Survey: Bias and Explainability

Hiren Bavaskar
IIT Bombay
hiren@cse.iitb.ac.in

Abstract

The field of Machine Learning is evolving
quickly, and increasingly accurate models are
being adopted to tackle more challenging prob-
lems. These highly accurate models offer
us exceptional predictive abilities. However,
these models often come with greater com-
plexity. The use of black-box models results
in reduced transparency to model stakehold-
ers, which makes it difficult to deduce how
the model produced a prediction. This erodes
the trust of users and researchers, which de-
mands explainability for Al (XAI) to make
the decision-making process more transparent.
With Al systems being continually used to
make important decisions in sensitive domains
such as hiring, lending, and autonomous driv-
ing, it is crucial to ensure that these decisions
do not reflect discriminatory or biased behav-
ior toward certain groups or populations. In
this survey, we analyze the different types of
bias which can penetrate Al systems and illus-
trate how explainable Al can help identify and
mitigate biases to ensure fairness in learning
algorithms.

1 Introduction

Machine learning models have become ubiquitous
in modern society. One can observe their indis-
pensable use in daily tasks like providing person-
alized recommendations for users while browsing
shopping websites to making essential decisions
in sensitive jobs like banking and healthcare. As
these models continue to make more choices that
affect people’s lives, it is vital to ensure that the
choices are fair and just to all communities of so-
ciety. However, in cases where bias perpetuates in
machine learning models, it may produce unfair
results and raise serious ethical and legal concerns
about their application for human tasks. Despite
the growing awareness of bias in machine learn-
ing, addressing the problem of bias detection and
mitigation still remains a partially solved challenge
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in the fairness domain. One major obstacle that
restricts the uptake of these models is their lack
of transparency and interpretability. These mod-
els frequently operate as black boxes, making it
impossible to comprehend how they make their
decisions. This makes it challenging to identify
biases and understand how they impact the model’s
predictions.

In this survey paper, we will explore the relation-
ship between bias and explainability in machine
learning models. We will begin by defining what
we mean by bias and explainability and discuss why
they are important. We will then review the exist-
ing literature on bias and explainability in machine
learning, including the different techniques for in-
terpreting models and their respective strengths and
weaknesses. We will then look at the combination
of using explainability for bias detection and look
at some recent work in this area of research. Finally,
we elucidate the challenges in applying explainabil-
ity for bias and provide directions to identify and
mitigate bias better in the future.

1.1 Motivation

There goes a famous quote by Joanne Chen: “Al
is good at describing the world as it is today
with all of its biases, but it does not know how
the world should be.” 1t is indeed true that Ar-
tificial Intelligence (AI) and Machine Learning
(ML) are prevalent almost everywhere in this era.
There is a continuously increasing need for high-
performance models. With the advancement of re-
search in Al, humanity has been able to achieve stel-
lar performance in demanding areas like medicine
and autonomous driving. However, these high-
performance models come at a certain cost. These
models are particularly very complex and offer less
insight into their actual working. This has led to a
lack of trust in these models. Even a single mistake
by the decision of Al can cause loss of human life



in medicine, autonomous driving, and high stake
scenarios if we trust the model blindly. Thus, it
is critical to identify, comprehend, and reduce un-
fairness as machine learning models’ decisions and
influences have a significant impact on human lives.
We are therefore driven towards understanding and
explaining the prediction of models to gain better
accountability and trust.

2 Bias

Bias refers to the presence of any prejudice or favor-
ing toward a person or a group based on their innate
or acquired features when it comes to decision-
making (Mallela and Bhattacharyya, 2022). In
today’s era, a majority of Al systems and algo-
rithms are primarily data-driven. As a result, data
is inextricably linked to the functionality of these
algorithms and systems. If the underlying training
data has biases, the algorithms trained on it will
learn these biases. The presence of such biases can
make the model predict inaccurate or unfair out-
comes. With Al and ML continuously being used
in areas of high stakes like medicine, judicial deci-
sions, and finance, one cannot afford to perpetuate
biases in such applications. For example, Parikh
et al. (2019) remarked that among women with
breast cancer, black women had a lower likelihood
of being tested for high-risk germline mutations
compared with white women, despite carrying a
similar risk of such mutations. Thus, an Al algo-
rithm that depends on genetic test results is more
likely to mischaracterize the risk of breast cancer
for black patients than white patients. As a result,
Al might be prejudiced against some minorities and
worsen their access to healthcare, especially those
who are already marginalized in society. Therefore,
it is important to identify and mitigate bias from the
data and learning algorithms to ensure equitable
and fair outcomes for all systems.

2.1 Types of Bias

Contrary to what is typically believed in research,
data gathered from people in the real world is not
homogeneous. The model could be biased by the
demographics of the people who labeled the data.
Real-world data is diverse because it originates
from social subgroups with unique traits and be-
haviors. Therefore, it is essential to identify what
kind of biases exist in the data in order to mitigate
them. These biases can be grouped into four major
categories (Shah et al., 2019):

1. Label Bias: It occurs due to erroneous la-
beling of the data by the annotators. This can
happen if the annotators hold preconceived
notions or stereotypes about the domain of the
data.

2. Selection bias: It emerges due to non-
representative observations — when the annota-
tors generating the training data have a differ-
ent distribution than where the model is to be
applied. A famous example is the “Wall Street
Journal effect,” where syntactic parsers and
part-of-speech taggers perform most accu-
rately over language written by middle-aged
white men. (Garimella et al., 2019)

3. Semantic Bias: Embeddings have become
an essential component of modern NLP, with
their ubiquitous applications in both classi-
cal and deep learning models. These repre-
sentations, however, frequently incorporate
unintentional or negative connotations and
stereotypes. For example, certain words or
phrases may be associated with one group
more than another, leading to biased results.
For instance, the word “boss” has closer rep-
resentation compared to men than women.

4. Overamplification: In overamplification,
the model picks up small differences between
human attributes with respect to the target, and
amplifies this difference to be more significant
in the predicted outcomes. This usually hap-
pens in the model learning phase itself. For
example, Zhao et al. (2017) found that in the
imSitu image captioning data set, the activity
cooking is over 33% more likely to involve
females than males in a training set, and a
trained model further amplifies the disparity
to 68% at test time.

3 Black Box Models and Explainability

In science, computing, and engineering, a black
box is a system that can be viewed in terms of its
inputs and outputs without any knowledge of its
internal workings. Its implementation is “opaque’
(black).! Some examples of black-box models are
Random Forests and Deep Neural Networks since
they have complex internal structures.

>

Explainability in ML attempts to make users
understand how the model predicts an output. It

1https: //en.wikipedia.org/wiki/Black_box


https://en.wikipedia.org/wiki/Black_box

helps provide information about how and why a
model made a specific prediction. By understand-
ing the inner workings of the model, explainability
helps build trust and facilitates the adoption of ML
systems in various domains. It may be trivial to
understand the mechanism of white-box (transpar-
ent) models like Linear Regression and Decision
Trees due to their simple structure. However, when
it comes to black-box models like Random Forests
and Deep Neural Networks, explainability is a diffi-
cult task, even for experts in this domain, due to its
complex internal structure. To achieve explainabil-
ity, two primary approaches are commonly used:

* Local Explainability: This tells us about
the model’s behavior at a particular instance
and how each individual feature affects the
model’s prediction.

* Global Explainability: This tells us about
the overall behavior of the model and how
all the features combined affect the model’s
prediction.

Lipton (2018) remarked upon the following points
to understand explainability better.

3.1 Transparency

Informally, transparency is the opposite of opacity
or black box-ness. It connotes some sense of under-
standing the mechanism by which the model works.
We consider transparency at the level of the entire
model (simulatability), at the level of individual
components, e.g., parameters (decomposability),
and at the level of the training algorithm (algorith-
mic transparency).

3.1.1 SIMULATABILITY

One can call a model transparent if a human can
contemplate the entire model at once. However, to
fully understand the model, a human should be able
to take the input data together with the parameters
of the model and, in a reasonable time, through
every calculation required to produce a prediction.
Ribeiro et al. (2016) also takes on this idea of inter-
pretability, suggesting that an interpretable model
is one that “can be readily presented to the user
with visual or textual artifacts.” For some models,
such as decision trees, the size of the model (to-
tal number of nodes) may grow much faster than
the time to perform inference (length of pass from
root to leaf). This suggests that simulatability may
admit two subtypes, one based on the total size of

the model and another based on the computation
required to perform inference.

3.1.2 DECOMPOSABILITY

A second notion of transparency might be that each
part of the model - input, parameter, and calcula-
tion, provides an intuitive explanation. For exam-
ple, the coefficients of a linear model can describe
the strengths of association between each feature
and the label. However, one cannot blindly trust
this notion of transparency.

3.1.3 ALGORITHMIC TRANSPARENCY

The third notion of transparency applies at the level
of the learning algorithm itself. For example, in the
case of linear models, we understand the shape of
the error surface, which can help us prove that
the training will converge to a unique solution.
However, in contrast, deep learning methods lack
this sort of algorithmic transparency. While neu-
ral networks and deep learning systems provide
remarkable performance, we cannot comprehend
the decision-making process of complex black-box
models.

3.2 Post-hoc interpretability

Post hoc interpretability refers to the process of ex-
plaining the behavior and decisions of a black-box
machine learning model after it has been trained.
It involves using various techniques and tools to
analyze the model’s internal workings and generate
human-understandable explanations for its predic-
tions. Some common approaches to post-hoc inter-
pretations include natural language explanations,
visualizations of learned models and explanations
by example. We also show an overview of post-hoc
techniques with their types in Figure 1. 2

3.3 Model Agnostic Explanaibility

When we talk about black-box models, we include
all possible kinds of models which take input and
return an output with complex internal mechanisms.
However, there are some explainability techniques
that work on all kinds of models, known as model-
agnostic explainability. These techniques provide
insight into how machine learning models make
decisions without requiring access to the model’s
internal structure and are independent of the model
used, which is why they are referred to as “model-
agnostic”. The advantage of the universal applica-

Zhttps://www.ambiata.com/blog/
2021-04-12-xai-part-1/
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Figure 1: Some of the popular techniques for explaining ML models, varying in complexity, applicability, and the

type of information they provide.

tion of these techniques to all kinds of models has
piqued the interest of researchers.

We will now discuss the model-agnostic tech-
niques which are presently used for feature anal-
ysis for models. The Permutation Feature Impor-
tance is a technique that involves randomly per-
muting the values of individual input features and
measuring the resulting decrease in the model’s
accuracy. By comparing the feature importance
scores across multiple permutations, it is possible
to identify which features are most important for
the model’s predictions. Partial Dependence Plot
(PDP) is another model-agnostic technique that can
help visualize how the predicted outcome changes
as a function of one or more input features while
holding all other features constant. We will fur-
ther look at explainability techniques described in
the literature for feature attribution. LIME (Lin-
ear Interpretable Model Explanations) by Ribeiro
et al. (2016) is a novel explanation technique that
explains the predictions of any classifier in an inter-
pretable and faithful manner by learning a surrogate
interpretable model locally around the prediction.
SHAP (SHapley Additive exPlanations) (Lundberg
and Lee, 2017) is an approach inspired by game
theory to explain the output of any black-box func-

tion by assigning each feature an importance value
for a particular prediction. Ancheors (Ribeiro et al.,
2018) is a model-agnostic system that explains the
behavior of complex models with high-precision
rules called anchors, representing local, sufficient
conditions for predictions.

3.4 Model Specific Explainability

In contrast to model-agnostic techniques described
in the previous section, there also are some ex-
plainability techniques specific to certain kinds of
models. These are Model-specific explainability
techniques that work based on the details of the
specific structures of the machine learning or deep
learning model which is applied. These strategies
are explicitly employed for a certain model design,
such as the neural network, and employ a reverse
engineering approach to explain how the specific
Deep Learning (DL) algorithm is making the rele-
vant decision.

We will now discuss some of the popular model-
specific techniques used in literature, with more
emphasis on explainability for deep learning mod-
els. Integrated Gradients by (Sundararajan et al.,
2017) is a method for attributing the contribution
of each input feature to a model’s output by in-



tegrating the gradients of the output with respect
to the input features. The advantage of Integrated
Gradients is that it is based on an axiomatic ap-
proach for explaining the prediction of deep neural
networks without any modification to the original
network. DeepLIFT (Deep Learning Important
FeaTures) by (Shrikumar et al., 2017) is a method
for decomposing the output prediction of a neural
network on a specific input by backpropagating the
contributions of all neurons in the network to ev-
ery feature of the input. DeepLIFT compares the
activation of each neuron to its reference activa-
tion and assigns contribution scores according to
the difference. Layer-wise Relevance Propaga-
tion (LRP) by (Montavon et al., 2019) is another
model-specific technique that highlights the input
features supporting the prediction by propagating
the prediction backward in deep neural networks.
LRP is able to provide a detailed and fine-grained
understanding of how each feature contributes to
the model’s output.

4 Explainability for Bias Detection

There are a number of papers that mention unin-
tended or societal biases as wider motivations to
contextualize the work for bias detection; however,
only a handful of them apply explainability tech-
niques to uncover or investigate biases. We men-
tion some of the recent works done in this area,
as referred from Balkir et al. (2022a). We focus
specifically on explainability methods using feature
attribution strategies.

(Balkir et al., 2022b) used a feature attribution
method for explaining text classifiers and analyzed
them in the context of hate speech detection. They
showed that sufficiency and necessity could be
used to explain the expected differences between a
classifier that is intended to detect identity-based
hate speech and those trained for detecting gen-
eral abuse. (Mathew et al., 2021) introduced a
new benchmark dataset for hate speech detection
called HateXplain. Their work aims to improve
the explainability of hate speech detection mod-
els by providing a dataset that includes not only
hate speech texts but also explanations of why each
text is considered hateful using LIME and Atten-
tion. (Aksenov et al., 2021) presents a new dataset
for fine-grained classification of political bias in
German news articles. The authors also analyzed
the contribution of different linguistic features to

the prediction of political bias using aggregated
attention scores. (Mosca et al., 2021) explores the
impact of user context on hate speech detection
models. The paper argues that user contexts, such
as the demographic information and previous be-
havior of users, can affect the interpretation and
classification of hate speech. They use SHAP and
feature space exploration to explain their model
behavior. (Wich et al., 2020) examines how polit-
ically biased data affects the performance of hate
speech detection models. The authors show that
models trained on politically biased data can lead
to biased models that perform poorly in detecting
hate speech against certain political groups using
SHAP to explain the models. (Prabhakaran et al.,
2019) introduced Perturbation Sensitivity Analysis
to test for unwanted biases in an NLP model. They
demonstrate the utility of their framework on on-
line comments in the English language from four
different genres for sentiment and toxicity models.

4.1 Current practices

In this section, we mention a few of the current
practices and research work going on in the domain
of explainability for bias detection.

(a) Counterfactual explanations: These meth-
ods generate alternative inputs to a model that
would result in different outputs, allowing
users to understand how changes in input fea-
tures affect model predictions. Counterfactual
explanations (Sokol and Flach, 2019) can be
used to detect and mitigate biases by identi-
fying which features are most influential in
driving model predictions and how changing
those features can lead to fairer outcomes.

(b) Extractive Rationales (DeYoung et al., 2019)
are snippets of the input text that trigger the
original prediction. They are similar in spirit
to feature attribution methods, however, in ra-
tionales, the attribution is usually binary rather
than a real-valued score, and continuous sub-
sets of the text are chosen rather than each
token being treated individually.

(c) Attention mechanisms (Choi et al., 2016)
allow users to visualize which parts of an input
are most important for a model’s prediction.
Attention mechanisms can be used to detect
biases by identifying which parts of the input
are being ignored or given less weight by the
model, potentially leading to unfair outcomes.



(d) Adversarial training: The Adversarial train-
ing technique (Zhang et al., 2018) involves
training models on adversarial examples that
are designed to expose and correct biases.
This method can be used to detect and mit-
igate biases by forcing models to learn more
robust decision boundaries that are less sus-
ceptible to adversarial attacks.

(e) Model interpretation techniques (e.g.,
LIME, SHAP): These methods provide local
or global explanations for model predictions,
allowing users to understand how individual
instances or groups of instances are being clas-
sified. Model interpretation techniques can be
used to detect biases by identifying which fea-
tures or groups of instances are being treated
unfairly by the model.

5 Datasets

In this section, we will specify a comprehensive
overview of datasets that can be used to study bias
in the area of machine learning.

1. Adult Dataset: > It is also known as the
Census Income dataset. This dataset comes
from the UCI repository of machine learning
databases. The task is to predict if an individ-
ual’s annual income exceeds $50,000 based on
census data. It contains a total of 45,225 cases
and 16 attributes. It can be used in studies
concerned with the fairness of gender-based
inequalities based on the yearly income of
people.

2. COMPAS Dataset: * The COMPAS dataset
is commonly used to predict a defendant’s
likelihood of reoffending within the next two
years. It comprises 6,172 instances, with 13
features including age, sex, race, and prior
convictions. The dataset is originally gathered
by ProPublica.

3. German Credit Dataset: > The German
Credit dataset is used for credit risk assess-
ment, where the goal is to predict whether an

3http://www.cs.toronto.edu/~de1ve/data/adult/
desc.html

*https://github.com/propublica/
compas-analysis

5https://archive.ics.uci.edu/ml/datasets/
statlog+(german+credit+data)

individual will default on a loan based on vari-
ous features such as credit history and employ-
ment status. The dataset comprises 1,000 in-
stances with 20 attributes. The German Credit
dataset can be applied to research gender dis-
parities in credit-related matters.

. WinoBias Dataset: The WinoBias dataset by

(Zhao et al., 2018) contains 3,160 sentences,
which follows the Winograd format and is
centered on people entities referred by their
occupations from a vocabulary of 40 occupa-
tions. There are mainly two types of sentences
in the dataset requiring linkage of gendered
pronouns to either male or female stereotypi-
cal occupations. It has been used in the study
of coreference resolution to certify if a system
has a gender bias.

. Recidivism in Juvenile Justice Dataset: The

Recidivism in Juvenile Justice dataset (Tolan
et al., 2019) contains all juvenile offenders
between ages 12-17 who committed a crime
between the years 2002 and 2010 and com-
pleted a prison sentence in 2010 in Catalonia’s
juvenile justice system.

. Communities and Crime Dataset: ¢ The

Communities and Crime dataset gathers in-
formation from different communities in the
United States related to several factors that
can highly influence some common crimes
such as robberies, murders, or rapes. The
data includes crime data obtained from the
1990 US LEMAS survey and the 1995 FBI
Unified Crime Report. It also contains socio-
economic data from the 1990 US Census.

. Pilot Parliaments Benchmark Dataset: The

Pilot Parliaments Benchmark dataset (Buo-
lamwini and Gebru, 2018), also known as
PPB, contains images of 1270 individuals in
the national parliaments of three European
(Iceland, Finland, Sweden) and three African
(Rwanda, Senegal, South Africa) countries.
This benchmark was released to have more
gender and race balance, diversity, and repre-
sentativeness.

8. Diversity in Faces Dataset: The Diversity in

Faces (DiF) (Merler et al., 2019) is an image

6https://archive.ics.uci.edu/ml/datasets/
communities+and+crime
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Dataset Name Size Area
UCI adult dataset 48,842 income records Social
German credit dataset 1,000 credit records Financial

Pilot parliaments benchmark dataset

1,270 images Facial images

‘WinoBias 3,160 sentences Coreference resolution
Communities and crime dataset 1,994 crime records Social
COMPAS Dataset 18,610 crime records Social
Recidivism in juvenile justice dataset | 4,753 crime records Social

Diversity in faces dataset

1 million images

Facial images

Table 1: Most widely used datasets in the fairness domain with additional information about each of the datasets,
including their size and area of focus (Mehrabi et al., 2021)

dataset collected for fairness research in face
recognition. DiF is a large dataset containing
one million annotations for face images. It is
also a diverse dataset with diverse facial fea-
tures, such as different craniofacial distances,
skin color, facial symmetry and contrast, age,
pose, gender, and resolution, along with di-
verse areas and ratios.

6 Challenges and Future Directions

In this section, we discuss some challenges and
limitations in the area of bias and explainability
and suggest promising directions for future work.

Having a common definition for fairness: The
literature in the fairness domain presents various
kinds of definitions of what fairness would mean
from a machine learning standpoint. Consequently,
it becomes nearly impossible to comprehend how
one fairness solution would fare under a different
definition of fairness. Therefore, having a common
definition of fairness remains an open question to
researchers since it can make the evaluation of sys-
tems more homogeneous and unified.

Local explainability methods rely on the user
to identify examples that might reveal bias: A
key step in discovering fairness issues in a machine-
learning model is to identify the set of possible data
instances where these issues may arise. Since local
explainability approaches provide explanations for
specific data instances, it is up to the user to choose
which instances need to be investigated. As a re-
sult, before using XAl methods, the user must first
decide what biases to search for, thereby limiting
its effectiveness for finding unknown biases.

Less generalizability of local explanations: With
the rise of complex problems in NLP, it is often

hard to explain models globally which are designed
for solving these problems. This has led to re-
searchers adopting methods of local explainability
to understand the working of the models. However,
one issue that is faced by using XAl methods for
fairness is that it is difficult to know to what extent
the local explanations can be generalized. As local
explanations provide reasoning for specific data
points, it becomes incoherent to identify how ex-
planations generalize the model globally. Although
there exist some methods like Anchors (Ribeiro
et al., 2018) which can tackle the aforementioned
problem and mitigate it by specifying the set of
examples to which the explanation applies. In ad-
dition, future NLP research could explore global
explainability methods that have been used to un-
cover unknown biases. (Tan et al., 2018)

Some biases can be difficult for humans to rec-
ognize: It can be seen that XAl methods rely on
humans to recognize what an undesirable correla-
tion is; however, biased models are often nuanced
in exhibiting bias. For example, if the dialect bias
in a hate speech detection system is mostly medi-
ated by false positives on the uses of reclaimed
slurs, this might seem like a good justification to a
user who is unfamiliar with this phenomenon (Sap
et al., 2019). Therefore, this encourages more in-
vestigation and research into whether humans can
recognize unintended biases that cause fairness is-
sues through explainability methods.

Explainability methods are susceptible to fair-
washing: The possibility of "fairwashing" biased
models has been repeatedly emphasized in relation
to XAl approaches. Fairwashing refers to strate-
gies that use adversarial manipulation of explana-
tions to disguise the model’s reliance on protected



attributes. Fairwashing has been shown to be pos-
sible in rule lists (Aivodji et al., 2019) and both
gradient-based and perturbation-based feature at-
tribution methods (Dimanov et al. (2020); Anders
et al. (2020)). This has raised some concerns about
the faithfulness of explainability methods. In re-
gards to this, there have been a few solutions pro-
posed, like developing certifiably faithful explain-
ability methods with proofs that a particular way of
testing for bias cannot be adversarially manipulated
(Cohen et al. (2019); (Ma et al., 2020)), providing
more information on whether the user can trust the
generated explanation (Zhang et al., 2019) or other
ways to calibrate user trust to the quality of the
provided explanations (Zhang et al., 2020). Over-
all, this challenge suggests that additional steps
need to be taken to ensure the robustness of the
explanations.

7 Summary

In this paper, we discussed the idea of bias in data
and its types. Further, we elucidated the topic of
explainability and mentioned different ways of in-
terpreting a black-box model. We found that the
combination of explainability for bias detection has
been used mostly in the hate-speech tasks, whereas
its use in other areas has been less explored. We
also summarize the list of popular datasets which
can be used to evaluate frameworks in the fairness
domain. Finally, we look at the current challenges
in applying explainability for bias detection and
provide promising directions for future work in
this area.
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