
Knowledge Graphs and Knowledge Infusion in Language Models

Tanu Goyal, Pushpak Bhattacharyya
Department of Computer Science and Engineering, IIT Bombay

{tanugoyal, pb}@cse.iitb.ac.in

Abstract

With the explosion of digital data, there is an in-
creasing need to organize, structure, and make
sense of the vast amount of information avail-
able. One way to achieve this is through knowl-
edge graphs, which represent knowledge as
a network of interconnected nodes and edges.
Language models, on the other hand, are nat-
ural language processing systems that learn to
generate human-like text by training on large
amounts of data. In recent years, there has been
a growing interest in combining these two tech-
nologies to create knowledge-infused language
models that can reason and generate text based
on structured knowledge. This paper explores
the concepts knowledge infusion in language
models, with a focus on the role of knowledge
graphs in enhancing the capabilities of LMs. It
reviews recent research on knowledge graph
integration in LMs, discussing the benefits and
challenges of this approach, and highlighting
the potential for future developments. Over-
all, the paper provides insights into the use of
knowledge graphs as a powerful tool for en-
hancing the capabilities of LMs and highlights
the potential impact of this approach on the
field of natural language processing.

1 Introduction

The integration of knowledge graphs and LMs has
the potential to transform natural language process-
ing by enabling models to reason and generate text
based on structured knowledge. By incorporating
knowledge graphs into LMs, models can access
a vast repository of structured knowledge, allow-
ing them to generate more accurate and coherent
responses. Additionally, knowledge-infused LMs
can provide explanations for their output, enabling
greater transparency and interpretability.

1.1 Problem Statement

Despite the potential benefits of integrating knowl-
edge graphs in LMs, there are still many challenges

that need to be addressed. For instance, the integra-
tion of knowledge graphs requires significant com-
putational resources and can be time-consuming.
Additionally, the accuracy and relevance of the
knowledge provided by knowledge graphs need to
be carefully evaluated to avoid negatively impact-
ing the performance of LMs. Therefore, this paper
aims to review recent research on knowledge graph
integration in LMs, discuss the benefits and chal-
lenges of this approach, and highlight the potential
for future developments in this field.

1.2 Motivation

Language models have made significant progress
in recent years, but they are still limited in their
ability to reason about complex relationships be-
tween entities and concepts. The use of knowledge
graphs as a structured way of representing knowl-
edge offers a promising approach to address this
limitation. Knowledge graphs can provide LMs
with external knowledge that can be used to reason
and generate text. The integration of knowledge
graphs in LMs has the potential to significantly
enhance their capabilities and make them more ac-
curate and effective in generating text. Knowledge
Graphs have domain-specific as well as general in-
formation. While language models hallucinate etc.,
they can deal with natural language queries. To
answer queries using a KG, the query needs to fol-
low the format of the KG using particular/specific
relation names, etc., but using an LM with that
KG infused can help eliminate this issue. Further
having a domain specific KG is useful in terms of
reducing redundancy, training time and inference
latency. Further, it’s unclear from the literature how
KG infusion impacts different domains in different
training settings.

2 Knowledge Graphs

In knowledge representation and reasoning, knowl-
edge graph is a knowledge base that uses a graph-

structured data model or topology to integrate data.
Knowledge graphs are often used to store inter-
linked descriptions of entities – objects, events,
situations or abstract concepts – while also encod-
ing the semantics underlying the used terminology.
Knowledge graphs play an important role in natural
language processing (NLP) by providing a struc-
tured representation of knowledge that can be used
to enhance understanding and interpretation of nat-
ural language text. Knowledge graphs are used
to build semantic models that capture the relation-
ships between words and concepts in a text. This
is done by mapping the entities and relation- ships
mentioned in a text to the nodes and edges in a
knowledge graph. For example, if we have a sen-
tence like ”John works at Google,” a knowledge
graph can represent John and Google as nodes, with
an edge between them representing the ”works at”
relationship. This representation can be used to an-
swer questions like ”Where does John work?” or

”Who works at Google?” Knowledge graphs can
also be used to disambiguate ambiguous terms in
natural language text. For example, the term ”ap-
ple” can refer to a fruit or a technology company.
By using a knowledge graph, it is possible to deter-
mine which meaning of ”apple” is most relevant
in a particular context. One of the key advantages
of knowledge graphs in NLP is that they can be
used to connect concepts across different domains
and datasets. This allows for more comprehensive
understanding of complex topics that span multiple
areas of knowledge. Overall, knowledge graphs
are a powerful tool for enhancing the capabilities
of natural language processing systems, and are be-
coming increasingly important in the development
of advanced NLP applications.

In the following sections, we discuss some of
the major knowledge graphs including ConceptNet
and WordNet.

2.1 ConceptNet

ConceptNet 5.5 (Speer et al., 2017) presented a
new version of the linked open data resource Con-
ceptNet. ConceptNet is a multilingual knowledge
graph that captures semantic relations between
natural language words and phrases through la-
beled edges. The knowledge captured in Con-
ceptNet includes both expert-created resources as
well as crowd-sourced resources. ConceptNet pri-
marily captures the syntagmatic relations between
words.ConceptNet connects words and phrases of

natural language (referred to as terms) with labeled,
weighted edges (called assertions). ConceptNet
incorporates knowledge from a variety of sources,
including Open Mind Common Sense, Wiktionary,
Open Multilingual WordNet, etc. with Wikitonary
being the largest source of input. ConceptNet
contains more than 8 million nodes and over 21
million edges combined. Its English vocabulary
has around 1,500,000 nodes, and there are 83 lan-
guages in which it contains at least 10,000 nodes.
ConceptNet supports 36 relations and the edges
representing these relations are directed in nature.
The relations are further classified into two types,
symmetric and asymmetric relations. For the sym-
metric relations, direction of edges is irrelevant.
Using ConceptNet, a semantic space was build
that is more effective than distributional semantics
alone. Number-batch embeddings, constructued
using the retrofitting technique, capture the Con-
ceptNet graph structure as well as the distributional
semantics as captured by GloVE, word2vec, etc.

2.2 WordNet

WordNet (Miller, 1994) is a lexical database for the
English language that was developed at Princeton
University in the 1980s. It is a large, electronic
dictionary that groups words into sets of synonyms,
called synsets, and provides short definitions for
each of them. WordNet has become a valuable
resource for natural language processing and com-
putational linguistics, as it allows computers to
understand the relationships between words and to
make inferences based on that knowledge.

The database is organized into four main compo-
nents (based on the lexical category): nouns, verbs,
adjectives, and adverbs. Each of these components
is further divided into synsets, or sets of synonyms
that share the same meaning. For example, the
noun component includes synsets for "cat," "fe-
line," "kitten," and "tomcat," among others. Each
synset is given a unique identifier, called a synset
ID, and is associated with a short definition, re-
ferred to as gloss, that captures the core meaning
of the set. The database contains 155,327 words
organized in 175,979 synsets.

WordNet also includes a rich set of relation-
ships between synsets. These relationships, be-
ing paradigmatic in nature, can be used to make
inferences about the meanings of words and to
perform tasks such as word sense disambiguation,
which is the process of determining which mean-

ing of a word is intended in a particular context.
Some of the key relationships in WordNet include
hypernymy (the relationship between a more gen-
eral word and a more specific word, e.g., "cat"
is a hypernym of "siamese"), hyponymy (the in-
verse of hypernymy), meronymy (the relationship
between a whole and its parts, e.g., "car" is a
meronym of "wheel"), and holonymy (the inverse
of meronymy).

WordNet has been used in a wide range of ap-
plications, from information retrieval to machine
translation to sentiment analysis. It has also been
extended to other languages, with databases now
available for languages such as Spanish, German,
and Italian. While WordNet has its limitations, par-
ticularly in terms of its coverage and accuracy, it
remains a valuable resource for researchers and de-
velopers working in natural language processing
and related fields.

2.3 Wikidata
Wikidata (Vrandečić and Krötzsch, 2014) is a vast
and growing knowledge graph that contains struc-
tured data on a wide range of topics. It is an open,
collaborative, and multilingual database that can
be accessed and edited by anyone. With its rich
and diverse data, Wikidata is a valuable resource
for many natural language processing (NLP) tasks.

The utility of Wikidata for NLP tasks lies in its
ability to represent complex relationships between
entities. For example, an item can have multiple
types of relationships with other items, such as
"instance of", "subclass of", "part of", and "has
part". This flexibility allows for the creation of rich
and comprehensive knowledge graphs. Entities in
Wikidata are represented as items, and each item
can have a variety of properties that describe its
attributes and relationships with other items. This
structured data makes it easier for NLP systems to
extract and understand information from text.

2.4 FoodKG
FoodKG (Haussmann et al., 2019) is a knowl-
edge graph that aims to represent and link infor-
mation about food and nutrition. It is a compre-
hensive database that integrates data from various
sources, including scientific publications, nutri-
tional databases, food labels, and user-generated
content, to provide a more holistic understanding
of the food domain.

The FoodKG database is structured as a graph,
where nodes represent food items, nutrients, or

other relevant entities, and edges represent relation-
ships between them. This graph-based approach
allows for more flexible and efficient querying and
analysis of the data. By leveraging the rich infor-
mation in the graph, FoodKG can generate tailored
meal plans, suggest substitutions for allergens or
dietary restrictions, and provide nutritional infor-
mation for various food items.

Another important application of FoodKG is in
food safety and quality control. By linking informa-
tion about food items, production processes, and
supply chains, FoodKG can help identify poten-
tial sources of contamination or quality issues, and
track them to their origin.

3 Language Modeling

Language modeling is a fundamental task in NLP
that involves predicting the likelihood of a se-
quence of words in a given language. Models
that assign probabilities to sequences of words are
called Language Models(LMs). For example, there
are multiple possible continuations for the phrase I
cleaned the table ___ . Words like yesterday, twice,
today form a more probable continuation while
words like okay, table, your lead to less probable
continuations. Language modeling captures the
notion of varied probabilities for different words
i.e.

P (wn|wn−1...w1)

Given a sequence of words, language models pro-
vide a probability distribution for the next word.
LMs can also model sentence probabilities. Say we
have a sentence of the form w1w2...wn then

P (w1...wn) = P (wn|wn−1...w1).... ∗ P (w1)

3.1 N-gram Language Modeling
n-gram refers to a contiguous sequence of n words.
n-gram based LMs provide a probability distribu-
tion for the next word using previous n-1 words.
Given a sequence of k words w1....wk,

Pr(wk+1|wk...w1) ≈ Pr(wk+1|wk...wk−n−1)

If n=1 (Unigram language modeling), then the next
word depends only on the immediately preceding
word. This is also referred to as the Markov As-
sumption.

Pr(wk+1|wk...w1) ≈ Pr(wk+1|wk)

If n=k, then the next word depends on all the previ-
ous words. This is often referred to as an Autore-
gressive Model.

3.2 RNN/LSTMs

As the length of the input grows, the performance
of N-gram model decreases. We need a model that
can deal with any length input. RNNs have the abil-
ity to handle varying length input. Also, RNNs are
suitable for sequential data. Hence, RNNs became
an obvious choice for language modeling. Like
any other neural model, RNNs are trained on large
corpus by optimizing cross-entropy loss. Figure 1
shows different types of RNNS. LSTMs are special
type of RNNs that are enable learning long-term
dependencies.

Figure 1: Types of RNNs

3.3 Transformer

(Vaswani et al., 2017) proposed transformer archi-
tecture, which is based solely on attention mech-
anism. Transformers eliminated the need for re-
currences for creating powerful language models.
Figure 2 shows the transformer architecture. It is an
encoder-decoder architecture, where the decoder is
autoregressive. This was based on a novel concepts
of multi head attention, whereby model can jointly
attend to information from different representations
at different positions (using positional encodings).

Transformers offer multiple advantages over the
existing attention based architectures. It makes
input encoding parallelizable, thus reducing the
training time significantly. Furthermore, the num-
ber of operations required to connect an input to
any output is constant – unlike RNN/LSTMs where
it grows linearly with the distance between input
and output.

4 Large Language Models

Large Language Models(LLMs) are language mod-
els that are trained on enormous amount of data by
using humongous amount of computation power.
By virtue of the large amount of data spread across
various domains and billions of parameters, LLMs
capture syntactic structure and are able to learn
some factual knowledge too. This enables LLMs
to perform a variety of tasks without separately fine

Figure 2: Transformer - model architecture (Vaswani
et al., 2017)

tuning for each task, or zero-shot learning as it is
commonly referred to as. Large Language Mod-
els (LLMs) are language models that have seen
huge amount of data while pre-training. LLMs are,
in general, pre-trained in a self-supervised manner,
whereby the target value can be computed given the
input and the objective function, thus dispensing
the need for labeling the humongous pre-training
data. Based on the underlying model architec-
ture, LLMs can be categorized into three classes
- auto-encoding, auto regressive and sequence-to-
sequence. In this chapter, we discuss the three
classes of LLMs and the leading LLMs in each
class.

4.1 Encoder-only models

Encoder-only models are the language models that
consist of only the encoder component of trans-
former architecture, discarding the decoder compo-
nent. In order to pre-train encoder-only models, the
input sentence is corrupted by adding noise to it,
and the model’s goal is to reconstruct the original
(uncorrupted) sentence. While reconstructing any
word, the model has access to the context words
in both the directions. The most common ways of
corrupting input text are masking words or phrases,

or re-ordering parts of sentences. By virtue of the
pre-training process, these models learn language
properties. As the network is trained to ignore sig-
nal noise, these models also learn efficient data
representations of sentences (while retaining its
original sense) and are therefore often referred to
as auto-encoding models. Encoder-only models are
best suited for tasks that require a grasp of the en-
tire sentence, like sentence classification, extractive
question answering and named entity recognition.
Some representatives of this family of models are:

• BERT: Bidirectional Encoder Representations
from Transformers

• ALBERT : A Lite BERT

• DistilBERT: Distilled version of BERT

• ELECTRA: Efficiently Learning an Encoder
that Classifies Token Replacements Accu-
rately

• RoBERTa : Robustly Optimized BERT Pre-
training Approach

BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018)is one of
the earliest LLMs. BERT is first pre-trained us-
ing two objectives and then fine-tuned for a spe-
cific task. Figure 3 shows the pre-training and
fine-tuning procedures for BERT.
BERT uses two strategies for training:

Figure 3: BERT pre-training and fine-tuning (Devlin
et al., 2018)

• Masked LM (MLM): Word sequences are
changed with a [MASK] token for 15% of
the words in each sequence before being fed
into the BERT. Based on the context given by
the other, non-masked, words in the sequence,
the model then makes an attempt to predict
the original value of the masked words. The
prediction of the non-masked words is disre-
garded by the BERT loss function, which only
considers the prediction of the masked values.

• Next Sentence Prediction (NSP): In the
BERT training phase, the model learns to pre-
dict whether the second sentence in a pair will
come after another in the original document
by receiving pairs of sentences as input. Dur-
ing training, 50% of the inputs are pairs in
which the second sentence is the next one in
the original text, and in the remaining 50%,
the second sentence is a randomly selected
sentence from the corpus. The underlying pre-
sumption is that the second phrase will not be
connected to the first.

BERT can be fine-tuned for the downstream task
by simply adding a single layer on top of the core
model, we may adjust the original model depending
on our own dataset. Figure 4 shows fine tuning
BERT on various downstream tasks.

Figure 4: Fine tuning BERT on various downstream
tasks (Devlin et al., 2018)

4.2 Decoder-only models
Decoder-only models are the language models that
consist of only the decoder component of trans-
former architecture, discarding the encoder com-
ponent. Only the words that come before a certain
word in the sentence can be accessed by the at-
tention layers at each step. These are frequently
referred to as auto-regressive models. The typi-
cal focus of pretraining for decoder models is on
predicting the next word that will be used. These
models work best for text generation tasks. GPT-
2 (Radford et al., 2019), GPT-3 and BLOOM are
some of the most successful auto regressive mod-
els.
GPT-2 is a decoder only model that at the time of
its release stood out for having 1.5 billion train-
able parameters. The model is pretrained using

text from 45 million webpage links in the WebText
dataset. With certain changes, it essentially adheres
to the prior GPT architecture. The following are
the two crucial ideas that it alluded to:

• Task Conditioning: As we previously ob-
served, the language model’s training objec-
tive is written as P (output|input). GPT-
2, on the other hand, sought to learn many
tasks using the same unsupervised model.
The learning objective should be changed
to P (output|input, task) to accomplish that.
The model is expected to give different output
for the same input for different tasks, and this
adjustment is referred to as task conditioning.
Some models incorporate task conditioning at
the architectural level, feeding the model the
task as well as the input. For language mod-
els, the job, input, and output are all in natural
language. As a result, task conditioning for
language models is carried out by giving the
model examples or instructions in natural lan-
guage.

• Zero Shot Learning and Zero Short Task
Transfer: GPT 2’s capacity to transfer zero
shot tasks is intriguing. As a special case
of zero shot task transfer, zero shot learning
occurs when no examples are given at all and
the model is instructed to perform the task.
The format of the input to GPT-2 assumed
that the model would comprehend the nature
of the assignment and suggest solutions. To
mimic zero-shot task transfer behaviour, this
was done. For instance, the model was given
an English sentence, followed by the word
French, and a prompt for the English to French
translation assignment (:). The model was
expected to comprehend that the task involved
translation and provide the French equivalent
of the English statement.

GPT-2 has 1.5 billion parameters, 48 layers and
used 1600 dimensional vectors for word embed-
ding. Layer normalisation is done to input of each
sub-block and an additional layer normalisation is
added after final self-attention block.

5 Encoder-decoder models

The Transformer architecture is used by encoder-
decoder models, often known as sequence-to-
sequence models. The attention layers of the en-
coder can access every word in the first sentence

at every step, whereas the attention layers of the
decoder can only access the input words that come
before a certain word.
It is possible to pretrain these models using the
goals of encoder or decoder models, although this
typically entails something more complicated. For
instance, T5 is pre-trained by substituting a sin-
gle mask special word for random text segments
(which may contain numerous words), with the
goal being to anticipate the text that this mask word
substitutes. The tasks that revolve around creating
new sentences from an input, such summarization,
translation, or generative question answering, are
best suited for sequence-to-sequence models.
Some of the LLMs that follow encoder-decoder
architecture are BART, mBART, T5, to name a few.
The T5 model was presented in the paper (Raffel
et al., 2020) . Figure 5 depicts the T5 framework.

Every task taken into consideration—including

Figure 5: T5 framework(Raffel et al., 2020)

translation, question-answering, and classifica-
tion—is framed as feeding the T5 model text as
input and training it to output some destination text.
T5 stands for "Text-to-Text Transfer Transformer."
Figure 6 illustrates the architecture of T5.
With the exception of the following modifications,

Figure 6: Illustration of T5 architecture(Raffel et al.,
2020)

T5 uses an encoder-decoder Transformer imple-
mentation that substantially resembles the original

Transformer:

• A residual skip connection, originating from
ResNet, adds each subcomponent’s input to
its output after layer normalisation. With only
a rescaling of the activations and no addi-
tive bias, a streamlined layer normalisation
is used.

• Additionally, relative position embeddings
provide a distinct learned embedding de-
pending on the offset (distance) between the
"key" and "query" being compared in the self-
attention process, as opposed to utilising a
fixed embedding for each position.

On numerous benchmarks encompassing summa-
rization, question-answering, text classification,
and more, T5 achieves state-of-the-art results.

6 Knowledege Infusion into Language
Models

LLMs and Knowledge Graphs can be used together
to improve various NLP tasks such as question an-
swering, information retrieval, and text generation.
A Knowledge Graph captures the relationships be-
tween entities and concepts in a domain. On the
other hand, LLMs can generate language by pre-
dicting the next word in a sequence of text, and
they are trained on large datasets of text to learn
patterns and structures of language.

The fusion of LLMs and KGs can improve the
performance of NLP systems. For example, by in-
tegrating KGs into LLMs, it is possible to improve
their ability to answer complex questions that re-
quire background knowledge. The LLMs can use
the KGs to identify relevant entities and relation-
ships between them to generate more accurate and
relevant responses.

Similarly, KGs can be used to augment LLMs’
training data, leading to better language models.
The KGs provide a structured representation of
domain-specific knowledge, which can be used to
generate more coherent and consistent text. More-
over, LLMs can also be used to enrich KGs by ex-
tracting and linking entities from unstructured text.
This process can help in populating the KGs with
additional information, improving their complete-
ness and accuracy. In the following sub-sections
we review some of the recent works focused on
augmenting LLMs with KGs.

6.1 QA-GNN: Reasoning with Language
Models and Knowledge Graphs for
Question Answering

(Yasunaga et al., 2021) proposed a novel end-to-end
question answering model called QA-GNN that uti-
lizes both language models (LM) and knowledge
graphs (KG). Their model includes two key inno-
vations. Firstly,an LM is used to encode the QA
context and retrieve a KG subgraph following pre-
vious research. A relevance scoring mechanism is
employed to compute the relevance of KG nodes
based on the given context of the question answer-
ing (QA) task. Relevance scoring scores each entity
on the KG subgraph by concatenating it with the
QA context and using a pre-trained LM to calcu-
late the likelihood. This allows us to weight the
information on the KG based on its relevance to the
given context; and Joint reasoning, where a joint
graph representation of the QA context and KG is
created by treating the QA context as an additional
node and connecting it to the topic entities in the
KG subgraph. This unified graph, referred to as the
working graph, enables us to update the represen-
tation of both the KG entities and the QA context
node simultaneously using a new attention-based
GNN module, bridging the gap between the two
sources of information. (Yasunaga et al., 2021)
have shown through both quantitative and qualita-
tive analyses that QA-GNN outperforms existing
LM and LM+KG models on question answering
tasks, and that it is capable of performing inter-
pretable and structured reasoning, such as correctly
handling negation in questions.

6.2 GreaseLM: Graph Reasoning Enhanced
Language Models for Question Answering

In order to answer complex questions about tex-
tual narratives, it is necessary to reason over both
the contextual information presented in the text
and the underlying world knowledge. However,
current pre-trained language models (LM) used in
most modern question answering (QA) systems do
not adequately represent the latent relationships
between concepts required for effective reason-
ing. While knowledge graphs (KG) can be used to
supplement LM with structured representations of
world knowledge, the challenge lies in effectively
combining and reasoning over both the KG repre-
sentations and language context. (Zhang et al.,
2022) purposed a new model called GreaseLM
that utilizes multiple layers of modality interaction

Figure 7: Nodes corresponding to question and answer
concepts are connected to a qa-context node which con-
tains the information from the LM encoder(Yasunaga
et al., 2021)

Figure 8: QAGNN architecture: Retrieved KG is con-
nected to the QA context and relevance of KG nodes
is computed conditioned on the QA context. Post per-
node relevance scoring, reasoning is done over the entire
graph. (Yasunaga et al., 2021)

operations to fuse encoded representations from
pretrained LMs and graph neural networks. This
allows information to flow between the modali-
ties, enabling the grounding of language context
representations with structured world knowledge
and allowing linguistic nuances in the context to in-
form the graph representations of knowledge. Their
results on benchmark datasets in the domains of
commonsense reasoning and medical question an-
swering demonstrate that GreaseLM can answer
questions that require reasoning over both situa-
tional constraints and structured knowledge with
greater reliability, even outperforming models that
are 8 times larger.

6.2.1 Architecture

The GreaseLM model is composed of both a lan-
guage model (LM) that processes the natural lan-
guage context and a graph neural network (GNN)
that aids in performing reasoning over the knowl-
edge graph (KG). At each layer of the LM and

Figure 9: GreaseLM architecture (Zhang et al., 2022)

GNN, there is a bi-directional transfer of informa-
tion between the two modalities facilitated by spe-
cially initialized interaction representations. This
transfer of information occurs through the interac-
tion token, which allows all tokens in the language
context to receive information from the KG enti-
ties, and the interaction node, which enables the
KG entities to indirectly interact with the tokens.

Performance improvements have been reported
(Zhang et al., 2022) using the GreaseLM archi-
tecture on various MCQA benchmarks. Given an
instance of the form (question, list of candidate an-
swers, ground truth answer)from a MCQA bench-
mark, a confidence score for each of the candidate
answers is calculated separately and the answer
with the highest confidence score is output as the
prediction.

The question and the candidate answer are
concatenated together and fed as input to the
GreaseLM architecture. In case question context
is available, it is appended to the input as well.
The key concepts are first extracted from the input
and these are further used to extract a very small
subgraph from a large knowledge graph like Con-
ceptNet. The intuition here is to extract and process
only part of the KG which is relevant to the query
or the candidate answers. Once we have the in-
put text and the corresponding KG subgraph, we
obtain the initial embeddings for the two modal-
ities namely text and the KG are obtained using
a transformer based LM and a GNN respectively.
These embeddings are then fed to the cross-modal
GreaseLM layers where special token and nodes
are used to ensure information fusion between the
two modalities. The fused representations of text
and KG are then used to assign a score to the input
candidate answer.

The paper proposed a novel model called
GreaseLM that facilitates interactive fusion by en-
abling joint information exchange between lan-

Figure 10: Qualitative analysis of GreaseLM (Zhang
et al., 2022)

guage models and knowledge graphs. The model
outperforms existing architectures on multiple
benchmarks and also performs better in modeling
questions that exhibit textual nuances, such as nega-
tion and hedging.

6.3 SKILL: Structured Knowledge Infusion
for Large Language Models

SKILL (Moiseev et al., 2022) explores knowledge-
augmented LM pre-training. Instead of providing
access to an external KG, SKILL infuses the knowl-
edge from these KGs into the LM itself. SKILL
pre-trains language models using masked (subject,
relation, object) triples of the KG of interest. In the
following subsections, we discuss the techniques
and experiments presented in the SKILL paper.

6.3.1 Method
The triples of a knowledge graph of the form (sub-
ject, relation, object) are converted into a sentence
by concatenating the subject, relation, object to-
gether with space as delimiter. For each generated
sentence either the subject or the object is masked,
with an equal probability of 0.5 each. Next, sen-
tences are taken from a natural language corpora
like C4 and salient making is applied to sentences
from these corpora. The masked sentences from
both C4 and knowledge triples are mixed in a 50:50
ratio and used for training a pre-trained language
model like T5-large. The so-trained model can
be fine-tuned for specific downstream tasks. The
technique suggested by (Moiseev et al., 2022) in-
corporates knowledge from knowledge graphs into
language models by training the pre-trained lan-
guage models on knowledge graph triples and also

empirically establishes that models that have been
pre-trained on factual triples perform on par with
models that have been trained on phrases in natural
language that contain the same information. Since
KG triples needn’t be verbalised and can be used
directly by concatenating the subject, relation and
the object, this technique is easily applicable to
industry-scale KGs.

6.3.2 Limitations
Some of the limitations of this work include: This
technique of infusing knowledge into LMs only
adds the capability to answer factoid questions i.e.
the questions for which the answer forms part of the
KG triple. Further, the performance improvements
for multi-hop questions is not so significant, since
the knowledge infusion step involves training using
single triples, and the model may fail to reason and
capture multi-hop relation among triples.

6.4 Knowledge Infused Decoding

The existing pre-trained language models (LMs)
can memorize a significant amount of knowledge
from their training data, but they are still lim-
ited in recalling factually correct information in
a given context. This limitation causes them to
produce counterfactual or hallucinatory output for
knowledge-intensive natural language generation
(NLG) tasks. Current solutions to this problem in-
clude additional pre-training, fine-tuning, or archi-
tecture modification of LMs to incorporate external
knowledge.
To address this problem, (Liu et al., 2022) propose
a new decoding algorithm called Knowledge In-
fused Decoding (KID) for generative LMs. KID
dynamically incorporates external knowledge into
each step of the LM decoding process by main-
taining a local knowledge memory based on the
current context, which dynamically interacts with
a created external knowledge trie, continuously up-
dating the local memory. The local memory poses
knowledge-aware constraints to guide decoding in
a reinforcement learning environment.
(Liu et al., 2022) demonstrate KID’s effective-
ness on six diverse knowledge-intensive NLG
tasks, where task-agnostic LMs equipped with KID
(such as GPT-2 and BART) outperform many task-
specific state-of-the-art models. KID also shows
particularly strong performance in few-shot scenar-
ios over seven related knowledge-infusion tech-
niques. Human evaluations confirm KID’s im-
proved capability for eliminating hallucinations

compared to multiple baselines. Finally, KID ad-
dresses exposure bias and generates stable output
quality when producing longer sequences.

6.4.1 Architecture
KID’s architecture consists of three modules, as
shown in Figure 11:

• Knowledge Retrieval: This module retrieves
top-k relevant documents for a given context
query; which are subsequently used to ground
the text generation. Dense passage based Re-
triever, a BERT based bi-encoder, is used for
document retrieval. Maximum inner-product
search is used in the retrieval process.

• Memory Construction: The retrieval step re-
trieves multiple documents for a given context
vector. Memory Construction module pro-
cesses the retrieved documents to ease iden-
tification of relevant knowledge and reduces
the memory foot print by compressing the
knowledge using specialized data structures.
The documents are converted into knowledge
triples and construct a trie on top of the ex-
tracted knowledge triples, to ease knowledge
search.

• Interaction Guided Decoding: Existing LMs
are trained to maximize the probability of cur-
rent token at each decoding step, but the train-
ing objectives don’t constrain the output to be
factually grounded. Thus the generated text
is prone to hallucinations. To address this the
decoding step is formulated as an Reinforce-
ment Learning problem, where higher rewards
are incurred on factually correct generations.
The knowledge trie is queried using the local
memory, and the rewards are assigned based
on the retrieved results.

Figure 11: Overview of KID decoding algorithm (Liu
et al., 2022)

The KID technique a knowledge guided decod-
ing step with zero architectural changes to existing

models. The memory construction step may be
made more efficient using other data structures,
and different reward types for the decoding step
may be explored.

7 Summary

This paper reviews recent research on knowledge
graph integration in LMs, covering a range of ap-
proaches, from simple pre-training on knowledge
graphs to more complex methods that incorporate
knowledge graph embeddings directly into the LM.
The paper discusses the benefits and challenges
of the current apporaches and highlights potential
avenues for future research.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Steven Haussmann, Oshani Seneviratne, Yu Chen,
Yarden Ne’eman, James Codella, Ching-Hua Chen,
Deborah L McGuinness, and Mohammed J Zaki.
2019. Foodkg: a semantics-driven knowledge graph
for food recommendation. In The Semantic Web–
ISWC 2019: 18th International Semantic Web Confer-
ence, Auckland, New Zealand, October 26–30, 2019,
Proceedings, Part II 18, pages 146–162. Springer.

Ruibo Liu, Guoqing Zheng, Shashank Gupta, Rad-
hika Gaonkar, Chongyang Gao, Soroush Vosoughi,
Milad Shokouhi, and Ahmed Hassan Awadallah.
2022. Knowledge infused decoding. arXiv preprint
arXiv:2204.03084.

George A. Miller. 1994. WordNet: A lexical database
for English. In Human Language Technology: Pro-
ceedings of a Workshop held at Plainsboro, New
Jersey, March 8-11, 1994.

Fedor Moiseev, Zhe Dong, Enrique Alfonseca, and
Martin Jaggi. 2022. Skill: Structured knowledge
infusion for large language models. arXiv preprint
arXiv:2205.08184.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

https://aclanthology.org/H94-1111
https://aclanthology.org/H94-1111

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 31.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosse-
lut, Percy Liang, and Jure Leskovec. 2021. Qa-
gnn: Reasoning with language models and knowl-
edge graphs for question answering. arXiv preprint
arXiv:2104.06378.

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,
Hongyu Ren, Percy Liang, Christopher D Manning,
and Jure Leskovec. 2022. Greaselm: Graph reason-
ing enhanced language models for question answer-
ing. arXiv preprint arXiv:2201.08860.

