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Abstract

Machine Translation evaluation by human
annotators is a slow and rigorous task. The
common automatic MT evaluation tech-
niques depend on one or more reference
translations to evaluate the output of MT
systems. Quality estimation removes this
dependence on human-generated reference
translations by estimating the quality trans-
lation pair given just the source and trans-
lated text. In this paper, we present an
extensive analysis of the quality estimation
task. We establish the background neces-
sary to understand quality estimation as
a task and where it fits into the machine
translation pipeline. We explore the differ-
ent approaches to quality estimation, archi-
tectures used in QE systems and some of
the challenges to quality estimation. This
paper explores the various complexities in
quality estimation and provides a valuable
starting point for any researcher looking to
advance the field of quality estimation.

1 Introduction

Technology in the last few decades has helped
overcome geographical barriers creating a
global community. One barrier that still re-
mains is the different languages of communica-
tion. The innovations in the field of machine
translation tackle this exact problem. The-
oretical proposals from as far back as 1949
by Warren Weaver could finally be practi-
cally implemented once the computation and
machine-readable data limitations were lifted
with time. Advancements in machine transla-
tion have been substantial in the past decade.
Automatic machine translation evaluation goes
hand in hand with machine translation. An ac-
curate prediction of the correctness of machine
translation can help build user confidence in
machine translation systems.
Most of the techniques of automatic MT evalu-

ation require one or more reference translations
which are human-generated. To overcome this
dependence on manual translators there is a
reference-less automatic MT evaluation task
referred to as Quality Estimation (QE).

1.1 Motivation
The research area covered in this report is in
the field of quality estimation. While read-
ing different research papers on MT systems
it was evident that for a deeper insight into
the performance of systems, researchers had to
manually judge the translation outputs from
MT systems. The BLEU score helped estab-
lish a general performance metric for the MT
systems. However, the insights into where the
system is lacking and what linguistic features
are leading to errors needed a better evalua-
tion metric. Most researchers did this manually
by finding out examples from the test dataset.
This posed serious demand for the researchers
to be well-versed in multiple languages or de-
pend on other professional translators. This
is where quality estimation could prove to be
very useful. Quality estimation can help to
identify patterns and linguistic features that
are negatively impacting the performance of
MT systems.

2 Background: Terminology and
Definitions

This section explores some of the background
knowledge necessary to understand the report.
It covers machine translation, machine transla-
tion evaluation, quality estimation, its different
granularities and the metrics that are used.

2.1 The Task of Machine Translation
Machine translation is the task of an automatic
translation from one language to another. De-
pending on human translators is simply too ex-



pensive and time-consuming to be a feasible so-
lution in the modern day. Machine Translation,
often abbreviated as MT, brings the benefits
of computational speed and cost-effectiveness
to the task of translation. Once trained, an
MT system can translate entire documents in a
matter of seconds. Combined with the progress
made in speech recognition and generation sys-
tems, end-to-end speech-to-speech MT systems
are now a reality.

Example 2.1 En: John plays the flute well.
Hi: जॉन अच्छी बांसुरी बजाता ह।ै

2.2 Four Paradigms of Machine
Translation

Machine translation progress has gone through
four different paradigms. Each paradigm has
its own unique technique that it uses to tackle
the task of machine translation. We explore
each of the four paradigms individually now.

2.2.1 Rule-based MT
Rule-based machine translation takes the tradi-
tional deterministic and algorithmic approach
to machine translation. This being the early
years in MT evolution had rules that dictated
the analysis, transfer, and generation steps of
machine translation. An extensive set of rules
govern the entire process of machine transla-
tion. The MT system in this paradigm is only
as good as the rules that it contains and hence
these rules are created by linguistic experts
requiring in-depth knowledge about both the
source and target language. The rule set is cre-
ated with the goal to resolve the ambiguities
across the Analysis-Transfer-Generation steps
of machine translation. The deterministic ap-
proach to a problem as vast and contextual as
MT has its disadvantages. The shortcoming of
rule-based machine translation is the fact that
language translation has an enormous amount
of ambiguities that necessitate contextual infor-
mation for resolution and covering all of these
with a finite rule set is simply an infeasible
endeavour. Also, the rules are the source and
target language pair specific which makes the
MT system language pair specific any scope of
multilingualism is not possible.

2.2.2 Statistical MT
Statistical machine translation is an approach
to overcome the hurdle of developing a robust

rule set by probabilistically tackling the am-
biguities that make machine translation diffi-
cult. Parallel corpus, a collection of translated
sentence pairs, is used to learn the patterns
of translation between the source and target
language. These patterns are phrase-level map-
ping from the source language to the target
language. A phrase table is built to capture
all these patterns for reference by the MT sys-
tem. Learning here simply means to score the
relative likelihoods of each pattern translation
which is captured by the probability scores
of each phrase mapping. After building the
phrase table with probability scores, the task
of decoding comes next. Decoding involves
finding the set of possible mappings and pick-
ing out the one with the highest probability
score. The capability of a statistical machine
translation system relies on the quality of the
parallel corpus and the effectiveness of the ma-
chine learning techniques.

2.2.3 Example-based MT
Example-based machine translation is a com-
bination of a data-driven and rule-based
approach to machine translation. In this
paradigm, a database of stored examples of
translation is maintained. If the source sen-
tence has an exact match in the database of
stored examples of translation then the trans-
lated sentence is directly picked up as the re-
sultant translation. If an exact match is not
found then the source sentence is broken up
into phrases, these phrases are translated and
then combined to generate the target translated
sentence. Example-based machine translation
thus draws its inspiration from both statistical
and rule-based machine translation.

2.2.4 Neural MT
The modern-day state-of-the-art machine trans-
lation systems are end-to-end where we feed a
source sentence as input to a neural network
and the translated sentence is returned as the
output. The rise to prominence of such neural
machine translation systems goes hand-in-hand
with the increase in the abundant parallel cor-
pus and the ever-improving neural network
architectures. The emergence of architectures
such as recurrent neural networks which can
process sequential data allowed the neural net-
works to learn sequence-to-sequence learning



tasks such as machine translation. From the
outside neural networks may seem like a black
box approach that no longer requires knowledge
and insight into linguistic features of languages.
However, the fact remains that the success of
attention-based models that relate closely with
fundamental concepts like an alignment for
translation still shows that techniques inspired
by linguistic knowledge improve the neural net-
work architectures for better performance and
explainability. Moreover, knowledge infusion
into neural networks has shown promise in im-
proving their performance.

2.3 Machine Translation Evaluation
Machine translation systems generate a trans-
lated sentence in the target language given an
input sentence in the source language. The eval-
uation of machine translation requires judging
the quality of the translated sentence. There
are two factors that are a must for any ma-
chine translation output to be considered a
high-quality translation at the sentence level.

• Adequacy: Adequacy is concerned with
how much of the meaning conveyed by the
source sentence is retained in the trans-
lated sentence.

• Fluency: Fluency is the notion of accept-
ability of translation by a native speaker.
It is concerned with the register, word
choice, and word choice.

Satisfying one of these factors does not guar-
antee the other being satisfied. MT systems
often output fluent yet inadequate translations
and adequate yet not fluent translations.

2.4 Automatic MT Evaluation
These two factors establish the goals for any au-
tomatic MT evaluation system. Having human
translators evaluate output after every new
tweak during the development of a machine
translation system is clearly infeasible. Auto-
matic MT evaluation systems are categorised
under two different settings. We explore these
next.

2.4.1 Reference-based Evaluation
For this setting of automatic evaluation, we
explore the possibility of a matching or
comparing-based system. The system evalu-
ates machine translation output using reference

translation to give scores that correlate closely
with human evaluation. The same sentence
can be formed in multiple fluent ways while
retaining adequacy. Thus we often have mul-
tiple reference translations for a single source
sentence. Matching at different n-gram lev-
els and combining these matching scores is
one method that is followed by metrics such
as BLEU (Bilingual Evaluation Understudy)
score. Having multiple reference translation
help the task of automatic evaluation by facili-
tating comparison with multiple correct refer-
ence translations in such simple yet effective
and robust approaches.
If we were given an ideal correct translation
could we utilise it to compare our MT output
with it and judge the similarity between the
two sentences? This question forms the basis
of different metrics that rely on reference trans-
lations for MT evaluation.
Now the next question that follows is how
would we estimate this similarity between two
sentences in the same language? This is where
different metrics differ. Here we can again look
at two categories to which different metrics
belong. The two categories along with one
example metric for each are discussed ahead.

2.4.1.1 N-gram Matching-based Scores

The approach here is straightforward, match
different lengths (N → (1, 2, .., |S|) N-grams
and use this to arrive at an evaluation score.
The effectiveness of the method lies in the fact
that varying length (N) N-grams are used and
this combined with multiple reference transla-
tions does end up finding a measure of simi-
larity between sentences. One popular metric
that follows this scheme with some modifica-
tions is that of BLEU score (Papineni et al.,
2002) discussed next.

BLEU Score

BLEU is an abbreviation for BiLingual Evalu-
ation Understudy. It is a metric based on the
N-gram matching method that has provided ex-
cellent results in terms of correlation to human
evaluation. At the heart of its effectiveness are
two scores and each is discussed below.

• Modified N-gram Precision: N-gram
precision that relies on a simple ratio of



matched N-grams to total N-grams fails for
some ill-formed sentences that just have
a few common occurring words repeated.
This is because MT systems tend to over-
generate certain reasonable words. For
instance, consider the following example:

Example 2.2 Reference Sentence: The
sun is about to set.
MT output: The the the the.

For this example, a simple N-gram
matching-based precision would yield a
score of 4/4 = 1 score which is clearly in-
correct. BLEU score overcomes this short-
coming by using a clipped count where a
word once matched in reference transla-
tion exhausts in reference sentence so no
more repeated words will match with it.
As such the modified precision used in the
BLEU score is given in equation 1:

So the count of matches is limited to
max occurrence in reference and not solely
based on the count in the candidate sen-
tence.

• Brevity Penalty: The reasoning for this
factor is that certain short sentences such
as ’of the’ will usually get high scores even
with modified n-gram precision although
they fail on both adequacy and fluency
measures. For this purpose, a brevity
penalty is introduced in the BLEU score.
In the equation below c is the candidate
sentence length and r is the reference sen-
tence length.

BP =

{
1 if c > r,

e1−r/c if c ≤ r
(3)

Combining these we get the final BLEU score
metric as below:

BLEUscore = BP · exp

(
N∑

n=1

wn log pn

)
(4)

2.4.2 Edit Distance-based Methods
This method is based on how far the candidate
translation is from the reference translation.

This measure of distance is captured by using
how many deletions, insertions, and substitu-
tions are needed in the candidate sentence to
make it the same as the reference sentence.

Word Error Rate
Word Error Rate (WER) is a simple nor-
malised measure of edits needed to get the
reference translation from the candidate trans-
lation. The WER is calculated as the number
of edits divided by the number of reference
words (N). The edits include insertions (I),
deletions (D), and substitutions (S).

WER =
C +D + I

N
(5)

2.4.3 Referenceless Evaluation
This task, commonly referred to as Quality Es-
timation (QE), evaluates the machine transla-
tion system without any reference translations
(Specia et al., 2018). The evaluation is just
given source text and translated text and the
output is a translation quality score.

3 Quality Estimation

Quality Estimation (QE) is an automatic ma-
chine translation evaluation technique. What
separates it from some of the other common
metrics such as the BLEU (Papineni et al.,
2002) score is that it does not require any ref-
erence translations (Specia et al., 2018). The
only input required is source text and trans-
lated text.

3.1 Different Granularities for QE

QE metrics vary depending on the granularity
at which it is applied. Most metrics work at the
sentence level whereas QE has the flexibility
to work at the word, sentence, and document
levels (Ive et al., 2018). Depending on the gran-
ularity different metrics are used. We explore
each of these in some detail now.

3.1.1 Word-Level QE
Quality Estimation can be used at the word
level to predict the correctness of each word in
the translation. The input is a sentence in the
source language and a sentence in the target
language. The output is a sequence of ’OK’
and ’BAD’ tokens. The output also covers gaps



Pn =

∑
C∈Candidates

∑
n−gram∈C Countclip(n− gram)∑

C∈Candidates

∑
n−gram′∈C Countclip(n− gram′)

(1)

Countclip(n− gram) = min(count,maxrefcount) (2)

between words. Let us have a look at what the
output tag represents under different cases:

• Source sentence words: The ’BAD’ tag
represents words that lead to incorrect
translations in the target sentence and the
’OK’ tag represents words that lead to
correct translations in the target sentence.

• Target sentence words: The ’BAD’ tag
represents words that are incorrectly trans-
lated and the ’OK’ tag represents words
correctly translated.

• Target sentence gaps: The ’BAD’ tag rep-
resents gaps that have missing translated
words and the ’OK’ tag represents gaps
that do not have any missing translated
words.

For the N words in a translated sentence,
we have 2N + 1 tags for the gaps and words.
For M words in the source sentence, we have
M tags for the words. The data for training of
supervised models in word-level QE includes
a dataset with these tags. Hence the task in
word-level QE can be modelled as a sequence-
to-sequence learning task.

3.1.2 Sentence-Level QE
At the sentence-level QE generates a score for
a pair of source and translated sentences. The
score can be a DA (Direct Assessment) score
or HTER (Human-targeted Translation Error
Rate) score. Let us look at each of these met-
rics:

• DA (Direct Assessment): A subjective
score by a human annotator on a scale
of 1-100. Usually, multiple human anno-
tators’ scores are normalised to obtain a
z-score. This score is used in the training
data to train the QE systems.

• HTER (Human Translation Error Rate):
An edit distance measure that includes
the number of edits required to convert
the translated sentence into a correct one.
The actual formula for the HTER score is

given in equation 6/

3.1.3 Document-Level QE
A QE score referred to as a Multidimensional
Quality Metric (MQM) score can be obtained
at the document level as well. The score here is
based on errors in the document and the sever-
ity of these errors. The document is annotated
with errors as per the following characteristics:

• Word Span: Number of words in a given
error. The words need not be contiguous.

• Severity: A error is categorised into three
categories according to its severity. The
categories are as follows:

– Minor: Errors that do not distort the
meaning during translation.

– Major: Errors that change the mean-
ing during translations.

– Critical: Errors that change the mean-
ing and contain a type of implication
or lead to offensive translations.

• Type: A indication of error type such as
missing words, wrong word order, agree-
ment, etc.

Based on these errors we use the equation 7
to get the QE score at the document level:

4 Different Approaches to QE
Systems

Quality Estimation systems have evolved sim-
ilarly to MT systems over the years. Most of
the early state-of-the-art systems were statisti-
cal machine learning based systems. Eventu-
ally with the advancements in neural networks
and the introduction of sequence-to-sequence
learning models (Papineni et al., 2002) such as
Recurrent Neural Networks the research com-
munity shifted to neural QE systems.

4.1 Statistical Quality Estimation
In the early years of QE research neural net-
works were not yet explored in depth for many



HTER =
Substitutions + Insertions + Deletions + Shifts

Reference Words
(6)

MQM Score = 100− IssuesMinor + 5× IssuesMajor + 10× IssuesCritical

Sentencelength
∗ 100 (7)

natural language processing tasks. Most of
the QE systems from this time were based on
statistical approaches that relied heavily on
linguistically inspired feature engineering to
process the input text. Two of the popular
statistical QE systems are QuEst by (Specia
et al., 2013) and QuEst++ by (Specia et al.,
2015). The extracted features were then fed
into statistically supervised machine learning
algorithms such as randomised decision trees
and support vector machines.

4.2 Neural Quality Estimation

With the introduction of sequence-to-sequence
learning models (Sutskever et al., 2014), the
adoption of neural approaches to various natu-
ral language processing tasks started gathering
attention. Tasks such as word-level quality es-
timation are inherently sequence-to-sequence
learning tasks and these needed a different neu-
ral network architecture. Once neural network
based started achieving impressive performance
across different tasks in natural language pro-
cessing, it was only a matter of time before
such architectures would come to dominate
QE systems as well. Today the state-of-the-art
systems are all neural network-based architec-
tures. We explore these in detail in the next
section.

4.3 State-of-the-Art QE Systems

Neural network-based systems dominate the
state-of-the-art architectures in most natural
language processing tasks. Quality estimation
is no exception to this trend and most of the
state-of-the-art QE systems are based on neu-
ral networks. The recent advancements in the
large pre-trained language representation mod-
els and their adoption in various NLP tasks
eventually resulted in their adoption for QE
systems as well. We explore their role in QE
systems next.

4.3.1 Role of Pre-Trained Language
Representation Models

Ever since the introduction of large pre-
trained transformer-based language representa-
tion models such as BERT (Devlin et al., 2019),
many of the NLP tasks have benefitted from
them. Neural networks need numerical vectors
as input. Converting the words into numerical
vectors that capture their semantics is impor-
tant for the performance of a neural network-
based system. These vectors are referred to
as word embeddings. These pre-trained lan-
guage representation models are trained on
huge monolingual data to generate word embed-
dings. Adding a separate task-specific output
layer helps fine-tune these language represen-
tation models.

4.3.2 Common Architectures
Now that we the know importance of large
pre-trained language representation models in
the QE systems’ architecture, we can lay out
the general architecture followed by some of
the state-of-the-art QE systems. The input is
usually fed by a pre-processing layer followed
by a transformer such as BERT. An output
layer is then added which helps fine-tune the
transformer for QE output.

4.3.2.1 TransQuest Quality Estimation
System

One such state-of-the-art system is TransQuest
by (Ranasinghe et al., 2020a), which was the
winner of all 8 tasks of direct assessment sen-
tence level QE shared task organised at WMT
(Workshop on Machine Translation) 2020. The
framework included two architectures Mono-
TransQuest and Siamese-TransQuest as can
be observed from Figure 1 1. The basic idea

1Figure from: Tharindu Ranasinghe, Constantin
Orasan, and Ruslan Mitkov. 2020. TransQuest: Trans-
lation Quality Estimation with Cross-lingual Transform-
ers. In Proceedings of the 28th International Confer-
ence on Computational Linguistics, pages 5070–5081,
Barcelona, Spain (Online). International Committee



is to feed the two sentences into an XLM-R
transformer and use the embedding from the
transformer output to predict the QE score.
The embedding is generated for the [CLS] to-
ken, [SEP] token and for each input word by the
XLM-R transformer. There are three pooling
strategies based on which the final embedding
is taken from these output embeddings, these
are listed below.

1. CLS Strategy: The output of embedding
of [CLS] token is taken as actual output.

2. MEAN Strategy: The mean of all the em-
beddings from input words is considered
as actual output.

3. MAX Strategy: A max-over-time of the
output vectors of input words is taken.

The output from the pooling layer is then fed
into a softmax layer which then predicts a
QE metric, either HTER or DA. In Mono-
TransQuest (MTransQuest) both sentences are
fed into a single transformer separated by [SEP]
toke. While in the Siamese TransQuest (STran-
sQuest) each sentence is fed into a separate
transformer and the cosine similarity between
the outputs from the pooling layers of both
transformers is used to predict the QE score.

4.4 Challenges to Quality Estimation
The current state-of-the-art systems perform
well on the sentence level but struggle at the
word level. Even at the sentence level, the
performance suffers for low-resource languages.
We delve deeper into some of the difficulties in
quality estimation.

4.4.1 Difficulties in Predicting
Adequacy

As we have seen how many QE systems are
based on pre-trained language representation
models, the QE systems tend to be more con-
cerned with fluency as opposed to adequacy.
Many pre-trained transformer-based QE sys-
tems focus on source sentence complexity and
target sentence fluency as major factors con-
tributing to QE scores. This was explored in
depth by (Sun et al., 2020). The adequacy of
the translated sentence is not adequately cap-
tured in the QE score predictions. This issue
gets worse for low-resource languages.
on Computational Linguistics.

4.4.2 Dataset Limitations
The dataset for quality estimation is released by
the Workshop on Machine Translation (WMT).
The WMT shared task on sentence-level di-
rect assessment task contains training data for
only eight language pairs. This hinders the
development of multilingual QE systems. The
performance suffers for low-resource languages.
The amount of sentences in training data is
also limited to 7000 sentences for seven out of
eight language pairs. For the development of
robust multilingual QE systems, more datasets
in multiple language pairs are required.

4.4.3 Transfer Learning for
Low-Resource Languages

The number of language pairs for sentence-level
direct assessment is limited to eight language
pairs only. This requires more transfer learn-
ing approaches for language pairs that do not
have training data available. Language diver-
gence makes the zero-shot learning approaches
difficult. Usage of cross-lingual transformer-
based language-representation models such as
XLM-RoBERTa (XML-R) by (?) in QE sys-
tems such as TransQuest by (Ranasinghe et al.,
2020b) have shown impressive transfer learn-
ing performance. However, better cross-lingual
embeddings and more training data are still re-
quired for better transfer learning performance.

4.5 Multitask Learning
Multitask learning is a technique that has been
used in two of the research studies during my
tenure as a research student at IIT Bombay.
In machine learning, we usually have a goal
of minimising one loss function that captures
the objective of our task. Multitask learning
(Crawshaw, 2020) allows us to focus on multi-
ple tasks at once. So we can have two separate
tasks that may have their own objective func-
tions but utilise the same data. We combine
their losses into a combined loss function and
use this to train our model. Such an approach
benefits from numerous advantages such as
better data efficiency, less overfitting, smaller
model sizes, and faster overall learning times.
In multitask learning we learn shared represen-
tations of data for multiple tasks. This provides
the potential of having complementary tasks
that might help each other during the learning
phase. As an example, the tasks named entity



Figure 1: Mono-TransQuest (left) and Siamese-Transquest (right) architectures

recognition and part of speech tagging are two
such tasks.

5 Perturbations

Perturbation in natural language processing
terms can be defined as a small change in a
sentence. Perturbation has been extensively
used as a data augmenting technique in vari-
ous researches in NLP. We use the perturba-
tions described by (Kanojia et al., 2021) for
our research into using perturbation and multi-
task learning to sentence-level QE performance.
The example 5.1 shows one of the perturba-
tions in which negation words are removed if
present.

Example 5.1 Original sentence: Rainfalls
are not necessarily preceded by storms.
Perturbed sentence: Rainfalls are necessarily
preceded by storms.

We use the work by Diptesh Kanojia (Kano-
jia et al., 2021) to generate perturbations.
We generate meaning-preserving perturbations
(MPPs) and meaning-altering perturbations
(MAPs).

5.1 Meaning Preserving Perturbations

The meaning-preserving perturbations are the
ones that change the sentence without altering
the overall meaning of the sentence. We include
six meaning-preserving perturbations to aug-
ment the dataset. The six MPPs as described
below:

1. Removal of Punctuations (MPP-1):
In this perturbation, punctuations are re-
moved from the sentence using Python’s
standard string library.

2. Replacement of Punctuations (MPP-
2): In this perturbation, each punctuation
is replaced by a different random punctu-
ation.

3. Removal of Determiners (MPP-3):
We used Spacy’s2 Part-of-speech (POS)
tagger to identify and remove the deter-
miners.

4. Replacing Determiners (MPP-4): In
this perturbation, we use spaCy’s POS tag-
ger to identify the determiners and then
replace them with a randomly chosen de-
terminer from a list.

5. Change in Word-casing to UPPER-
CASE (MPP-5): For MPP-5 perturba-
tions we randomly selected content words
and converted them to UPPERCASE.

6. Change in Word-casing to lowercase
(MPP-6): For MPP-6 perturbations we
randomly selected content words and con-
verted them to lowercase.

An example showing all six MPPs from
(Kanojia et al., 2021) is displayed in Table
1.

2https://spacy.io/

https://spacy.io/


Table 1: Meaning Preserving Perturbations example. S1 column includes the predicted Z-standardised
DA score.

5.2 Meaning Altering Perturbations
The meaning-preserving perturbations are the
ones that change the sentence along with alter-
ing the overall meaning of the sentence. For
Meaning altering sentences we generated the
following eight perturbations. The eight MAPs
as described below:

1. Removal of Negation Markers (MAP-
1): In this perturbation, negation markers
such as “no”, “not”, “n’t” etc. are removed
from the sentences.

2. Removal of Random Content Words
(MAP-2): In this perturbation, each
punctuation is replaced by a different ran-
dom punctuation.

3. Duplication of Random Content
Words (MAP-3): In this MAP a ran-
dom content word from the translation is
chosen and added at the immediate next
position.

4. Insertion of Random Words (MAP-
4): From a vocabulary of words from the
complete set of translations in our data
set, a random word is inserted at a random
position in the sentence making sure the
previous and next words if present are not
similar.

5. Replacing Random Content Words
(MAP-5): For MAP-5 we replace a ran-
dom content word from the translation
with another word from the vocabulary
created of all words in the data set.

6. BERT-based Sentence Replacement
(MAP-6): We used sentence replace-
ments, based on the BERT-base model
(Devlin et al., 2019), with the help of a

data augmentation library3. This library
generates a sentence synonymous with the
input provided by using a word replace-
ment approach proposed by (Kobayashi,
2018). However, we observed that these
synonymous sentences replace content
words thus altering the inherent meaning
of the input sentence. Hence, we treat this
perturbation as MAP.

7. Replacing Words with Antonyms
(MAP7): For this perturbation, we gen-
erate perturbed translations where we re-
place random words in the sentence with
their antonyms from the English Word-
net (Miller et al., 1990) using the data
augmentation library4.

8. Source Sentence as Target (MAP8):
For the final meaning altering perturba-
tion we simply replace the translation with
the source side sentence.

An example showing all eight MAPs from
(Kanojia et al., 2021) is displayed in Table 2.

6 Dataset
The WMT dataset contains both sentence-
level and word-level data for quality estima-
tion. The WMT21 (Specia et al., 2021), and
WMT22 (Zerva et al., 2022) Quality Estimation
Shared tasks provide the training, development,
and test sets for both word-level and sentence-
level quality estimation tasks. The data
consists of three low-resource language pairs:
Nepali-English (Ne-En), English-Marathi (En-
Mr), Sinhalese-English (Si-En); three medium-
resource language pairs: Romanian-English
(Ro-En), Estonian-English (Et-En), Russian-
English (Ru-En); and one high-resource lan-

3https://github.com/makcedward/nlpaug
4https://github.com/makcedward/nlpaug

https://github.com/makcedward/nlpaug
https://github.com/makcedward/nlpaug


Table 2: Meaning Altering Perturbations example. S1 column includes the predicted Z-standardised DA
score.

Language Pair Train Set Sentences Dev Set Sentences Test Set Sentences
En-De 7,000 1,000 1,000
Et-En 7,000 1,000 1,000
Ro-En 7,000 1,000 1,000
Ru-En 7,000 1,000 1,000
En-Mr 26,000 1,000 1,000
Ne-En 7,000 1,000 1,000
Si-En 7,000 1,000 1,000

Table 3: Dataset used for Quality Estimation from WMT.

guage pair: English-German (En-De). We list
the language pair5 and the number of sentences
for each language pair in the table 3.

7 Summary
This survey paper describes the task of Quality
Estimation. We began with a brief introduc-
tion followed by the motivation behind the
research into QE. Then we looked at the back-
ground covering machine translation, its four
paradigms, and machine translation evaluation.
Then we studied the task of QE in Machine
translation and its different granularities. We
then looked at the different approaches to QE,
some architectures, and challenges to QE fol-
lowed by an overview of multitask learning.
We then explored perturbation in detail before

5The language name abbreviations are as follows:
En: English, De: German, Zh: Chinese, Et: Estonian,
Ro: Romanian, Ru: Russian, Ne: Nepalese, Si: Sinhala,
and Mr: Marathi

moving on to the dataset description.
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