
Survey on Construction of Knowledge Graphs for Clinical Practice
Guidelines and Question Answering on Clinical Practice Guidelines

Vasudhan Varma Kandula
CSE, IITB / Bombay

vasudhanvarma@gmail.com

Pushpak Bhattacharyya
CSE, IITB / Bombay

pushpakbh@gmail.com

Abstract
In the medical domain, several disease treat-
ment procedures have been documented prop-
erly as a set of instructions known as Clinical
Practice Guidelines (CPGs). CPGs have been
developed over the years on the basis of past
treatments, and are updated frequently. A doc-
tor treating a particular patient can use these
CPGs to know how past patients with similar
conditions were treated successfully and can
find the recommended treatment procedure. In
this paper, we present a Decision Knowledge
Graph (DKG) representation to store CPGs and
to perform question-answering on CPGs. CPGs
are very complex and no existing representa-
tion is suitable to perform question-answering
and searching tasks on CPGs. As a result, doc-
tors and practitioners have to manually wade
through the guidelines, which is inefficient.
Representation of CPGs is challenging mainly
due to frequent updates on CPGs and decision-
based structure. Our proposed DKG has a deci-
sion dimension added to a Knowledge Graph
(KG) structure, purported to take care of de-
cision based behavior of CPGs. Using this
DKG has shown 40% increase in accuracy com-
pared to fine-tuned BioBert model in perform-
ing question-answering on CPGs. To the best
of our knowledge, ours is the first attempt at
creating DKGs and using them for representing
CPGs.

1 Introduction

1.1 Problem Statement
Clinical Practice Guidelines (CPGs) are a set of
systematically developed statements intended to
assist a doctor or a practitioner to make decisions
about appropriate health care to be given to a pa-
tient under a specific clinical circumstance. CPGs
serve as critical resources for healthcare practition-
ers, providing evidence-based recommendations to
guide decision-making and improve patient care.
However, the current utilization of CPGs faces sig-
nificant challenges due to the lack of a suitable rep-

resentation. These guidelines, developed over years
and regularly updated, consist of extensive docu-
mentation detailing disease treatments and steps.
As a result, healthcare professionals are required
to invest considerable time and effort in manually
searching and comprehending the guidelines, lead-
ing to inefficiencies and potential delays in treat-
ment decisions.

The absence of a structured and accessible for-
mat hampers the efficient use of CPGs, hindering
the translation of evidence-based knowledge into
clinical practice. To overcome these limitations,
there is a pressing need to develop an improved rep-
resentation for CPGs that enables easier searching,
navigation, and question-answering. By addressing
this problem, healthcare professionals can enhance
their ability to provide optimal care, improve pa-
tient outcomes, and efficiently allocate healthcare
resources.

1.2 Motivation
The main motivations are:

• Failure to follow Guidelines

• Digitizing Clinical Practice Guidelines

• Increasing load on doctors

• Lack of Data

1.2.1 Failure to follow Clinical Practice
Guidelines (CPGs)

According to American Hospital Association (aha),
in 2022, there were more than 33 million admis-
sions of patients in hospitals in the US, which is
an average of 91,000 admissions per day. As the
number of patients is increasing, there is a heavy
workload on doctors, and they may have limited
time to review and implement complex guidelines.
Also, doctors may be unfamiliar with CPGs due
to lack of training, and frequent changes in guide-
lines over time. Lack of familiarity with CPGs

can be a barrier to their use in clinical practice, as
doctors may not be aware of the most up-to-date
recommendations or may not know how to apply
the guidelines to their patients. So, to promote the
usage of CPGs, the above barriers need to be over-
come. One way to achieve this is by digitizing the
guidelines and providing assistance when referring
to the guidelines using technology.

1.2.2 Digitizing Clinical Practice Guidelines
(CPGs)

Nowadays, when everything is being digitized,
CPGs are still finding difficulty because of their
complexity and lack of proper representation in
digital format. Adding to these, there is one more
challenge that CPGs face. CPGs are updated reg-
ularly based on discussions. So, even if digitized,
the model should allow those changes in digital rep-
resentations. If CPGs are digitized properly, search-
ing and navigating becomes easier and saves a lot
of time for doctors, and motivates doctors to use
CPGs. The main motivation for digitizing a CPG
is to assist doctors and practitioners when treating
cancer patients. An application using a suitable
CPG representation should be able to answer basic
questions like what are the next treatment steps
given the current patient’s condition. It should be
easy for users to navigate the CPG. The existing
Knowledge Graph representation on which search-
ing and question-answering can be performed is
not suitable for storing CPGs as CPGs contain a
decision-based structure along with factual data
and these decisions in CPGs are updated frequently.
Given the following guideline:

"Patient can be treated with chemother-
apy if age less than 65"

The existing KG extraction model gave: Subject:
Patient; Predicate: can be treated with; Object:
chemotherapy. So, the extracted triple is (patient,
can be treated with, chemotherapy). The model
ignored the condition of age less than 65, which
is important for guiding the doctor. So, a good
CPG knowledge graph should represent not only
concepts but also decisions (attributes). If the above
guideline is updated to:

"Patient can be treated with chemother-
apy if age less than 65 and greater than
35. He should not have any substantial
comorbidities."

The existing KG model will require many changes
in its structure (i.e, number of nodes and rela-
tions). A good CPG knowledge graph represen-
tation should have an efficient updating capability
with few changes.

1.2.3 Increasing Load on Doctors
In a survey done by NCI, it has been found that 1
in 10 men and 1 in 8 women in India can expect to
develop cancer of any form, in their life span after
the age of 35 years. The rate of new cases of cancer
is 442.4 per 100,000 men and women per year
from 2013-2017 across the world. In India, around
2.7 million people are suffering from cancer and
every year, 13.9 lakh new cases are registered. A
cancer patient’s treatment generates a lot of clinical
reports and notes. Doctors find it difficult to go
through all the reports and information present in
them. To remember a patient’s data there is much
cognitive load on the doctor. With the increase
in the number of patients, the doctor’s load is also
getting increased for going through the reports. The
increased time in reading reports makes a doctor
spend less time treating a patient. Consequently,
he won’t be able to treat many patients. With the
increasing number of patients every year, this will
be a problem in the future to treat cancer patients.

1.2.4 Lack of Data
Now-a-days pretrained models are performing well
in question-answering tasks. The limitation in the
case of CPGs is that sufficient data for training the
model is not available. Even if we create huge data
and train the model, since the treatment guidelines
are changed frequently, the dataset should also be
updated with the guidelines which is another limita-
tion. Considering this, storing the CPGs as DKG is
a better approach compared to using a pre-trained
transformer model.

1.3 Contributions

The main contributions of our work are:

1. Creation and releasing of a knowledge graph
(KG) with an additional decision dimension
added to some nodes in existing KG structure
for storing clinical practice guidelines, i.e.,
Decision Knowledge Graph (DKG).

2. Creation of dataset of triples containing 8300
questions from acute lymphoblastic leukemia,
kidney, and bone cancer. Each triple consists

of question, answer, and cypher query (used
to query decision knowledge graph).

3. Question-answering model on Clinical Prac-
tice Guidelines with the help of Decision
Knowledge Graphs. The proposed model
gives 40% better results compared to fine-
tuned transformer question-answering model.

To the best of our knowledge, ours is the first at-
tempt at (i) creating a knowledge graph for CPGs
and (ii) adding a decision dimension to a node in
KG.

1.4 Challenges

Some of the challenges that are faced are:

• Clinical Practice Guidelines are regularly up-
dated based on meetings conducted by mem-
ber organizations. The digital representation
of guidelines should be able to update quickly
for the changes made in the guidelines.

• In guidelines, there are superscripts and sub-
scripts which add some more specific details
of the entities used in the flowchart, making it
hard to parse.

• Capturing both the flow of treatment and in-
terrelation between nodes in Clinical Practice
Guidelines.

2 Background

In this chapter, we establish the groundwork for
multiple concepts related to the project. To delve
further into the project, it is essential to have an un-
derstanding of concepts such as knowledge graphs,
differentiating between static and dynamic data,
clinical practice guidelines (CPGs) with NCCN
Guidelines, the neo4j database management sys-
tem, cypher query language, constraint extractor
and question-answering systems.

2.1 Knowledge Graphs

Knowledge Graphs are structured representations
of data, often referred to as semantic networks, that
store information in a graph-like format. While
the concept of knowledge graphs has been refer-
enced as early as 1972, their popularity surged
when Google started utilizing them in 2012. These
graphs serve as a network of real-world entities
interconnected by relationships. They are typically
stored in graph databases and visualized as graphs,

hence the term "graph." Each node in the graph
represents an entity, while the links between nodes
capture the relationships between those entities. In
a knowledge graph, information is organized in the
form of tuples, consisting of a subject, relation, and
object. Figure 1, derived from a survey paper on
Knowledge graphs by Dai et al. (2020), presents a
simplified knowledge graph illustrating a sequence
of events and their corresponding venues.

Some of the prominent features of a knowledge
graph are

• Variety of relations and,

• Information is organized in a complex net-
work.

These knowledge graphs act as a knowledge
base for various downstream tasks like question-
answering, recommending systems, searching and
navigating etc.

Figure 1: Knowledge Graph (KG) fragment represent-
ing a series of events and venues, derived from a survey
paper on Knowledge graphs by Dai et al. (2020)

2.2 Clinical Practice Guidelines

Doctors may need assistance when they treat pa-
tients. There are many diseases and each disease
is treated differently based on knowledge of how
it has been treated before. Many discussions have
been made on what is the recommended way to
treat a patient based on his condition, and all the
details of those discussions have been documented
properly which are called Clinical Practice Guide-
lines (CPG). These CPG are updated regularly
based on discussions held. A clear definition of
CPGs is specified by the Institute of Medicine in
1990 ?:

. . . systematically developed statements
to assist practitioner and patient deci-
sions about appropriate health care for
specific clinical circumstances.

CPGs are exhaustively documented, but not en-
forced rigorously. They recommend the best
treatment that can be chosen under given circum-
stances. CPGs are complex to understand for
doctors, specifically beginner practitioners. As
CPGs are currently not digitalized into a precise
structured format, a practitioner searches manually
through PDF files, which consumes a lot of time.

An example CPG fragment is shown in Figure 2.
There are flowcharts that guide on where to start
based on the disease state and the treatment goes to
the caring stage (post-treatment phase). At the end
of each document, an elaborate verbal description
of what the flowchart means and other details about
treatment steps and conditions are available. There
are superscripts and subscripts which add some
more specific details of the entities used in the
flowchart, making it hard to parse.

Figure 2: Fragment of Clinical Practice Guidelines by
National Comprehensive Cancer Network from page
12 of Acute Lymphoblastic Leukemia (ALL) cancer
Version 1.2022 which shows how a ph+ (Philadelphia
chromosome) ALL patient should be treated in the in-
duction phase of ALL cancer

Acronym Abbreviation
ALL Acute Lymphoblastic Leukemia
Ph+ Philadelphia chromosome-positive
AYA Adolescents and Young Adults
TKI Tyrosine Kinase Inhibitor
CR Complete Recovery

MRD Measurable Residual Disease

Table 1: Shows the Abbreviations of Acronyms used in
Figure 2

Figure 2 shows how a Ph+ ALL patient should

be treated. This Ph+ ALL is determined by the
doctors after doing initial tests on the patient.
Here AYAn,p,q tells that the panel believes patients
in the age range of 15–39 years. If the above
patients do not have any substantial comorbidi-
ties. Substantial Comorbidities means having more
than one illness at once. Then the patient is ad-
vised with the following treatments Clinical trial
or TKI+Chemotherapyt which means systematic
chemotherpy or TKI+corticosteroidt which means
systematic corticosteroid. After these treatments,
Response Assessment is done which classifies the
patient as either CR or less than CR. If he is ob-
served as CR, then MRD is monitored which can
be persistent rising MRD or MRD- (MRD Neg-
ative). If the patient is of greater than 65 years
of age then recommended treatments are Clinical
trial or TKI+corticosteroidt,cc means we have to
consider modifying dose according to patient’s age
or TKI+chemotherapyt,cc i.e., dose modifications
required. Then Response Assessment is done on
the patient.

The structure of CPGs contains flowcharts with
decision nodes and detailed descriptions of these
flowcharts are given in the discussion section in
the same guidelines. This CPG structure resem-
bles something like a flowchart combined with a
knowledge graph. A flowchart captures on what is
the next treatment step whereas a knowledge graph
captures the node and the relationship of this node
with other nodes. So, the challenge here is to cap-
ture both, the flow of treatment and the interrelation
between nodes.

2.3 NCCN Guidelines

Clinical Practice Guidelines (CPGs) from Na-
tional Comprehensive Cancer Network (NCCN)
are used for building Decision Knowledge Graph
(DKG). These are also referred to as Cancer Guide-
lines, NCCN Guidelines, or Oncology Guidelines.
NCCN is a non-profit alliance dedicated to facili-
tating effective, quality, and accessible cancer care.
The organization is home to around 60 types of
cancer research and guidelines including breast
cancer, lung cancer, kidney cancer, etc. For the
past 25 years, these guidelines are updated regu-
larly based on discussions among world-renowned
experts from NCCN member institutions. A snap-
shot of the NCCN Guidelines, taken from page 12
of Acute Lymphoblastic Leukemia (ALL) Cancer
Version 1.2022, is shown in Figure 2.

The NCCN guidelines include:

1. List of members and institutions that partici-
pated in the specified discussions.

2. Flowcharts for better understanding of deci-
sion making.

3. Discussions to provide support for flowcharts.

4. Evidence for recommendations and disclosure
of potential conflicts of interest by panel mem-
bers.

The flowchart section of guidelines consists of text
boxes and arrows connecting these boxes as shown
in Figure 2. Some of the words in the text have
superscripts and subscripts. Superscripts and sub-
scripts contain a detailed description in the footnote
of the paper. There are hyper-texts in some text that
refer to other pages in the same document.

In this work, Acute Lymphoblastic Leukemia
(ALL), Bone, and Kidney cancer types are used
from NCCN guidelines to build DKG. ALL cancer
guidelines is a 135-page document consisting of
more than 35 pages of flowcharts and algorithms
for decision-making, 59 pages of discussion, and
the remaining pages for references to evidence.
Bone cancer guidelines is a 102-page document
consisting of 34 pages of flowcharts and algorithms
for decision-making, 32 pages of discussion, and
the remaining pages for references to evidence.
Kidney cancer guidelines is an 81-page document
consisting of 23 pages of flowcharts and algorithms
for decision-making, 34 pages of discussion, and
the remaining pages for references to evidence.

2.4 Terminologies
In this section we define some new terminologies
used in the report, patient constraints, static data,
and dynamic data.

2.4.1 Patient Constraints
Data related to patients’ parameters and conditions
of patient is called as Patient’s Constraints which
are often referred to as Constraints in rest of the re-
port. Some of the examples of patients’ constraints
are Age, tumor size, disease stage, past medical
history, etc.

2.4.2 Static Data and Dynamic Data
Static data is the data in CPGs that changes less
frequently or doesn’t change at all. Example: The
treatment steps of chemotherapy, etc. Dynamic

Figure 3: Block Diagram of Constraint Extraction

data is the data in CPGs that changes frequently.
Example: Patient Constraints. Here, dynamic data
doesn’t refer to data from a query like the name of
the patient, etc. It refers to the data that should be
present in the KG to make a decision. For example,
treatment procedure like chemotherapy is static
data and patients’ constraints like age>60, MRD
rising, etc., is dynamic data.

2.5 Constraint Extractor

Constraint Extractor is an extraction tool, which
takes input a line from the oncology guidelines and
outputs the constraints related to patient present in
the guidelines. This tool has 2 major parts. They
are:

• Constituency Parser

• Rules for extracting constraints

2.6 Constituency Parser

• Input: Natural Language sentence

• Output: Dependency tree

2.6.1 Rules for extracting constraints
• Input: Dependency tree

• Output: List of constraints

A detailed information of how constraint extraction
is done is defined in this section.

Step 1: Preprocessing Initially, data that is given
as input to constraint extraction is tokenized using
NLTK. From the tokenized output, all the symbols
are removed. Then, it is converted into a string
with no leading and trailing spaces and given to the
constituency parser.

Step 2: Constituency Parse Tree The prepro-
cessed string is given into the constituency parse
tree. Stanza, a Stanford Core NLP package for
Python, has been used. Pipelines that are used in

Figure 4: Constituency Parse Tree Output

the stanza are MWT (multiword tokens) followed
by POS (parts of speech tagging), and then finally
constituency parser. The output of the constituency
parse tree is a tree-based structure that is repre-
sented as a string in Python. Sample output is:
(ROOT (S (S (NP (JJ adult) (NNS patients)) (VP
(MD should) (VP (VB be) (NP (NP (QP (JJR less)
(IN than) (CD 65)) (NNS years)) (PP (IN of) (NP
(NN age))))))) (CC and) (PP (IN without) (NP (JJ
substantial) (NNS comorbidities))) (. .))). Visu-
ally, it is easy to parse the above structure but since,
there are no available parsers for the above output, a
parser that parses the above structure and generates
a tree has been created. The structure generated by
the parser created is then given to networkx pack-
age in Python which generates an output, shown
in Figure 4. Node numbers have been added at the
end to differentiate different nodes with the same
content.

Step 3: Merging the Trees The tree structure
which is generated using the constituency parse
tree is merged recursively. The base case is a list of
all ’and’ nodes that are taken and sorted according
to their depth. The node with maximum depth
is picked up and merged across the left side and
right side of it and the node which is above the
current node is added to the list. This recursively
applies till all the nodes have been visited. This step
decreases the ambiguity of sentences. Suppose we
were given “without comorbidities of diabetes and
tuberculosis". Here these merging steps make it
into “without comorbidities of diabetes and without
comorbidities of tuberculosis". It does the linking
of entities that are close to each other.

Step 4: Named Entity Extraction The merged

tree’s output sentences are taken and the named
entity is extracted using the Stanford Core NLP
package. These named entities are marked as non-
removable which makes further steps not to remove
those entities picked up.

Step 5: Filtering The output of merged trees
is taken and all the words which are not marked
as “non-removable" are removed. Here, non-
removable words are the words that are extracted
from named entity extraction and words that con-
tribute to making sentences into logical form.
These are identified using a set of keywords taken
from LexNLP.

Step 6: Substitutions The words which are hav-
ing logical form are replaced by their mathematical
representation like ‘less than’ is replaced with the
symbol ‘<’.

2.6.2 Result of Constraint Extractor

The following are the input examples and outputs
for those input examples from the Constraint Ex-
tractor module:

1. Input to the model is “adult patients should be
less than 65 years of age and without substan-
tial comorbidities". In the above sentence, we
had 2 constraints which are adult patient’s age
should be less than 65 years and the other is
he should not have any substantial comorbidi-
ties. We can see the output in Figure 5 is [‘no
substantial comorbidities’, ‘adult patients <
65 years of age’].

Figure 5: Result 1

2. Input to the model is that “AYA and adult
patients should be less than 65 years of age
and without substantial comorbidities". In the
above sentence, we have 3 constraints which
are AYA, age should be less than 65 years he
should not have any substantial comorbidities.
We can see the output in Figure 6 is [‘no sub-
stantial comorbidities’, ‘adult patients < 65
years of age’, ‘AYA < 65 years of age’].

Figure 6: Result 2

3. Input to the model is “tumor size should be
greater than 0.5cm and pn0". In the above
sentence, we have 1 constraint which is the
size of the tumor should be greater than 0.5cm.
We can see the output in Figure 7 is [‘tumour
size > 0.5 cm’].

Figure 7: Result 3

4. Input to the model is“without comorbidities
of diabetes and hypertension". In the above
sentence, we had 2 constraints which are he
should not have diabetes and he should not
have hypertension. We can see the output in
Figure 8 is [‘hypertension comorbidities no’,
‘diabetes comorbidities no].

Figure 8: Result 4

5. Input to the model is “tumor size should be
less than 5cm and margins greater than 1mm".
In the above sentence, we have 2 constraints
which are the size of the tumor should be less
than 5cm and margins should be less than
1mm. We can see the output in Figure 7 is
[‘margins > 1mm’,‘tumour size < 5 cm’].

Figure 9: Result 5

2.7 Decision Knowledge Graphs
A Knowledge Graph (KG) is used to store factual
data. KG consists of many relations and nodes

arranged in the form of a triple i.e., (head node,
relation, and tail node). Data like Clinical Practice
Guidelines have conditional data along with factual
data which makes KG not usable for storing this
type of data. So, in this work, we have added
a new dimension in KG known as the decision
dimension used to store conditional data. This
new KG structure has additional nodes carrying
conditional data added to the existing KG structure.

2.8 Neo4j Graph Database Manager

Neo4j is a powerful and widely adopted graph
database management system that has revolution-
ized the way data is stored, managed, and queried.
Its unique graph-based approach enables the repre-
sentation and exploration of complex relationships
and interconnected data. Neo4j operates on the
principles of graph theory, where data is organized
as nodes, relationships, and properties. Nodes rep-
resent entities, relationships depict connections be-
tween entities, and properties store additional in-
formation about nodes and relationships. This intu-
itive representation allows for efficient modeling of
real-world scenarios, enabling a natural exploration
of complex relationships. Some of the key features
of neo4j are:

• Relationship-centric: Neo4j focuses on rela-
tionships as first-class citizens, providing a na-
tive and performant way to traverse and query
connections within large datasets.

• High Performance: Neo4j’s graph-based data
model allows for efficient and fast traversal
of relationships, making it well-suited for ap-
plications that require real-time insights and
rapid query execution.

• Scalability: Neo4j’s architecture is designed
to handle large-scale datasets and high-
throughput workloads. It supports horizontal
scaling, allowing organizations to scale their
graph databases as their data grows.

• Flexibility: Neo4j offers flexible schema mod-
els, allowing dynamic changes to the data
model without requiring a rigid predefined
schema. This flexibility makes it suitable for
evolving and dynamic data domains.

2.9 Cypher Query Language (CQL)

Cypher is a powerful and expressive query lan-
guage specifically designed for graph databases.

Developed by Neo4j, Cypher provides a simple
and intuitive syntax to interact with graph data, en-
abling developers and analysts to harness the full
potential of graph database capabilities. At the core
of Cypher lies its graph-pattern matching capabil-
ity, allowing users to describe patterns and rela-
tionships within the graph data. Cypher employs
ASCII art-style syntax, using parentheses, arrows,
and other symbols to define nodes, relationships,
and properties. This intuitive approach simplifies
the querying process and facilitates the exploration
of complex connections. Some of the key features
of CQL are:

• Pattern Matching: Cypher enables the traver-
sal of nodes and relationships in a graph
database by specifying patterns to match. It
supports various patterns, including node la-
bels, relationship types, properties, and fil-
tering conditions, allowing users to extract
precise subsets of data.

• Path Expressions: Cypher offers path expres-
sions, which enable the traversal of multiple
nodes and relationships in a single query. This
feature facilitates the discovery of connected
paths and enables deep analysis of relation-
ships within the graph.

• Aggregation and Analysis: Cypher provides
built-in functions and operators for aggrega-
tion, filtering, sorting, and statistical analysis.
These capabilities allow users to perform cal-
culations, derive insights, and generate reports
directly within the query language.

• Read and Write Operations: Cypher supports
both read and write operations, allowing users
to not only query the graph but also update,
insert, and delete data. This versatility makes
it a comprehensive language for managing and
manipulating graph database

Some of the basic examples of CQL used are:
1. To retrieve all nodes of a specific label:

1 MATCH (n:Label)
2 RETURN n;

This query retrieves all nodes with the label "Label"
from the graph database.

2. To find nodes based on property values:

1 MATCH (n:Label)
2 WHERE n.property = 'value '

3 RETURN n;

This query retrieves nodes with the label "Label"
that have a specific property value.

3. To traverse relationships between nodes:

1 MATCH (a)-[:RELATIONSHIP]->(b)
2 RETURN a, b;

This query traverses relationships of type "RELA-
TIONSHIP" from node "a" to node "b" and returns
both nodes.

4. To filter and order results:

1 MATCH (n:Label)
2 WHERE n.property > 10
3 RETURN n
4 ORDER BY n.property
5 DESC;

This query retrieves nodes with the label "Label"
that have a property value greater than 10, and
orders the results in descending order based on that
property.

5. To perform aggregations:

1 MATCH (n:Label)
2 RETURN count(n)
3 AS count;

This query calculates the count of nodes with the
label "Label" and returns it as "count".

6. To create new nodes and relationships:

1 CREATE (a:Label {property: 'value
'})-[:RELATIONSHIP]->(b:Label)
;

This query creates a new node with the label "La-
bel" and a specific property, and creates a relation-
ship of type "RELATIONSHIP" between the newly
created node and another node with the label "La-
bel".

2.10 Question Answering Systems

Question-answering (QA) systems are designed
to provide human-like responses to user queries
by automatically extracting relevant information
from various data sources. These systems utilize
natural language processing (NLP) techniques to
understand and interpret user questions, search for
relevant information, and generate accurate and
concise answers.

There are two main types of QA systems:

1. Extractive QA: These systems identify and
extract the most relevant answer from a given text
source, such as documents or web pages.

2. Generative QA: These systems generate an-
swers by understanding the question and generating
a response based on the available knowledge.

The development of QA systems began with
early AI research, focusing on rule-based ap-
proaches and symbolic reasoning. Weizenbaum
(1966), developed ELIZA in the 1960s, was one
of the earliest chatbot-like systems that could en-
gage in text-based conversations. Later QA sys-
tems in the 1990s primarily relied on information
retrieval techniques. Systems like START referred
in Shinde et al., developed at MIT, used pre-defined
patterns and templates to extract answers from tex-
tual sources. TREC (Text REtrieval Conference)
QA track was initiated to evaluate and benchmark
QA systems’ performance. The focus shifted to
passage retrieval, where systems aimed to find rel-
evant answer passages from large collections of
documents. Systems like IBM Watson referred in
High (2012) and the development of the Jeopardy!-
playing AI showcased advancements in question
answering. Deep learning and neural network mod-
els revolutionized QA systems. The introduction
of large-scale pre-trained language models, such
as BERT and GPT, significantly improved QA per-
formance. Transformer-based models, like GPT
by OpenAI (2023), achieved state-of-the-art results
in both extractive and generative QA tasks. Now
with the rise of knowledge graphs and structured
data, QA systems have incorporated graph-based
approaches to enhance question answering.

2.11 Transformer Model

This work uses transformer model for 2 applica-
tions. The Transformer model has revolutionized
various natural language processing (NLP) tasks by
introducing a novel architecture that relies solely on
attention mechanisms, eliminating the need for re-
current or convolutional structures. This summary
provides an overview of the Transformer model,
highlighting its key components and contributions.
The Transformer model, introduced by Vaswani
et al. (2017) in 2017, was primarily designed for
machine translation tasks. It has since become the
backbone of many state-of-the-art models in NLP.
The model’s success lies in its ability to capture
long-range dependencies and effectively handle se-
quential data without sequential computation.

The key components of the Transformer model
are self-attention and feed-forward neural networks.
Self-attention allows the model to weigh the im-
portance of different words in a sequence, enabling
it to consider both local and global contexts si-
multaneously. This mechanism replaces recurrent
connections, making it more parallelizable and effi-
cient for training on modern hardware. The feed-
forward neural networks process the information
learned from the self-attention mechanism, provid-
ing non-linear transformations to the input. The
Transformer model introduces the concept of at-
tention heads, which allow the model to attend to
different positions or aspects of the input simultane-
ously. Multiple attention heads capture diverse in-
formation and facilitate better representation learn-
ing. Moreover, the model incorporates positional
encodings to retain the order of the input sequence,
as self-attention is permutation invariant.

To train the Transformer model, Vaswani et al.
(2017) introduced the concept of "scaled dot-
product attention," which enables efficient com-
putation of self-attention. The model is trained
using a variant of the attention mechanism called
"multi-head attention," which allows for paralleliza-
tion and enhances performance. The Transformer
model has achieved remarkable results across var-
ious NLP tasks, including machine translation,
text summarization, sentiment analysis, and ques-
tion answering. Its ability to capture context de-
pendencies and process input in parallel has con-
tributed to its success. The Transformer model
has also inspired subsequent advancements in NLP,
such as BERT (Bidirectional Encoder Representa-
tions from Transformers) and GPT (Generative Pre-
trained Transformer), which have further pushed
the boundaries of language understanding and gen-
eration.

2.12 Evaluation Metrics

We briefly describe the metrics used in the evalua-
tion.

2.12.1 ROUGE Score
The quality of text summarization or machine trans-
lation output is assessed using a set of measures
called ROUGE (Recall-Oriented Understudy for
Gisting Evaluation). Comparing the generated text
to the reference text forms the basis for the mea-
surements. Precision, recall, and F1-score are used
to construct ROUGE scores. The following is the
ROUGE formula:

ROUGE-N:
Precision = overlapping ngrams

total ngrams

Recall = number of overlapping ngrams
number of ngrams in reference summary

F1− score = 2 ∗ precision ∗ recall
precision + recall

The metrics reported in the paper are ROUGE-1
score. The score is calculated using the package
rouge_score.

2.12.2 BLEU Score
BLEU (Bilingual Evaluation Understudy) is used
to assess the effectiveness by comparison of the
generated text and the reference text forms the basis
of it.

The nltk.translate.bleu_score module in the
NLTK package offers tools for computing BLEU
scores. To compare a single generated sentence
to a reference sentence and determine the BLEU
score, use the sentence_bleu() function. The sen-
tence_bleu() function allows you to specify the
n-gram order (default is 4) and a set of weights to
assign to each n-gram order. The weights are used
to compute the final BLEU score, and they can be
specified using the weights parameter. The weights
parameter should be a tuple of floats that sum up
to 1, where each float corresponds to the weight
assigned to the n-gram order.

In this paper we have used sentence_bleu with
equal weigthage to all ngrams.

2.12.3 Jaccard Similarity Score
A measure of similarity between two sets of data
is the Jaccard similarity score, commonly referred
to as the Jaccard index or Jaccard coefficient. It is
calculated by dividing the size of the intersection
by the sum of the two sets. The following is the
Jaccard similarity score formula:

J(A,B) = |A∩B|
|A∪B|

A and B are two sets, and the symbols for their
intersection and union are and, respectively. The
symbols |A| and |B| stand for the size or cardinality
of the sets A and B, respectively.

The Jaccard similarity score is frequently used
in text analysis to assess how similar two texts or
text strings are to one another. The sets A and B
can be defined as the set of words or tokens in the
two documents, and the Jaccard similarity score
can be used to measure the overlap between the
sets of words.

2.12.4 Accuracy
Accuracy is used to check the correctness of the
generated model. We calculated accuracy with the

formulae: Accuracy = total correct predictions
total predictions

For baseline model we have used if BLEU Score
greater than 0.7 as correct statement. For with
DKG model we have used 1 as correct statement.

3 Literature Survey

3.1 CPGs and their ignorance

CPGs are written based on evidence, aiming to
improve the quality and efficiency of medical treat-
ment and care. They are useful to a doctor in pro-
viding proper insights when he/she is treating a
patient. Many physicians don’t use CPGs. Cabana
et al. (1999) claims that the main reasons for not
using CPGs are their complexity, unfamiliarity, and
distrust. Trust can be improved once CPGs start
gaining positive attention and lead to successful
treatment of patients. Complexity and familiarity
need to be addressed for the usage of CPGs. CPGs
were introduced in the early 90s yet their familiarity
is still a problem in the medical domain.

The existing representations of CPGs are com-
plex and unfamiliar as mentioned in Cabana et al.
(1999). Manually searching data in CPGs takes
time. During emergencies, time is valuable and
lack of time can cost lives. A representation for
CPGs on which question-answering and searching
can be performed will help a lot in emergencies.
This representation can also motivate practitioners
and doctors to use guidelines. So far, no attempt
has been made for representing CPGs to perform
question-answering and searching tasks.

Given the structured nature, and factual data
present in the CPGs, it is reasonable to organize this
information as a Knowledge Graph. Rossetto et al.
(2020) describes Knowledge Graph (KG) as static
graph triples. If the data is static, KG, once con-
structed, needs no modifications and can be used
to perform question-answering and searching tasks.
Once the KG is constructed, modifying the KG
is costly and takes time as modification involves
updating, changing, or deleting multiple nodes and
relations which can propagate. Therefore, at times,
KG needs to be reconstructed because of some
modifications.

3.2 Existing KG models in Medical Domain

Construction of a KG involves many steps like co-
reference resolution, information extraction, etc.
Rossanez et al. (2020) provides a detailed pipeline
of KG construction for biomedical scientific litera-
ture. Many existing approaches to constructing KG

ignore the conditional statements that are present
in the sentences. Jiang et al. (2019) explains how
existing ScienceIE models capture factual data and
will not consider conditional statements. i.e., An
existing system would return the tuple (alkaline pH,
increases, activity of TRPV5/V6 channels in Jurkat
T cells) if the statement "alkaline pH increases the
activity of TRPV5/V6 channels in Jurkat T cells"
was given. However, in this case the condition tu-
ple (TRPV5/V6 channels, in, Jurkat T cells) was
not identified.

Jiang et al. (2020) emphasizes the importance
of conditional statements in biomedical data. They
also propose a KG representation with conditional
statements. The conditional statements are added
to the existing KG structure but this structure is
not suitable for clinical practice guidelines because
updating is not efficient in the current KG structure.

From the survey conducted by Liang et al.
(2022), many KG question-answering models were
relying on rules, keywords, neural networks, etc.
After the introduction of SPARQL by Hu et al.
(2021), which is a query language to search and
modify a KG, retrieving data from KG became easy.
Therefore, many question-answering models were
proposed using KG.

4 Dataset and Annotation

4.1 MIMIC-III Dataset

The MIMIC-III (Medical Information Mart for In-
tensive Care III) dataset is a widely used and pub-
licly available healthcare dataset that provides a
comprehensive collection of de-identified clinical
data from intensive care units (ICUs). It includes
data from over 60,000 patients who were admit-
ted to the Beth Israel Deaconess Medical Center
between 2001 and 2012. The dataset contains a
wealth of information, including demographics, vi-
tal signs, laboratory measurements, medications,
procedures, diagnoses, and clinical notes.

Here are a few examples of the types of data
available in the MIMIC-III dataset:

1. Demographics: - Example: Age, gender, eth-
nicity, and admission and discharge dates of pa-
tients. - Usage: Demographic information can be
used to study population characteristics and ana-
lyze patient outcomes based on demographic fac-
tors.

2. Vital Signs and Measurements: - Example:
Heart rate, blood pressure, temperature, respiratory
rate, and oxygen saturation. - Usage: Vital signs

and measurements help monitor a patient’s physi-
ological condition and can be analyzed to identify
patterns, detect abnormalities, and predict patient
outcomes.

3. Laboratory Measurements: - Example: Blood
tests, such as complete blood count (CBC), elec-
trolyte levels, glucose, and arterial blood gas
(ABG) measurements. - Usage: Laboratory mea-
surements provide valuable insights into a patient’s
biochemical profile, organ function, and disease
progression.

4. Medications: - Example: Administration
records of medications, including dosage, route,
and frequency. - Usage: Medication data can be
utilized to study drug usage patterns, analyze medi-
cation interactions, and assess the impact of medi-
cations on patient outcomes.

5. Procedures: - Example: Surgical procedures,
diagnostic tests, and interventions performed dur-
ing a patient’s ICU stay. - Usage: Procedure data
enables the analysis of treatment approaches, out-
comes, and the effectiveness of different interven-
tions.

6. Diagnoses: - Example: International Classifi-
cation of Diseases (ICD) codes representing patient
diagnoses. - Usage: Diagnoses data helps in under-
standing disease prevalence, comorbidities, and the
impact of specific conditions on patient outcomes.

7. Clinical Notes: - Example: Free-text
notes written by healthcare professionals, including
progress notes, discharge summaries, and radiol-
ogy reports. - Usage: Clinical notes provide valu-
able narrative information about a patient’s medical
history, treatment plans, and healthcare provider
observations.

The MIMIC-III dataset has been extensively uti-
lized in research and healthcare analytics to explore
various topics, including predictive modeling, clin-
ical decision support systems, disease surveillance,
treatment effectiveness, and patient outcome pre-
diction. Its availability has contributed significantly
to advancing the understanding of critical care and
facilitating data-driven research in the healthcare
domain.

4.2 CPG-QA Dataset

The main objective of a Decision Knowledge
Graph (DKG) is to perform question-answering
thus reducing the manual effort of a doctor to
search through the guidelines. There are no avail-
able question-answering datasets on Clinical Prac-

tice Guidelines.
We have created a CPG-QA dataset with 4000

question-answer pairs. This dataset consists of
three main types of questions.

Types of questions:

1. What is next treatment advice given a pa-
tient’s constraints (refer to Section 2 for
more details on constraints).
Example: A patient is ALL positive. After his
initial diagnosis he is classified as ph- patient.
His age is 65. He is not treated with other
cancer treatments. What treatment is recom-
mended in this condition?

2. What are the patient’s medical constraints
that needs to be satisfied given a treatment
stage.
Ex: A patient is ALL positive. After his initial
diagnosis he is classified as ph+ patient. What
are patient constraints for doing chemother-
apy?

3. Given a patient’s medical constraints and
treatment stage, whether a particular treat-
ment is advisable or not?
Ex: A patient is ALL positive. After his ini-
tial diagnosis he is classified as ph- patient.
His age is 65. He is not diagnosed with any
other cancer treatment. Can we perform TKI
+ Chemotherapy on him?

Annotation The dataset also consists of cypher
queries for question-answering pairs which are
used to query the DKG. These cypher queries are
manually constructed given a question. We have
verified the correctness of the queries by running
them on DKG and matching the outputs of DKG
with the expected answer. The format of the dataset
is:

2 [
3 {
4 "QUESTION": String,
5 "ANSWER": String,
6 "QUERY": String,
7 "Expected_Node": Integer,
8 "DKG_response": Integer,
9 },...

10]

Dataset Examples Here are few examples from the
dataset

2 1.
3 {
4 "QUESTION": "Upon risk

stratification, a
patient is identified to
have ph- ALL at the age
of 37. What treatment

measures are advised ?",
5 "ANSWER": "clinical trial

or Pediatric -inspired
regimes or Multiagent
chemotherapy(systematic
therapy)",

6 "REMARK": "pediatric -
inspired regimes is
preferred more",

7 "QUERY": "MATCH (n:
risk_stratification)
WHERE n.stratified = 'ph
-' and n.age_cat='AYA ' -
[:next_step]->k RETURN k
.treatment",

8 "Expected_Node": 14,
9 "DKG_response": 14

10 }
11

12 2.
13 {
14 "QUESTION": "A ph- ALL

patient 's response
assessment is CR. His
age is 37. He was
monitored for MRD and
found negative. What are
the recommended

procedures ?",
15 "ANSWER": "Allogenic HCT (

especially if high -risk
features or consider
continuing multiagent
chemotherapy or
Blinatumomab",

16 "QUERY": "MATCH (m:
decision_node{
stratified='ph-',
age_cat='AYA ', MRD:'
absent '})-[:next_step]->
n RETURN n.treatments",

17 "Expected_Node": 17,
18 "DKG_response": 17
19 }

Dataset can be downloaded from github1.

5 Decision Knowledge Graphs

In the Knowledge Graph (KG), data is stored as
triples consisting of a head entity, a relation, and a
tail entity i.e., (head, relation, tail). If there is some
change in the KG (i.e., updating triple, deleting
triple, or adding new triple), these changes, in the
worst case, can propagate to all nodes. Consider
the example of triple (Barack Obama, president of
, US), if we want to update Obama to Trump, then
the update should be done in multiple nodes which
talk about US presidency or about the individu-
als. Therefore sometimes, updating a KG will be-
come equivalent to rebuilding the KG. The update
operation, therefore, is time-consuming. Clinical
Practice Guidelines (CPGs) are updated frequently.
Hence, KG structure won’t be of much help for
CPGs as it would require the costly update opera-
tion frequently.

From the previous few versions of guidelines, we
have observed that not all content in the guidelines
is changed. The modifications that are made to
guidelines, based on discussions, are mainly done
on patients’ constraints (refer to Section 2 for defi-
nition). The treatment steps of chemotherapy are
not changed but when to perform chemotherapy
based on the patient’s condition is changed. There-
fore, using this observation, we divide the data into
static and dynamic data.

Static data is the data in CPGs that changes less
frequently or doesn’t change at all. Dynamic data is
the data in CPGs which changes frequently. Here,
dynamic data doesn’t refer to data from a query like
the name of the patient, etc. It refers to the data that
should be present in the KG to make a decision. For
example, treatment procedure like chemotherapy
is static data and patients’ constraints like age>60,
MRD rising, etc., is dynamic data.

DKG is a knowledge graph over which we have
introduced a decision layer. This decision dimen-
sion will consist of dynamic data. Static data
is stored as KG triples extracted as proposed by
(Rossanez et al., 2020). For example, if there is
a node, "chemotherapy", we have relations like
"procedure", "drugs used", "duration" etc., which
comes under static data. When updating a KG,
only dynamic data needs to be changed without

1https://github.com/Vasu8081/CPG-QA

changing the structure of the KG and static data.
Therefore, performing updates on DKG will be a
more cost-effective task than updating a KG. Here
the static data is stored as a KG. For example, if
there is a node, “chemotherapy”, we have relations
like “duration”, “drugs used” etc. Therefore, fac-
tual data is stored as we do in a KG, but conditional
data is stored in decision nodes.

6 Conclusion and Future work

In conclusion, representing clinical practice guide-
lines (CPGs) digitally is challenging. The proposed
novel structure, Decision Knowledge Graph (DKG)
can effectively store CPGs. DKG enables the en-
coding of decision-based structures, which are of-
ten changed in CPGs, in addition to factual data.
Our work makes a significant addition to the field
of representing medical knowledge and can help
practitioners and doctors to make well-informed
judgments about patient’s treatment. Our work also
contributes to the NLP community by providing a
representation for storage of knowledge which has
decision-based structure. The model is intended to
be used by professional practitioners and doctors
only and for recommendation purpose, not to solely
depend on the models recommended treatment.

There are many areas that can be explored in
this project, major future goals are listed below:
The DKG architecture can be expanded to clinical
practice guidelines other than NCCN by building
a constraint extractor for the particular guidelines.
It can also be expanded to other domains like con-
struction guidelines in Civil engineering, etc.

References
Fast facts on u.s. hospitals, 2022. http:
//https://www.aha.org/statistics/
fast-facts-us-hospitals. Accessed: 2023-02-
15.

Michael D. Cabana, Cynthia S. Rand, Neil R. Powe,
Albert W. Wu, Modena H. Wilson, Paul-André C.
Abboud, and Haya R. Rubin. 1999. Why Don’t
Physicians Follow Clinical Practice Guidelines?A
Framework for Improvement. JAMA, 282(15):1458–
1465.

Yuanfei Dai, Shiping Wang, Neal N. Xiong, and Wen-
zhong Guo. 2020. A survey on knowledge graph em-
bedding: Approaches, applications and benchmarks.
Electronics, 9(5).

Rob High. 2012. The era of cognitive systems: An
inside look at ibm watson and how it works. IBM
Corporation, Redbooks, 1:16.

http://https://www.aha.org/statistics/fast-facts-us-hospitals
http://https://www.aha.org/statistics/fast-facts-us-hospitals
http://https://www.aha.org/statistics/fast-facts-us-hospitals
https://doi.org/10.1001/jama.282.15.1458
https://doi.org/10.1001/jama.282.15.1458
https://doi.org/10.1001/jama.282.15.1458
https://doi.org/10.3390/electronics9050750
https://doi.org/10.3390/electronics9050750

Xin Hu, Jiangli Duan, and Depeng Dang. 2021. Natural
language question answering over knowledge graph:
the marriage of sparql query and keyword search.
Knowledge and Information Systems, 63(4):819–844.

Tianwen Jiang, Qingkai Zeng, Tong Zhao, Bing Qin,
Ting Liu, Nitesh V Chawla, and Meng Jiang. 2020.
Biomedical knowledge graphs construction from con-
ditional statements. IEEE/ACM transactions on com-
putational biology and bioinformatics, 18(3):823–
835.

Tianwen Jiang, Tong Zhao, Bing Qin, Ting Liu, Nitesh
Chawla, and Meng Jiang. 2019. Multi-input multi-
output sequence labeling for joint extraction of fact
and condition tuples from scientific text. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP).

Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenx-
uan Tu, Siwei Wang, Sihang Zhou, Xinwang Liu, and
Fuchun Sun. 2022. Reasoning over different types of
knowledge graphs: Static, temporal and multi-modal.
arXiv preprint arXiv:2212.05767.

OpenAI. 2023. Gpt-4 technical report.

Anderson Rossanez, Julio Cesar Dos Reis, Ricardo
da Silva Torres, and Hélène de Ribaupierre. 2020.
Kgen: a knowledge graph generator from biomedical
scientific literature. BMC medical informatics and
decision making, 20(4):1–24.

Luca Rossetto, Matthias Baumgartner, Narges Ashena,
Florian Ruosch, Romana Pernischová, and Abraham
Bernstein. 2020. Lifegraph: a knowledge graph for
lifelogs. In Proceedings of the Third Annual Work-
shop on Lifelog Search Challenge, pages 13–17.

Kalyani Shinde, Anjika Singh, Reshma Shitole, Pallavi
Singh, and Sumit Harale. A survey on question an-
swer system.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Joseph Weizenbaum. 1966. Eliza—a computer pro-
gram for the study of natural language communi-
cation between man and machine. Commun. ACM,
9(1):36–45.

http://arxiv.org/abs/2303.08774
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168

