordNet, and they represent the
semantic relations between words in WordNet. Fol-
lowing are few examples from WN18: The head
and tail entities are in the format entity(dot)part of
speech(dot)sense. Let us understand the meaning
of the triple <future.n.01, hypernym, time.n.05>.
The head entity, future.n.01, is a noun with the
sense of "the time yet to come." The tail entity,
time.n.05, is a noun with the sense of "the contin-
uum of experience in which events pass from the
future through the present to the past." The rela-
tion between the two entities is hypernym, which
means that future.n.01 is a type of time.n.05. In
other words, the future is a part of time. The sense
means of each entity can be understood using Stan-
ford’s WordNet Search 4.

7.2.2 Freebase
Freebase was a large-scale knowledge base that
was acquired by Google in 2010. Freebase
contained information about a wide variety of
topics, including people, places, things, and events.
Freebase is no longer available, but its data has
been used to create other KG datasets, such as
Google Knowledge Graph. FB15k and FB15k-237
5are knowledge graph datasets that are based on
the Freebase knowledge base. They are commonly
used as benchmarks for evaluating the performance
of knowledge graph embedding models. FB15k
contains 592,213 triples with 14,951 entities and
1,345 relationships. FB15k-237 is a subset of
FB15k that contains 237 relationships. This was
done to reduce the number of inverse relations in
the dataset, as it was found that a large number of
test triplets could be obtained by inverting triplets
in the training set. In the KG triple </m/01qscs
, /award/award_nominee/award_nominations.
/award/award_nomination/award , /m/02x8n1n >,
/m/01qscs is “Benicio del Toro” and /m/02x8n1n
is “Independent Spirit Award for Best Supporting
Male”. The relation indicates it is an award
nomination. So the triple represents that Benicio
del Toro was nominated for Independent Spirit
Award for Best Supporting Male.

7.2.3 Wikidata
Wikidata is a free and open knowledge base that
anyone can edit. It contains information about

4http://wordnetweb.princeton.edu/perl/
webwn

5https://github.com/simonepri/
datasets-knowledge-embedding

https://github.com/simonepri/datasets-knowledge-embedding
https://github.com/simonepri/datasets-knowledge-embedding
http://wordnetweb.princeton.edu/perl/webwn
http://wordnetweb.princeton.edu/perl/webwn
https://github.com/simonepri/datasets-knowledge-embedding
https://github.com/simonepri/datasets-knowledge-embedding

people, places, things, and events, and is used by
a wide variety of applications, including search
engines, virtual assistants, and educational tools.
Wikidata5m6 is a subset of Wikidata that contains
5 million entities and their associated properties.
It was created by the MilaGraph team at the Uni-
versity of Montreal, and is used for research in
knowledge graph embedding and natural language
processing. Wikidata5M has 822 relations and 20
million KG triples.

The knowledge graph is stored in the triplet list
format, where each line corresponds to a triple
of entity, relation, and value. For example, the
triple <Q22686, P39, Q11696> corresponds to the
triple Donald Trump position held President of
the United States. The corpus is a collection of
documents, indexed by entity ID. Each document
provides a description of the entity. For example,
the document for Donald Trump is Q22686 Don-
ald John Trump (born June 14, 1946) is the 45th
and current president of the United States The
aliases file lists the aliases for entities and relations.
For example, the line Q22686 donnie trump 45th
president of the united states Donald John Trump
... lists the aliases for Donald Trump.

7.2.4 WikiMovies

The WikiMovies Knowledge Graph 7 is a knowl-
edge graph that represents information about
movies, actors, directors, and other entities related
to the film industry. It is based on the Wikidata
knowledge graph, which is a free and open knowl-
edge base that anyone can edit. The WikiMovies
Knowledge Graph was created by the WikiMovies
project, which is a collaborative effort to create
a comprehensive database of information about
movies.
The WikiMovies Knowledge Graph contains facts
about movies, actors, directors, and other entities.
These facts are stored in the form of triplets, which
consist of an entity, a relation, and a value. For
example, the triplet (The Shawshank Redemption,
directed by, Frank Darabont) represents the fact
that the movie The Shawshank Redemption was
directed by Frank Darabont. The WikiMoviesKG
is used along with MetaQA for benchmarking QA
for movies domain.

6https://deepgraphlearning.github.io/
project/wikidata5m

7https://research.facebook.com/
downloads/babi/

7.2.5 AviationKG

AviationKG 8 is a Knowledge Graph from avia-
tion domain. AviationKG is created using NTSB
reports which contain safety information. The
Knowledge Graph contains information about
weather conditions and events that can lead to
accidents. It also has pilot and aircraft informa-
tion which was recorded after the accident. In the
KG triple <AccidentNumber_SEA08FA005 , Is-
CausedBy , DIVERTEDATTENTION> means that
the aircraft accident associated with accident num-
ber SEA08FA005 is caused by diverted attention.
AviationKG has 193,372 triples, 15,137 entities,
and 151 relations created from 4000 NTSB reports.

7.3 Question Answering

Question answering (QA) is a task of retrieving
relevant information from a given text or dataset
to answer a user’s question. CWQ, MetaQA, and
other are used to train and evaluate QA models.
CWQ and MetaQA datasets can use a knowledge
graph to assist them to answer in closed book sce-
nario. While MetaQA is a multihop QA dataset
from movies domain, movies are still closer to gen-
eral domain. We propose two closed-book QA
datasets, AviationQA is a dataset from the aviation
domain and specifically contains information about
accidents.

Dataset Train Validation Test

MetaQA 1-hop 96,106 9,992 9,947
MetaQA 2-hop 118,980 14,872 14,872
MetaQA 3-hop 114,196 14,274 14,274
AviationQA 367,304 10,000 10,000
CWQ 61,619 3,519 3,531

Table 3: Statistics of QA Datasets

7.3.1 Complex Web Questions

ComplexWebQuestions (Talmor and Berant, 2018)
is a dataset designed for answering complex ques-
tions that necessitate reasoning over multiple web
snippets. It comprises 34,689 examples, each con-
sisting of a complex question, answers (including
aliases), an average of 366.8 snippets per question,
and a SPARQL query against Freebase. Here are a
few illustrative questions from the dataset:

8https://github.com/ankush9812/
Knowledge-Infusion-in-LM-for-QA

https://deepgraphlearning.github.io/project/wikidata5m
https://deepgraphlearning.github.io/project/wikidata5m
https://research.facebook.com/downloads/babi/
https://research.facebook.com/downloads/babi/
https://github.com/ankush9812/Knowledge-Infusion-in-LM-for-QA
https://github.com/ankush9812/Knowledge-Infusion-in-LM-for-QA

1. The actress that had the role of Martha Alston,
plays what role in Finding Nemo?

2. Which school that Sir Ernest Rutherford at-
tended has the latest founding date?

3. What movies does Leo Howard play in and
that is 113.0 minutes long?

4. Where is the end of the river that originates in
Shannon Pot?

The answer to the first question is "Dory". The
actress who played Martha Alston is Ellen De-
Generes. She also provided the voice of Dory in
the Disney/Pixar animated film, Finding Nemo.

7.3.2 MetaQA
The MetaQA dataset is a large-scale, multi-hop
knowledge graph question answering (KGQA)
dataset in the movie domain. It contains over
400,000 questions, which are divided into three lev-
els of difficulty: 1-hop, 2-hop, and 3-hop questions.
The 1-hop questions can be answered by looking
up a single entity in the knowledge graph, while the
2-hop and 3-hop questions require multiple hops
through the knowledge graph to answer.

The MetaQA dataset was created by (Zhang
et al., 2018) by extending the MovieQA dataset.
The MovieQA dataset contains over 100,000 ques-
tions, but it is limited to 1-hop questions. The
MetaQA dataset was created by adding 300,000 2-
hop and 100,000 3-hop questions to the MovieQA
dataset. The questions in MetaQA can be answer-
ing using the knowledge graph, Wikimovies dis-
cussed in section 7.2.4.

7.3.3 AviationQA
AviationQA 9 (Agarwal et al., 2022b) is a 1 million
factoid QA pairs for the aviation domain. The QA
pairs were created by web scraping 12k reports
from the National Transportation Safety Board
(NTSB) website from 2009-2022. A set of 90 ques-
tion templates was prepared using the common
structure of documents in the format:

1. Where did the accident [] take place?

2. What is the model/series of the aircraft bearing
accident number []?

3. Was there fire on the aircraft of the accident
number []?

9https://huggingface.co/datasets/
sakharamg/AviationQA

4. Was there fire on the aircraft of the accident
number []?

A question template was devised, and answers cor-
responding to these questions were extracted from
each NTSB report. To identify the specific report
associated with each question, we utilized brackets
[] within the template, such as CHI07LA273 or
LAX07LA148. NTSB reports consist of a semi-
structured format, comprising unstructured data
in paragraphs as well as structured data in tab-
ular form. We employed a regular expression-
based method to extract answers from each report
based on the template. Subsequently, we thor-
oughly examined the generated question-answer
pairs. Since the structure of some reports varied,
separate scripts were developed to retrieve answers
from those specific reports.

8 Evaluation Metrics

Performance is evaluated using several metrics for
Question Answering (QA) and Information Re-
trieval systems. Exact Match (EM) checks if the
predicted answer matches the ground truth exactly.
Semantic Match focuses on the meaning alignment
between predicted and ground truth answers. Preci-
sion measures accuracy, while Recall assesses the
system’s ability to retrieve relevant answers. Mean
Rank evaluates the average rank of the correct an-
swer, and Mean Reciprocal Rank (MRR) calculates
the average reciprocal rank of the correct answer.
Hits measure how often the correct answer appears
within the top-N ranked answers. These metrics
collectively assess QA system performance.

8.1 Exact Match and Semantic Match

Exact match and semantic match are two different
ways of matching text. While exact match checks
that the strings are same, semantic match checks
if the meaning is the same. Both metrics are ex-
plained below.

8.1.1 Exact Match
Exact match is when the text in the query matches
exactly the text in the document. Exact match is
a simple and straightforward way to match text,
but it can be limited in its ability to find relevant
documents. For example, if the query is “What
is the capital of France?”, an exact match would
only return documents that contain the exact phrase
“What is the capital of France?”. However, there

https://huggingface.co/datasets/sakharamg/AviationQA
https://huggingface.co/datasets/sakharamg/AviationQA

may be other documents that contain the same in-
formation, but in different words, such as “Paris is
the capital of France”.
In the scenario with multiple gold answers, (Ra-
jpurkar et al., 2016) defines Exact Match as the
percentage of predictions that match any of the
ground truth answers exactly.

8.1.2 Semantic Match
Semantic match is when the text in the query has
the same meaning as the text in the document, even
if the words are not exactly the same. Semantic
match is a more sophisticated way to match text
that can overcome some of the limitations of exact
match. Semantic match uses natural language pro-
cessing (NLP) techniques to understand the mean-
ing of the text in the query and the document. This
allows semantic match to find relevant documents
that do not use exactly the same words as the query.

8.2 Precision, Recall and F1

Precision, recall, and F1 score are commonly used
evaluation metrics in Question Answering (QA)
systems to measure their performance. These met-
rics help assess the accuracy and completeness of
the generated answers. Let’s delve into each met-
ric, provide their formulas, and offer examples to
illustrate their calculation.

8.2.1 Precision
Precision is a measure of how accurate a system is.
It is calculated as the number of correct answers
divided by the total number of answers returned
by the system. For example, if a system returns
10 answers, and 8 of them are correct, then the
precision is 0.8.

Precision =
TP

TP + FP
, (5)

where TP is true positive and FP is false positive. A
high precision indicates that the system is returning
a lot of correct answers.
Precision@k is a variant of precision used to evalu-
ate the performance of ranking systems. It is calcu-
lated by counting the number of relevant documents
in the top k positions of a ranked list, divided by
the total number of documents in the ranked list. A
higher precision@k indicates better performance.
The formula for precision@k is as follows:

Precision@k =
topk

total
, (6)

where k is the number of positions considered, topk
is the number of documents in the top k positions
that are relevant to the query and total is the total
number of documents in the ranked list.
For example, if there are 10 documents in a ranked
list and 5 of them are relevant to the query, then the
precision@5 would be 0.5.
Precision@k is a useful metric for evaluating the
performance of ranking systems, as it considers the
position of relevant documents in the ranked list.
However, it is important to note that precision@k
is sensitive to the number of relevant documents in
the ranked list. A ranking system with high preci-
sion@k on a dataset with few relevant documents
may not perform as well on a dataset with many
relevant documents.

8.2.2 Recall
Recall is a measure of how complete a system is.
It is calculated as the number of correct answers
divided by the total number of correct answers. For
example, if there are 10 correct answers, and a
system returns 8, then the recall is 0.8.

Recall =
TP

TP + FN
, (7)

where TP is true positive, and FN is false negative.
A high recall indicates that the system is returning
a lot of the correct answers.

8.2.3 F1
The F1 score is a measure of both precision and
recall. It is calculated as the harmonic mean of
precision and recall. The harmonic mean is a more
sensitive measure of performance than the arith-
metic mean because it gives more weight to low
values. For example, if the precision is 0.8 and the
recall is 0.6, then the F1 score is 0.72.

F1 =
2 ∗ (precision ∗ recall)
(precision+ recall)

. (8)

A high F1 score indicates that the system returns a
good balance of correct answers and recall.

8.3 Mean Rank, MRR, and Hits@k
Mean Rank, Mean Reciprocal Rank (MRR) and
Hits are three common metrics used to evaluate the
performance of ranking algorithms.

8.3.1 Mean Rank
Mean rank is the average rank of all relevant docu-
ments in a ranked list. A lower mean rank indicates

better performance. For example, a mean rank of 1
indicates that all relevant documents are at the top
of the ranked list, while a mean rank of 10 indicates
that all relevant documents are at the bottom of the
ranked list. The formula for mean rank is:

Meanrank =
1

n

∑
rank, (9)

where rank is the rank of each relevant document
and n is the number of relevant documents. While
MR is simple, it can be sensitive to the number of
relevant documents in a ranked list. Let us say that
a few relevant documents are ranked very high due
to errors in the ranking system. It will pull down
the average. Also, it gives importance to lower
ranks. Many a time, for a system 20th rank, would
be equally bad as 100th rank. At the same time,
ranks 1,3,5,7, and 10, even though they are close,
would make a huge difference while evaluating a
ranking system.

8.3.2 Mean Reciprocal Rank (MRR)
Mean reciprocal rank is the average of the recip-
rocal ranks of all relevant documents in a ranked
list. A higher mean reciprocal rank indicates better
performance. For example, a mean reciprocal rank
of 1 indicates that all relevant documents are at
the top of the ranked list, while a mean reciprocal
rank of 0.5 indicates that the relevant documents
are ranked in the middle of the ranked list. The
formula for MRR is:

MRR =
1

n

∑ 1

rank
, (10)

where rank is the rank of each relevant document
and n is the number of relevant documents. MRR
gives higher importance to the top ranks and lower
importance to the bottom ranks. In the case of
MRR, rank 1 and rank 2 has a difference of 0.5
while rank 10 and 100 have a difference of 0.09.
MRR is very useful in QA systems as the correct
answers to a question are only a few and when
ranked correctly we should ignore ranks away from
top ranks.

8.3.3 Hits@k
Hits@k is the percentage of queries for which at
least one relevant document is ranked in the top
k positions. A higher hits@k indicates better per-
formance. For example, a hits@k of 1 indicates
that all queries returned at least one relevant docu-
ment in the top k positions, while a hits@k of 0.5
indicates that half of the queries returned at least

one relevant document in the top k positions. The
formula for hits@k is:

Hits@k =
1

n

∑
[1 if rank ≤ k else 0] (11)

where rank is the rank of each relevant document
and n is the number of queries. For example, if
there are 5 queries and 2 relevant documents are
ranked in the top 3 positions, then the hits@3 would
be 2/5 = 0.4. Hits@k is useful in QA systems when
we want the answer to a question at top-k ranks.
When a QA model predicts multiple answers, a
gold answer might be at 2nd rank, but 1st rank
answer could be another gold answer. In such situa-
tions, we don’t want to penalize our model. Usually
when evaluating a system, hits are calculated with
different values of k and can be helpful in iden-
tifying how many top results should be shown to
ensure that the user gets the answer to its question
most of the time with less lookup through the k
results.

9 Summary

This paper provided an overview of knowledge
graphs, deep learning for NLP and information
retrieval techniques. It also discussed question-
answering methods followed by ongoing research
on knowledge-infused QA, including the CFILT,
IIT Bombay research. Finally, we explained differ-
ent evaluation metrics for QA and retrieval systems.

10 Conclusion and Future Work

In this survey paper, we have explored the con-
cept of knowledge graphs and their infusion tech-
niques. Knowledge graphs have emerged as a pow-
erful framework for representing structured knowl-
edge and capturing relationships between entities.
They offer a holistic view of information, enabling
efficient reasoning, search, and data integration.
We discussed various approaches for constructing
knowledge graphs, ranging from manual curation
to automated extraction techniques, along with pop-
ular construction frameworks and tools. Looking
ahead, several avenues for future work in the field
of knowledge graphs and infusion present exciting
opportunities. Firstly, research should focus on
developing scalable techniques for handling large-
scale knowledge graphs efficiently. As the size
and complexity of knowledge graphs continue to
grow, efficient storage, querying, and reasoning
mechanisms are essential. Secondly, improving the

quality and reliability of integrated data remains a
critical challenge. Addressing multilingual KGs,
data heterogeneity, ensuring data accuracy, and ap-
plying quality control measures during the infu-
sion process is vital for maintaining the integrity
of knowledge graphs. Furthermore, exploring tech-
niques to incorporate temporal and dynamic as-
pects into knowledge graphs would enhance their
ability to capture evolving relationships and enable
more accurate predictions and recommendations.

References

Katrin Affolter, Kurt Stockinger, and Abraham Bern-
stein. 2019. A comparative survey of recent natural
language interfaces for databases. The VLDB Jour-
nal, 28(5):793–819.

Ankush Agarwal, Sakharam Gawade, Sachin
Channabasavarajendra, and Pushpak Bhat-
tacharya. 2022a. There is no big brother or
small brother:knowledge infusion in language
models for link prediction and question answering.
In Proceedings of the 19th International Confer-
ence on Natural Language Processing (ICON),
pages 204–211, New Delhi, India. Association for
Computational Linguistics.

Ankush Agarwal, Raj Gite, Shreya Laddha, Pushpak
Bhattacharyya, Satyanarayan Kar, Asif Ekbal, Prab-
hjit Thind, Rajesh Zele, and Ravi Shankar. 2022b.
Knowledge graph - deep learning: A case study in
question answering in aviation safety domain. In Pro-
ceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 6260–6270, Marseille,
France. European Language Resources Association.

Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami
Al-Rfou. 2021. Knowledge graph based synthetic
corpus generation for knowledge-enhanced language
model pre-training. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 3554–3565, Online. As-
sociation for Computational Linguistics.

Hannah Bast and Elmar Haussmann. 2015. More ac-
curate question answering on freebase. In Proceed-
ings of the 24th ACM international on conference
on information and knowledge management, pages
1431–1440.

Pushpak Bhattacharyya. 2022. Cs772: Deep learning
for natural language processing.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Niel Chah. 2017. Freebase-triples: A methodology for
processing the freebase data dumps.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and Psychological Mea-
surement, 20(1):37–46.

Jacob Cohen. 1968. Weighted kappa: nominal scale
agreement provision for scaled disagreement or par-
tial credit. Psychological bulletin, 70(4):213.

Wikimedia Commons. 2022.
File:knowledgegraphembedding.png — wiki-
media commons, the free media repository. [Online;
accessed 13-June-2023].

Yuanfei Dai, Shiping Wang, Neal N. Xiong, and Wen-
zhong Guo. 2020. A survey on knowledge graph em-
bedding: Approaches, applications and benchmarks.
Electronics, 9(5).

Shib Sankar Dasgupta, Swayambhu Nath Ray, and
Partha Talukdar. 2018. Hyte: Hyperplane-based
temporally aware knowledge graph embedding. In
Proceedings of the 2018 conference on empirical
methods in natural language processing, pages 2001–
2011.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

J. Guo, Z. Wang, Y. He, J. Su, and Y. Yu. 2020. A survey
on rule-based reasoning for knowledge graphs. ACM
Transactions on Knowledge Discovery from Data
(TKDD), 14(4):1–32.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Mingwei Chang. 2020a. Retrieval augmented
language model pre-training. In Proceedings of the
37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning
Research, pages 3929–3938. PMLR.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Mingwei Chang. 2020b. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929–3938. PMLR.

Yongqun He, Hong Yu, Edison Ong, Yang Wang, Ying-
tong Liu, Anthony Huffman, Hsin-hui Huang, John
Beverley, Junguk Hur, Xiaolin Yang, et al. 2020.
Cido, a community-based ontology for coronavirus

https://aclanthology.org/2022.icon-main.26
https://aclanthology.org/2022.icon-main.26
https://aclanthology.org/2022.icon-main.26
https://aclanthology.org/2022.lrec-1.673
https://aclanthology.org/2022.lrec-1.673
https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
https://www.cfilt.iitb.ac.in/~cs772-2022/
https://www.cfilt.iitb.ac.in/~cs772-2022/
http://arxiv.org/abs/1712.08707
http://arxiv.org/abs/1712.08707
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://commons.wikimedia.org/w/index.php?title=File:KnowledgeGraphEmbedding.png&oldid=674022781
https://commons.wikimedia.org/w/index.php?title=File:KnowledgeGraphEmbedding.png&oldid=674022781
https://doi.org/10.3390/electronics9050750
https://doi.org/10.3390/electronics9050750
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3383124
https://doi.org/10.1145/3383124
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html

disease knowledge and data integration, sharing, and
analysis. Scientific data, 7(1):181.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In COLING 1992
Volume 2: The 14th International Conference on
Computational Linguistics.

Henry Hsu and Peter A Lachenbruch. 2014. Paired t
test. Wiley StatsRef: statistics reference online.

Jin Huang, TingHua Zhang, Jia Zhu, Weihao Yu, Yong
Tang, and Yang He. 2021. A deep embedding model
for knowledge graph completion based on attention
mechanism. Neural Computing and Applications,
33(15):9751–9760.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun
Zhao. 2015. Knowledge graph embedding via dy-
namic mapping matrix. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 687–696, Beijing, China. Asso-
ciation for Computational Linguistics.

Kaveri Kale, Pushpak Bhattacharyya, Milind Gune,
Aditya Shetty, and Rustom Lawyer. 2023. KGVL-
BART: Knowledge graph augmented visual language
BART for radiology report generation. In Proceed-
ings of the 17th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 3401–3411, Dubrovnik, Croatia. Association
for Computational Linguistics.

Kaveri Kale, Pushpak Bhattacharyya, Aditya Shetty,
Milind Gune, Kush Shrivastava, Rustom Lawyer, and
Spriha Biswas. 2022. Knowledge graph construc-
tion and its application in automatic radiology report
generation from radiologist’s dictation.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
’20, page 39–48, New York, NY, USA. Association
for Computing Machinery.

Douglas B. Lenat. 1995. Cyc: A large-scale invest-
ment in knowledge infrastructure. Commun. ACM,
38(11):33–38.

Belinda Z. Li, Sewon Min, Srinivasan Iyer, Yashar
Mehdad, and Wen-tau Yih. 2020. Efficient one-pass
end-to-end entity linking for questions. In EMNLP.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation embed-
dings for knowledge graph completion. In Twenty-
ninth AAAI conference on artificial intelligence.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-bert: En-
abling language representation with knowledge graph.
In AAAI.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1400–1409, Austin, Texas. Associ-
ation for Computational Linguistics.

George A. Miller. 1992. WordNet: A lexical database
for English. In Speech and Natural Language: Pro-
ceedings of a Workshop Held at Harriman, New York,
February 23-26, 1992.

Fedor Moiseev, Zhe Dong, Enrique Alfonseca, and Mar-
tin Jaggi. 2022. SKILL: Structured knowledge infu-
sion for large language models. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1581–1588,
Seattle, United States. Association for Computational
Linguistics.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-
ford, Jesse Michael Han, Jerry Tworek, Qiming
Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy,
Johannes Heidecke, Pranav Shyam, Boris Power,
Tyna Eloundou Nekoul, Girish Sastry, Gretchen
Krueger, David Schnurr, Felipe Petroski Such, Kenny
Hsu, Madeleine Thompson, Tabarak Khan, Toki
Sherbakov, Joanne Jang, Peter Welinder, and Lilian
Weng. 2022. Text and code embeddings by con-
trastive pre-training.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings of
the 28th International Conference on International
Conference on Machine Learning, ICML’11, page
809–816, Madison, WI, USA. Omnipress.

OpenAI. 2023. Chatgpt. Accessed on May 31, 2023.

Jay Pujara, Eriq Augustine, and Lise Getoor. 2017. Spar-
sity and noise: Where knowledge graph embeddings
fall short. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1751–1756, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020a. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020b. Exploring the

https://doi.org/10.3115/v1/P15-1067
https://doi.org/10.3115/v1/P15-1067
https://aclanthology.org/2023.eacl-main.246
https://aclanthology.org/2023.eacl-main.246
https://aclanthology.org/2023.eacl-main.246
http://arxiv.org/abs/2206.06308
http://arxiv.org/abs/2206.06308
http://arxiv.org/abs/2206.06308
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/219717.219745
https://doi.org/10.1145/219717.219745
https://doi.org/10.18653/v1/D16-1147
https://doi.org/10.18653/v1/D16-1147
https://aclanthology.org/H92-1116
https://aclanthology.org/H92-1116
https://doi.org/10.18653/v1/2022.naacl-main.113
https://doi.org/10.18653/v1/2022.naacl-main.113
http://arxiv.org/abs/2201.10005
http://arxiv.org/abs/2201.10005
https://chat.openai.com/
https://doi.org/10.18653/v1/D17-1184
https://doi.org/10.18653/v1/D17-1184
https://doi.org/10.18653/v1/D17-1184
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418–5426,
Online. Association for Computational Linguistics.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Found. Trends Inf. Retr., 3(4):333–389.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2022. Col-
BERTv2: Effective and efficient retrieval via
lightweight late interaction. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3715–3734, Seat-
tle, United States. Association for Computational
Linguistics.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.
2022. Sequence-to-sequence knowledge graph com-
pletion and question answering. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2814–2828, Dublin, Ireland. Association for
Computational Linguistics.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Noam M. Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
ArXiv, abs/1804.04235.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, AAAI’17,
page 4444–4451. AAAI Press.

Haitian Sun, Tania Bedrax-Weiss, and William Cohen.
2019. PullNet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2380–
2390, Hong Kong, China. Association for Computa-
tional Linguistics.

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding,
Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi Chen,
Yanbin Zhao, Yuxiang Lu, et al. 2021. Ernie 3.0:
Large-scale knowledge enhanced pre-training for lan-
guage understanding and generation. arXiv preprint
arXiv:2107.02137.

A. Talmor and J. Berant. 2018. The web as a knowledge-
base for answering complex questions. In North
American Association for Computational Linguistics
(NAACL).

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 28.

Gerhard Weikum, Xin Luna Dong, Simon Razniewski,
Fabian Suchanek, et al. 2021. Machine knowledge:
Creation and curation of comprehensive knowledge
bases. Foundations and Trends® in Databases, 10(2-
4):108–490.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-
shot entity linking with dense entity retrieval.

Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding entities and relations
for learning and inference in knowledge bases.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. QA-GNN:
Reasoning with language models and knowledge
graphs for question answering. In Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 535–546, Online.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.acl-long.201
https://doi.org/10.18653/v1/2022.acl-long.201
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D19-1242
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
http://arxiv.org/abs/1606.06357
http://arxiv.org/abs/1606.06357
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1911.03814
http://arxiv.org/abs/1911.03814
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,
Hongyu Ren, Percy Liang, Christopher D Manning,
and Jure Leskovec. 2022. Greaselm: Graph reason-
ing enhanced language models for question answer-
ing. arXiv preprint arXiv:2201.08860.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der J Smola, and Le Song. 2018. Variational reason-
ing for question answering with knowledge graph. In
Thirty-second AAAI conference on artificial intelli-
gence.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

