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Abstract

The field of Machine Learning is evolving001
quickly, and increasingly accurate models are002
being adopted to tackle more challenging prob-003
lems. These highly accurate models offer004
us exceptional predictive abilities. However,005
these models often come with greater com-006
plexity. The use of black-box models results007
in reduced transparency to model stakehold-008
ers, which makes it difficult to deduce how009
the model produced a prediction. This erodes010
the trust of users and researchers, which de-011
mands explainability for AI (XAI) to make012
the decision-making process more transparent.013
With AI systems being continually used to014
make important decisions in sensitive domains015
such as hiring, lending, and autonomous driv-016
ing, it is crucial to ensure that these decisions017
do not reflect discriminatory or biased behav-018
ior toward certain groups or populations. In019
this survey, we analyze the different types of020
bias which can penetrate AI systems and illus-021
trate how explainable AI can help identify and022
mitigate biases to ensure fairness in learning023
algorithms.024

1 Introduction025

Machine learning models have become ubiquitous026

in modern society. One can observe their indis-027

pensable use in daily tasks like providing person-028

alized recommendations for users while browsing029

shopping websites to making essential decisions030

in sensitive jobs like banking and healthcare. As031

these models continue to make more choices that032

affect people’s lives, it is vital to ensure that the033

choices are fair and just to all communities of so-034

ciety. However, in cases where bias perpetuates in035

machine learning models, it may produce unfair036

results and raise serious ethical and legal concerns037

about their application for human tasks. Despite038

the growing awareness of bias in machine learn-039

ing, addressing the problem of bias detection and040

mitigation still remains a partially solved challenge041

in the fairness domain. One major obstacle that 042

restricts the uptake of these models is their lack 043

of transparency and interpretability. These mod- 044

els frequently operate as black boxes, making it 045

impossible to comprehend how they make their 046

decisions. This makes it challenging to identify 047

biases and understand how they impact the model’s 048

predictions. 049

In this survey paper, we will explore the relation- 050

ship between bias and explainability in machine 051

learning models. We will begin by defining what 052

we mean by bias and explainability and discuss why 053

they are important. We will then review the exist- 054

ing literature on bias and explainability in machine 055

learning, including the different techniques for in- 056

terpreting models and their respective strengths and 057

weaknesses. We will then look at the combination 058

of using explainability for bias detection and look 059

at some recent work in this area of research. Finally, 060

we elucidate the challenges in applying explainabil- 061

ity for bias and provide directions to identify and 062

mitigate bias better in the future. 063

1.1 Motivation 064

There goes a famous quote by Joanne Chen: “AI 065

is good at describing the world as it is today 066

with all of its biases, but it does not know how 067

the world should be.” It is indeed true that Ar- 068

tificial Intelligence (AI) and Machine Learning 069

(ML) are prevalent almost everywhere in this era. 070

There is a continuously increasing need for high- 071

performance models. With the advancement of re- 072

search in AI, humanity has been able to achieve stel- 073

lar performance in demanding areas like medicine 074

and autonomous driving. However, these high- 075

performance models come at a certain cost. These 076

models are particularly very complex and offer less 077

insight into their actual working. This has led to a 078

lack of trust in these models. Even a single mistake 079

by the decision of AI can cause loss of human life 080
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in medicine, autonomous driving, and high stake081

scenarios if we trust the model blindly. Thus, it082

is critical to identify, comprehend, and reduce un-083

fairness as machine learning models’ decisions and084

influences have a significant impact on human lives.085

We are therefore driven towards understanding and086

explaining the prediction of models to gain better087

accountability and trust.088

2 Bias089

Bias refers to the presence of any prejudice or favor-090

ing toward a person or a group based on their innate091

or acquired features when it comes to decision-092

making (Mallela and Bhattacharyya, 2022). In093

today’s era, a majority of AI systems and algo-094

rithms are primarily data-driven. As a result, data095

is inextricably linked to the functionality of these096

algorithms and systems. If the underlying training097

data has biases, the algorithms trained on it will098

learn these biases. The presence of such biases can099

make the model predict inaccurate or unfair out-100

comes. With AI and ML continuously being used101

in areas of high stakes like medicine, judicial deci-102

sions, and finance, one cannot afford to perpetuate103

biases in such applications. For example, Parikh104

et al. (2019) remarked that among women with105

breast cancer, black women had a lower likelihood106

of being tested for high-risk germline mutations107

compared with white women, despite carrying a108

similar risk of such mutations. Thus, an AI algo-109

rithm that depends on genetic test results is more110

likely to mischaracterize the risk of breast cancer111

for black patients than white patients. As a result,112

AI might be prejudiced against some minorities and113

worsen their access to healthcare, especially those114

who are already marginalized in society. Therefore,115

it is important to identify and mitigate bias from the116

data and learning algorithms to ensure equitable117

and fair outcomes for all systems.118

2.1 Types of Bias119

Contrary to what is typically believed in research,120

data gathered from people in the real world is not121

homogeneous. The model could be biased by the122

demographics of the people who labeled the data.123

Real-world data is diverse because it originates124

from social subgroups with unique traits and be-125

haviors. Therefore, it is essential to identify what126

kind of biases exist in the data in order to mitigate127

them. These biases can be grouped into four major128

categories (Shah et al., 2019):129

1. Label Bias: It occurs due to erroneous la- 130

beling of the data by the annotators. This can 131

happen if the annotators hold preconceived 132

notions or stereotypes about the domain of the 133

data. 134

2. Selection bias: It emerges due to non- 135

representative observations – when the annota- 136

tors generating the training data have a differ- 137

ent distribution than where the model is to be 138

applied. A famous example is the “Wall Street 139

Journal effect,” where syntactic parsers and 140

part-of-speech taggers perform most accu- 141

rately over language written by middle-aged 142

white men. (Garimella et al., 2019) 143

3. Semantic Bias: Embeddings have become 144

an essential component of modern NLP, with 145

their ubiquitous applications in both classi- 146

cal and deep learning models. These repre- 147

sentations, however, frequently incorporate 148

unintentional or negative connotations and 149

stereotypes. For example, certain words or 150

phrases may be associated with one group 151

more than another, leading to biased results. 152

For instance, the word “boss” has closer rep- 153

resentation compared to men than women. 154

4. Overamplification: In overamplification, 155

the model picks up small differences between 156

human attributes with respect to the target, and 157

amplifies this difference to be more significant 158

in the predicted outcomes. This usually hap- 159

pens in the model learning phase itself. For 160

example, Zhao et al. (2017) found that in the 161

imSitu image captioning data set, the activity 162

cooking is over 33% more likely to involve 163

females than males in a training set, and a 164

trained model further amplifies the disparity 165

to 68% at test time. 166

3 Black Box Models and Explainability 167

In science, computing, and engineering, a black 168

box is a system that can be viewed in terms of its 169

inputs and outputs without any knowledge of its 170

internal workings. Its implementation is “opaque” 171

(black).1 Some examples of black-box models are 172

Random Forests and Deep Neural Networks since 173

they have complex internal structures. 174

Explainability in ML attempts to make users 175

understand how the model predicts an output. It 176

1https://en.wikipedia.org/wiki/Black_box
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helps provide information about how and why a177

model made a specific prediction. By understand-178

ing the inner workings of the model, explainability179

helps build trust and facilitates the adoption of ML180

systems in various domains. It may be trivial to181

understand the mechanism of white-box (transpar-182

ent) models like Linear Regression and Decision183

Trees due to their simple structure. However, when184

it comes to black-box models like Random Forests185

and Deep Neural Networks, explainability is a diffi-186

cult task, even for experts in this domain, due to its187

complex internal structure. To achieve explainabil-188

ity, two primary approaches are commonly used:189

• Local Explainability: This tells us about190

the model’s behavior at a particular instance191

and how each individual feature affects the192

model’s prediction.193

• Global Explainability: This tells us about194

the overall behavior of the model and how195

all the features combined affect the model’s196

prediction.197

Lipton (2018) remarked upon the following points198

to understand explainability better.199

3.1 Transparency200

Informally, transparency is the opposite of opacity201

or black box-ness. It connotes some sense of under-202

standing the mechanism by which the model works.203

We consider transparency at the level of the entire204

model (simulatability), at the level of individual205

components, e.g., parameters (decomposability),206

and at the level of the training algorithm (algorith-207

mic transparency).208

3.1.1 SIMULATABILITY209

One can call a model transparent if a human can210

contemplate the entire model at once. However, to211

fully understand the model, a human should be able212

to take the input data together with the parameters213

of the model and, in a reasonable time, through214

every calculation required to produce a prediction.215

Ribeiro et al. (2016) also takes on this idea of inter-216

pretability, suggesting that an interpretable model217

is one that “can be readily presented to the user218

with visual or textual artifacts.” For some models,219

such as decision trees, the size of the model (to-220

tal number of nodes) may grow much faster than221

the time to perform inference (length of pass from222

root to leaf). This suggests that simulatability may223

admit two subtypes, one based on the total size of224

the model and another based on the computation 225

required to perform inference. 226

3.1.2 DECOMPOSABILITY 227

A second notion of transparency might be that each 228

part of the model - input, parameter, and calcula- 229

tion, provides an intuitive explanation. For exam- 230

ple, the coefficients of a linear model can describe 231

the strengths of association between each feature 232

and the label. However, one cannot blindly trust 233

this notion of transparency. 234

3.1.3 ALGORITHMIC TRANSPARENCY 235

The third notion of transparency applies at the level 236

of the learning algorithm itself. For example, in the 237

case of linear models, we understand the shape of 238

the error surface, which can help us prove that 239

the training will converge to a unique solution. 240

However, in contrast, deep learning methods lack 241

this sort of algorithmic transparency. While neu- 242

ral networks and deep learning systems provide 243

remarkable performance, we cannot comprehend 244

the decision-making process of complex black-box 245

models. 246

3.2 Post-hoc interpretability 247

Post hoc interpretability refers to the process of ex- 248

plaining the behavior and decisions of a black-box 249

machine learning model after it has been trained. 250

It involves using various techniques and tools to 251

analyze the model’s internal workings and generate 252

human-understandable explanations for its predic- 253

tions. Some common approaches to post-hoc inter- 254

pretations include natural language explanations, 255

visualizations of learned models and explanations 256

by example. We also show an overview of post-hoc 257

techniques with their types in Figure 1. 2 258

3.3 Model Agnostic Explanaibility 259

When we talk about black-box models, we include 260

all possible kinds of models which take input and 261

return an output with complex internal mechanisms. 262

However, there are some explainability techniques 263

that work on all kinds of models, known as model- 264

agnostic explainability. These techniques provide 265

insight into how machine learning models make 266

decisions without requiring access to the model’s 267

internal structure and are independent of the model 268

used, which is why they are referred to as “model- 269

agnostic”. The advantage of the universal applica- 270

2https://www.ambiata.com/blog/
2021-04-12-xai-part-1/
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Figure 1: Some of the popular techniques for explaining ML models, varying in complexity, applicability, and the
type of information they provide.

tion of these techniques to all kinds of models has271

piqued the interest of researchers.272

We will now discuss the model-agnostic tech-273

niques which are presently used for feature anal-274

ysis for models. The Permutation Feature Impor-275

tance is a technique that involves randomly per-276

muting the values of individual input features and277

measuring the resulting decrease in the model’s278

accuracy. By comparing the feature importance279

scores across multiple permutations, it is possible280

to identify which features are most important for281

the model’s predictions. Partial Dependence Plot282

(PDP) is another model-agnostic technique that can283

help visualize how the predicted outcome changes284

as a function of one or more input features while285

holding all other features constant. We will fur-286

ther look at explainability techniques described in287

the literature for feature attribution. LIME (Lin-288

ear Interpretable Model Explanations) by Ribeiro289

et al. (2016) is a novel explanation technique that290

explains the predictions of any classifier in an inter-291

pretable and faithful manner by learning a surrogate292

interpretable model locally around the prediction.293

SHAP (SHapley Additive exPlanations) (Lundberg294

and Lee, 2017) is an approach inspired by game295

theory to explain the output of any black-box func-296

tion by assigning each feature an importance value 297

for a particular prediction. Anchors (Ribeiro et al., 298

2018) is a model-agnostic system that explains the 299

behavior of complex models with high-precision 300

rules called anchors, representing local, sufficient 301

conditions for predictions. 302

3.4 Model Specific Explainability 303

In contrast to model-agnostic techniques described 304

in the previous section, there also are some ex- 305

plainability techniques specific to certain kinds of 306

models. These are Model-specific explainability 307

techniques that work based on the details of the 308

specific structures of the machine learning or deep 309

learning model which is applied. These strategies 310

are explicitly employed for a certain model design, 311

such as the neural network, and employ a reverse 312

engineering approach to explain how the specific 313

Deep Learning (DL) algorithm is making the rele- 314

vant decision. 315

We will now discuss some of the popular model- 316

specific techniques used in literature, with more 317

emphasis on explainability for deep learning mod- 318

els. Integrated Gradients by (Sundararajan et al., 319

2017) is a method for attributing the contribution 320

of each input feature to a model’s output by in- 321
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tegrating the gradients of the output with respect322

to the input features. The advantage of Integrated323

Gradients is that it is based on an axiomatic ap-324

proach for explaining the prediction of deep neural325

networks without any modification to the original326

network. DeepLIFT (Deep Learning Important327

FeaTures) by (Shrikumar et al., 2017) is a method328

for decomposing the output prediction of a neural329

network on a specific input by backpropagating the330

contributions of all neurons in the network to ev-331

ery feature of the input. DeepLIFT compares the332

activation of each neuron to its reference activa-333

tion and assigns contribution scores according to334

the difference. Layer-wise Relevance Propaga-335

tion (LRP) by (Montavon et al., 2019) is another336

model-specific technique that highlights the input337

features supporting the prediction by propagating338

the prediction backward in deep neural networks.339

LRP is able to provide a detailed and fine-grained340

understanding of how each feature contributes to341

the model’s output.342

4 Explainability for Bias Detection343

There are a number of papers that mention unin-344

tended or societal biases as wider motivations to345

contextualize the work for bias detection; however,346

only a handful of them apply explainability tech-347

niques to uncover or investigate biases. We men-348

tion some of the recent works done in this area,349

as referred from Balkir et al. (2022a). We focus350

specifically on explainability methods using feature351

attribution strategies.352

(Balkir et al., 2022b) used a feature attribution353

method for explaining text classifiers and analyzed354

them in the context of hate speech detection. They355

showed that sufficiency and necessity could be356

used to explain the expected differences between a357

classifier that is intended to detect identity-based358

hate speech and those trained for detecting gen-359

eral abuse. (Mathew et al., 2021) introduced a360

new benchmark dataset for hate speech detection361

called HateXplain. Their work aims to improve362

the explainability of hate speech detection mod-363

els by providing a dataset that includes not only364

hate speech texts but also explanations of why each365

text is considered hateful using LIME and Atten-366

tion. (Aksenov et al., 2021) presents a new dataset367

for fine-grained classification of political bias in368

German news articles. The authors also analyzed369

the contribution of different linguistic features to370

the prediction of political bias using aggregated 371

attention scores. (Mosca et al., 2021) explores the 372

impact of user context on hate speech detection 373

models. The paper argues that user contexts, such 374

as the demographic information and previous be- 375

havior of users, can affect the interpretation and 376

classification of hate speech. They use SHAP and 377

feature space exploration to explain their model 378

behavior. (Wich et al., 2020) examines how polit- 379

ically biased data affects the performance of hate 380

speech detection models. The authors show that 381

models trained on politically biased data can lead 382

to biased models that perform poorly in detecting 383

hate speech against certain political groups using 384

SHAP to explain the models. (Prabhakaran et al., 385

2019) introduced Perturbation Sensitivity Analysis 386

to test for unwanted biases in an NLP model. They 387

demonstrate the utility of their framework on on- 388

line comments in the English language from four 389

different genres for sentiment and toxicity models. 390

4.1 Current practices 391

In this section, we mention a few of the current 392

practices and research work going on in the domain 393

of explainability for bias detection. 394

(a) Counterfactual explanations: These meth- 395

ods generate alternative inputs to a model that 396

would result in different outputs, allowing 397

users to understand how changes in input fea- 398

tures affect model predictions. Counterfactual 399

explanations (Sokol and Flach, 2019) can be 400

used to detect and mitigate biases by identi- 401

fying which features are most influential in 402

driving model predictions and how changing 403

those features can lead to fairer outcomes. 404

(b) Extractive Rationales (DeYoung et al., 2019) 405

are snippets of the input text that trigger the 406

original prediction. They are similar in spirit 407

to feature attribution methods, however, in ra- 408

tionales, the attribution is usually binary rather 409

than a real-valued score, and continuous sub- 410

sets of the text are chosen rather than each 411

token being treated individually. 412

(c) Attention mechanisms (Choi et al., 2016) 413

allow users to visualize which parts of an input 414

are most important for a model’s prediction. 415

Attention mechanisms can be used to detect 416

biases by identifying which parts of the input 417

are being ignored or given less weight by the 418

model, potentially leading to unfair outcomes. 419
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(d) Adversarial training: The Adversarial train-420

ing technique (Zhang et al., 2018) involves421

training models on adversarial examples that422

are designed to expose and correct biases.423

This method can be used to detect and mit-424

igate biases by forcing models to learn more425

robust decision boundaries that are less sus-426

ceptible to adversarial attacks.427

(e) Model interpretation techniques (e.g.,428

LIME, SHAP): These methods provide local429

or global explanations for model predictions,430

allowing users to understand how individual431

instances or groups of instances are being clas-432

sified. Model interpretation techniques can be433

used to detect biases by identifying which fea-434

tures or groups of instances are being treated435

unfairly by the model.436

5 Datasets437

In this section, we will specify a comprehensive438

overview of datasets that can be used to study bias439

in the area of machine learning.440

1. Adult Dataset: 3 It is also known as the441

Census Income dataset. This dataset comes442

from the UCI repository of machine learning443

databases. The task is to predict if an individ-444

ual’s annual income exceeds $50,000 based on445

census data. It contains a total of 45,225 cases446

and 16 attributes. It can be used in studies447

concerned with the fairness of gender-based448

inequalities based on the yearly income of449

people.450

2. COMPAS Dataset: 4 The COMPAS dataset451

is commonly used to predict a defendant’s452

likelihood of reoffending within the next two453

years. It comprises 6,172 instances, with 13454

features including age, sex, race, and prior455

convictions. The dataset is originally gathered456

by ProPublica.457

3. German Credit Dataset: 5 The German458

Credit dataset is used for credit risk assess-459

ment, where the goal is to predict whether an460

3http://www.cs.toronto.edu/~delve/data/adult/
desc.html

4https://github.com/propublica/
compas-analysis

5https://archive.ics.uci.edu/ml/datasets/
statlog+(german+credit+data)

individual will default on a loan based on vari- 461

ous features such as credit history and employ- 462

ment status. The dataset comprises 1,000 in- 463

stances with 20 attributes. The German Credit 464

dataset can be applied to research gender dis- 465

parities in credit-related matters. 466

4. WinoBias Dataset: The WinoBias dataset by 467

(Zhao et al., 2018) contains 3,160 sentences, 468

which follows the Winograd format and is 469

centered on people entities referred by their 470

occupations from a vocabulary of 40 occupa- 471

tions. There are mainly two types of sentences 472

in the dataset requiring linkage of gendered 473

pronouns to either male or female stereotypi- 474

cal occupations. It has been used in the study 475

of coreference resolution to certify if a system 476

has a gender bias. 477

5. Recidivism in Juvenile Justice Dataset: The 478

Recidivism in Juvenile Justice dataset (Tolan 479

et al., 2019) contains all juvenile offenders 480

between ages 12-17 who committed a crime 481

between the years 2002 and 2010 and com- 482

pleted a prison sentence in 2010 in Catalonia’s 483

juvenile justice system. 484

6. Communities and Crime Dataset: 6 The 485

Communities and Crime dataset gathers in- 486

formation from different communities in the 487

United States related to several factors that 488

can highly influence some common crimes 489

such as robberies, murders, or rapes. The 490

data includes crime data obtained from the 491

1990 US LEMAS survey and the 1995 FBI 492

Unified Crime Report. It also contains socio- 493

economic data from the 1990 US Census. 494

7. Pilot Parliaments Benchmark Dataset: The 495

Pilot Parliaments Benchmark dataset (Buo- 496

lamwini and Gebru, 2018), also known as 497

PPB, contains images of 1270 individuals in 498

the national parliaments of three European 499

(Iceland, Finland, Sweden) and three African 500

(Rwanda, Senegal, South Africa) countries. 501

This benchmark was released to have more 502

gender and race balance, diversity, and repre- 503

sentativeness. 504

8. Diversity in Faces Dataset: The Diversity in 505

Faces (DiF) (Merler et al., 2019) is an image 506

6https://archive.ics.uci.edu/ml/datasets/
communities+and+crime

6

http://www.cs.toronto.edu/~delve/data/adult/desc.html
http://www.cs.toronto.edu/~delve/data/adult/desc.html
https://github.com/propublica/compas-analysis
https://github.com/propublica/compas-analysis
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/communities+and+crime
https://archive.ics.uci.edu/ml/datasets/communities+and+crime


Dataset Name Size Area
UCI adult dataset 48,842 income records Social

German credit dataset 1,000 credit records Financial
Pilot parliaments benchmark dataset 1,270 images Facial images

WinoBias 3,160 sentences Coreference resolution
Communities and crime dataset 1,994 crime records Social

COMPAS Dataset 18,610 crime records Social
Recidivism in juvenile justice dataset 4,753 crime records Social

Diversity in faces dataset 1 million images Facial images

Table 1: Most widely used datasets in the fairness domain with additional information about each of the datasets,
including their size and area of focus (Mehrabi et al., 2021)

dataset collected for fairness research in face507

recognition. DiF is a large dataset containing508

one million annotations for face images. It is509

also a diverse dataset with diverse facial fea-510

tures, such as different craniofacial distances,511

skin color, facial symmetry and contrast, age,512

pose, gender, and resolution, along with di-513

verse areas and ratios.514

6 Challenges and Future Directions515

In this section, we discuss some challenges and516

limitations in the area of bias and explainability517

and suggest promising directions for future work.518

Having a common definition for fairness: The519

literature in the fairness domain presents various520

kinds of definitions of what fairness would mean521

from a machine learning standpoint. Consequently,522

it becomes nearly impossible to comprehend how523

one fairness solution would fare under a different524

definition of fairness. Therefore, having a common525

definition of fairness remains an open question to526

researchers since it can make the evaluation of sys-527

tems more homogeneous and unified.528

Local explainability methods rely on the user529

to identify examples that might reveal bias: A530

key step in discovering fairness issues in a machine-531

learning model is to identify the set of possible data532

instances where these issues may arise. Since local533

explainability approaches provide explanations for534

specific data instances, it is up to the user to choose535

which instances need to be investigated. As a re-536

sult, before using XAI methods, the user must first537

decide what biases to search for, thereby limiting538

its effectiveness for finding unknown biases.539

Less generalizability of local explanations: With540

the rise of complex problems in NLP, it is often541

hard to explain models globally which are designed 542

for solving these problems. This has led to re- 543

searchers adopting methods of local explainability 544

to understand the working of the models. However, 545

one issue that is faced by using XAI methods for 546

fairness is that it is difficult to know to what extent 547

the local explanations can be generalized. As local 548

explanations provide reasoning for specific data 549

points, it becomes incoherent to identify how ex- 550

planations generalize the model globally. Although 551

there exist some methods like Anchors (Ribeiro 552

et al., 2018) which can tackle the aforementioned 553

problem and mitigate it by specifying the set of 554

examples to which the explanation applies. In ad- 555

dition, future NLP research could explore global 556

explainability methods that have been used to un- 557

cover unknown biases. (Tan et al., 2018) 558

Some biases can be difficult for humans to rec- 559

ognize: It can be seen that XAI methods rely on 560

humans to recognize what an undesirable correla- 561

tion is; however, biased models are often nuanced 562

in exhibiting bias. For example, if the dialect bias 563

in a hate speech detection system is mostly medi- 564

ated by false positives on the uses of reclaimed 565

slurs, this might seem like a good justification to a 566

user who is unfamiliar with this phenomenon (Sap 567

et al., 2019). Therefore, this encourages more in- 568

vestigation and research into whether humans can 569

recognize unintended biases that cause fairness is- 570

sues through explainability methods. 571

Explainability methods are susceptible to fair- 572

washing: The possibility of "fairwashing" biased 573

models has been repeatedly emphasized in relation 574

to XAI approaches. Fairwashing refers to strate- 575

gies that use adversarial manipulation of explana- 576

tions to disguise the model’s reliance on protected 577
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attributes. Fairwashing has been shown to be pos-578

sible in rule lists (Aïvodji et al., 2019) and both579

gradient-based and perturbation-based feature at-580

tribution methods (Dimanov et al. (2020); Anders581

et al. (2020)). This has raised some concerns about582

the faithfulness of explainability methods. In re-583

gards to this, there have been a few solutions pro-584

posed, like developing certifiably faithful explain-585

ability methods with proofs that a particular way of586

testing for bias cannot be adversarially manipulated587

(Cohen et al. (2019); (Ma et al., 2020)), providing588

more information on whether the user can trust the589

generated explanation (Zhang et al., 2019) or other590

ways to calibrate user trust to the quality of the591

provided explanations (Zhang et al., 2020). Over-592

all, this challenge suggests that additional steps593

need to be taken to ensure the robustness of the594

explanations.595

7 Summary596

In this paper, we discussed the idea of bias in data597

and its types. Further, we elucidated the topic of598

explainability and mentioned different ways of in-599

terpreting a black-box model. We found that the600

combination of explainability for bias detection has601

been used mostly in the hate-speech tasks, whereas602

its use in other areas has been less explored. We603

also summarize the list of popular datasets which604

can be used to evaluate frameworks in the fairness605

domain. Finally, we look at the current challenges606

in applying explainability for bias detection and607

provide promising directions for future work in608

this area.609
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