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Abstract

LLM:s often lack efficient domain-specific un-
derstanding, which is particularly crucial in
specialized fields such as aviation. This neces-
sitates the integration of knowledge graphs with
deep learning which is thriving in improving
the performance of various natural language
processing (NLP) tasks. Knowledge graphs
have emerged as a powerful framework for rep-
resenting structured knowledge and capturing
the relationships between entities in various
domains. They provide a comprehensive and
interconnected view of information, enabling
efficient reasoning, search, and data integration.
Language models are trained on a lot of data
and perform well on tasks from the general do-
main. This survey paper presents an overview
of the knowledge graph, deep learning, and the
synergy of both knowledge graph and language
models for question answering.

1 Introduction

There is a vast amount of online text available, pre-
senting opportunities for productive utilization. In
recent years, researchers have introduced two inno-
vative methods to leverage this text effectively: 1)
The concept of a Knowledge Graph emerged, aim-
ing to represent text in a structured format. How-
ever, it became apparent that structuring all avail-
able free-form data posed significant challenges.
2) This limitation in Knowledge Graphs led to the
emergence and widespread adoption of Deep Learn-
ing, a prominent technique in Machine Learning
and Natural Language Processing. Deep Learn-
ing models are trained on textual data and applied
across various applications. In our work, we lever-
age both Knowledge Graphs and Deep Learning for
Information Extraction and Question Answering
(QA) tasks.

Large language models (LLMs) have demon-
strated remarkable performance in a wide range
of natural language tasks. However, as these mod-
els continue to grow in size, they face significant
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challenges in terms of computational costs. Addi-
tionally, LLMs often lack efficient domain-specific
understanding, which is particularly crucial in spe-
cialized fields such as aviation and healthcare. In
this research, we emphasize the significance of
incorporating knowledge bases into language mod-
els and propose a novel framework for integrating
structured knowledge into smaller models. This ap-
proach addresses the challenges of computational
efficiency while enabling effective domain-specific
understanding.

2 Motivation

Building question-answering (QA) systems that
can reason over knowledge graphs like AviationKG
is challenging due to the scarcity of domain-
specific datasets. While Large Language Models
(LLMs) have shown impressive performance in var-
ious NLP tasks, their computational requirements
and reliance on generic datasets limit their suitabil-
ity for domain-specific tasks. Knowledge graphs
(KGs) are valuable for representing and reason-
ing over knowledge but often suffer from incom-
pleteness and noise, making it difficult to answer
complex questions that require combining multiple
pieces of information. To address these limitations,
knowledge infusion is a technique that enhances the
performance of deep learning models on KG-based
QA tasks. It involves integrating knowledge from
KGs into DL models, enabling them to learn im-
proved representations and reason more effectively
over the knowledge.

3 Knowledge Graph

Information can be effectively represented in the
form of a graph consisting of nodes and edges.
In this context, nodes correspond to the entities
extracted from a given corpus, while edges denote
the relationships between these entities within the
graph structure. There are two main structures for
constructing a knowledge graph:



1. Extracting triplets comprising a subject, pred-
icate, and object from raw data. These triplets
represent meaningful relationships between
entities. Once the triplets are extracted, they
are inserted into a graph database, which
serves as the foundation for the knowledge
graph.

2. Building the ontology, which defines the struc-
ture, hierarchy, and types of entities within the
knowledge graph. Next, linking individuals
within the knowledge graph using appropriate
relations.

3.1 Ontology

Ontology has become popular in the Knowledge
community. (Noy et al., 2001) states that ontol-
ogy is a description of concepts in the discourse
domain (called classes or concepts). The features
of Ontology are:

¢ Each class has different features and certain
restrictions.

* Ontology is dynamic and domain-centric.

* Ontology is formed with the help of taxon-
omy.

3.2 Taxonomy

Taxonomy is the process of categorizing objects
into various classes and subcategories. It enables
us to visually represent the hierarchical structure
of classes, objects, and their properties. Unlike
ontology, taxonomy is considered static as it does
not possess the dynamic nature associated with
ontology.

3.3 Entities and Relations

* Entity is a node in a Knowledge graph or an in-
stance of a class in ontology. An entity can be
a person, organization, etc., i.e., an individual
of a class.

» Relation is an edge in a Knowledge graph
connecting two nodes or entities.

For example, "Raj lives in India". lives in is a
relation between a person and a place.

3.4 Object Property and Data Property

In a knowledge base, object and data properties
are two types of properties used to describe rela-
tionships between entities or assign attributes to
entities.

* Object Property: An object property repre-
sents a relationship between two entities or
individuals in a knowledge base. It denotes
how entities are connected or related to each
other.

Ex: Milk isA Dairy Product. isA relation be-
tween Milk and Dairy Product.

Object properties typically link two individu-
als together, indicating a connection or associ-
ation between them.

* Data Property: A data property is used to as-
sign attribute values or characteristics to en-
tities in a knowledge base. It describes the
properties or attributes of an individual entity.
Ex: Milk hasFat 10grams. Here, hasFat is a
data property.

Data properties are used to store and represent
data values such as numbers, strings, dates, or
booleans.

3.5 Graph Database

A graph database stores nodes and relationships
for the visual representation in the form of a graph.
In our project, we have used two graph databases:
Protégé and Neo4j. A short explanation for both
databases is provided below.

Protégé

* Protégé is an open source software used for
the construction of ontology, developed by
Stanford Community.

* Protégé is supported by academic, govern-
ment, and corporate users.

* Protégé works as an interface for the develop-
ment of ontology containing multiple plugins
such as Cellfie used for inserting data into a
knowledge graph, SPARQL plugin, for retriev-
ing results from an ontology using SPARQL
queries.

Neodj

* Neo4j is an open-source, NoSQL, and native
graph database.

* Neo4j is used today by thousands of startups,
educational institutions, and large enterprises
in all sectors including financial services, gov-
ernment, energy, technology, retail, and man-
ufacturing.



* Neo4j uses Cypher language, a declarative
query language similar to SQL, but optimized
for graphs.

We utilized Protégé to develop a Knowledge Graph
(KG) specifically focused on aircraft accident re-
ports sourced from the National Transportation
Safety Board (NTSB). However, during our usage
of SPARQL queries, we encountered limitations
in retrieving information from the KG. In order
to address these challenges and enhance our KG
construction process, we compared various state-
of-the-art (SOTA) graph databases and determined
that Neo4j offers the most favorable features.

3.6 Different Types of Knowledge Graphs

A knowledge graph is a powerful tool used in vari-
ous domains to represent and organize structured
knowledge about the world. While the concept of a
knowledge graph remains the same across different
implementations, there can be variations in terms
of their construction, scope, and focus. Here are
some notable types of knowledge graphs.

1. Freebase: Freebase (Bollacker et al., 2008),
developed by Metaweb and later acquired by
Google, was one of the earliest and most well-
known knowledge graphs. It aimed to create
a comprehensive repository of structured in-
formation about entities, their attributes, and
their relationships.

2. WikiData: WikiData (Vrandeci¢ and
Krotzsch, 2014) is a collaborative, multilin-
gual knowledge graph project that serves
as a central hub for structured data on a
wide range of topics. It was initiated by the
Wikimedia Foundation, the same organization
behind Wikipedia, with the goal of providing
a common data repository that can be used
to enhance the information available in
Wikipedia articles and other Wikimedia
projects.

WikiData follows a collaborative approach,
inviting contributions from a global commu-
nity of editors who add, edit, and curate the
data. The project is multilingual, meaning it
supports data in multiple languages, enabling
the representation of knowledge from diverse
cultures and regions.

The structure of WikiData revolves around
the concept of "items" and their associated

"statements." An item in WikiData represents
a specific concept or entity, such as a person or
a place. Each item is assigned a unique iden-
tifier, known as a QID, to ensure consistency
and enable cross-referencing with other items.
Statements, on the other hand, capture spe-
cific properties or attributes of an item, along
with their corresponding values. For example,
an item about a person might have statements
about their date of birth, occupation, national-
ity, and so on.

3. ConceptNet: ConceptNet (Liu and Singh,
2004) is a freely available knowledge graph
that emphasizes the representation of general
knowledge and common-sense reasoning. It
contains a vast collection of assertions in the
form of "concept A is related to concept B"
and covers various aspects of human under-
standing.

4. AviationKG: An Aviation Knowledge Graph
(Agarwal et al., 2022b) is created using NTSB
reports and ADREP taxonomy in the Protégé
tool. The construction process involves sev-
eral steps, including pre-processing the NTSB
reports, creating an ontology, building the
Knowledge Graph, evaluating the KG, and
addressing challenges encountered while cre-
ating the Aviation KG. Figure 1 illustrates
the pipeline for constructing the KG from
NTSB reports. A total of 4000 NTSB reports
spanning from 1962 to 2015, with an aver-
age length of 3000 words per report, are uti-
lized in this construction. These reports con-
tain unstructured paragraphs and structured
tables providing information about aircraft ac-
cidents.

ADREP Taxonor
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Ontology Creation

Figure 1: Aviation Knowledge Graph Construction Pro-
cess from NTSB reports



4 Deep Learning

Deep Learning is a specialized branch of machine
learning that focuses on algorithms inspired by the
architecture and functioning of the brain, specifi-
cally artificial neural networks.

In this section, we will look into the DL models,
their training & fine-tuning process, and their ap-
plications which are useful in today’s world.

4.1 Deep Learning Models

Deep learning models have gained extensive
popularity due to their ability to extract high-level
abstract features, deliver enhanced performance
compared to traditional models, improve inter-
pretability, and effectively process biological data.
In the following section, we will examine three
significant deep learning models utilized in our
project: BERT, TS5, and GPT-3.

BERT

BERT (Bidirectional Encoder Representations
from Transformers), as described in the source
(Devlin et al., 2019), is essentially a trained stack
of Transformer Encoders. The primary technical
advancement of BERT lies in its utilization of
bidirectional training from the Transformer model,
which is a widely-used attention-based model, for
language modeling purposes.

How BERT Works ?
The BERT architecture is constructed based on
the Transformer model. Presently, there exist two
variants of BERT:

* BERT Base: 12 layers (transformer blocks),
12 attention heads, and 110 million parame-
ters.

* BERT Large: 24 layers (transformer blocks),
16 attention heads, and 340 million parame-
ters.
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Figure 2: BERT input representation. The input embed-
dings are the sum of the token embeddings, the segmen-
tation embeddings, and the position embeddings.

The developers behind BERT have added a spe-
cific set of rules to represent the input text for the
model. Many of these are creative design choices
that make the model even better.

The input embedding is a combination of 3 embed-
dings (shown in figure 2):

* Position Embeddings:To overcome the limita-
tion of the Transformer model in capturing se-
quence and order information, BERT employs
positional embeddings. These embeddings
are learned and utilized by BERT to represent
the position of words within a sentence. By
incorporating positional embeddings, BERT
effectively addresses the Transformer’s inabil-
ity to inherently capture sequential relation-
ships, which is a strength of recurrent neural
networks (RNN5s).

* Segment Embeddings: BERT has the capabil-
ity to process sentence pairs as inputs, which
is particularly useful for tasks like question-
answering. Segment embeddings play a cru-
cial role in enabling BERT to learn distinct
embeddings for each sentence in the pair. This
allows the model to differentiate between the
embeddings of different sentences.

In Figure 2, the tokens labeled as EA corre-
spond to the tokens belonging to sentence A,
while the tokens labeled as EB correspond
to those from sentence B. By incorporating
segment embeddings, BERT can effectively
capture the contextual information and rela-
tionships between the sentences in a pair, en-
hancing its ability to perform tasks that in-
volve multiple sentences.

* Token Embeddings: BERT refers to the
learned representations of individual tokens
within a sentence. These embeddings capture
the semantic and contextual information of
each token in the input text. In BERT, token
embeddings are generated by encoding each
token in the input sequence. These embed-
dings capture the meaning and characteristics
of the individual tokens, taking into account
the surrounding context. By leveraging the
large-scale pre-training process, BERT learns
rich and contextualized representations for
each token.

We will study the BERT’s training and fine-tuning
in the next section.



T5
TS5 (Text-to-Text Transfer Transformer) is a model
that aims to unify various downstream natural lan-
guage processing (NLP) tasks into a consistent text-
to-text format. Unlike BERT, T5 employs a single
model architecture, loss function, and set of hyper-
parameters across all NLP tasks.

In TS5, the inputs are structured in a manner that
allows the model to recognize the specific task,
while the output is generated as the textual repre-
sentation of the desired outcome. This approach
enables T5 to handle a wide range of NLP tasks by
framing them as text generation problems.

The architecture of T5 is based on an Encoder-
Decoder Transformer model. The encoder configu-
ration in T5 shares similarities with BERT, but with
modifications to support the text-to-text format.

By employing a consistent framework across
tasks, TS5 simplifies the training and deployment
process for various NLP applications, offering a
versatile and efficient approach to handling diverse
NLP tasks.

GPT-3
GPT-3 (Generative Pre-trained Transformer 3)
(Brown et al., 2020), is a deep learning-based lan-
guage model that is capable of generating human-
like text. It has the ability to generate various types
of content such as code, stories, poems, and more.
GPT-3 was introduced by OpenAl in May 2020
as an evolution of their previous language model,
GPT-2.

GPT-3 is a highly advanced and large-scale lan-
guage model. Given an input text, it utilizes deep
learning techniques to probabilistically predict the
tokens from a predefined vocabulary that are likely
to follow. Language models like GPT-3 are sta-
tistical tools that provide predictions for the next
word(s) in a given sequence. They essentially rep-
resent probability distributions over sequences of
words.

With its sophisticated architecture and extensive
pre-training, GPT-3 has demonstrated remarkable
capabilities in generating coherent and contextually
relevant text across various domains, making it a
powerful tool for natural language generation tasks.

4.2 Training and Fine-tuning

Training is the initial process in which a model
or architecture learns from labeled data to acquire

knowledge and improve its performance. During
training, the model undergoes optimization through
iterations, adjusting its parameters to minimize the
loss function and improve its ability to make accu-
rate predictions.

Fine-tuning, on the other hand, is a subsequent
process that is performed on top of a pre-trained
model. Fine-tuning involves adapting the already
trained model to a specific task or domain by fur-
ther training it on task-specific or domain-specific
labeled data. This process helps the model to spe-
cialize and adapt its learned representations to bet-
ter suit the specific requirements of the target task
or domain.

Now, let’s explore how training and fine-tuning
are applied to BERT, T5, and GPT-3:

BERT
BERT is pre-trained on two NLP tasks (refer Figure
3):

* Masked Language Modeling (MLM) - Let’s

say we have a sentence — “I love to read books
on Kindle”. We want to train a bi-directional
language model. Instead of trying to predict
the next word in the sequence, we can build a
model to predict a missing word from within
the sequence itself.
Let’s replace “Kindle” with “[MASK]”.
[MASK] is a token to denote that a word is
missing. We’ll then train the model in such a
way that it should be able to predict “Kindle”
as the missing token: “I love to read books on
[MASK].”

e Next Sentence Prediction (NSP) - BERT is
trained on the task of Next Sentence Predic-
tion for tasks that require an understanding of
the relationship between sentences. QA task
is one such example. The task with NSP is:
Given two sentences — A and B, is B the ac-
tual next sentence that comes after A in the
corpus, or just a random sentence? Since it
is a binary classification task, the data can be
easily generated from any corpus by splitting
it into sentence pairs.

This is how BERT is able to become a true task-
agnostic model. It combines both the Masked Lan-
guage Model (MLM) and the Next Sentence Pre-
diction (NSP) pre-training tasks.

BERT can be fine-tuned on a variety of language



tasks such as Classification, QA, and Named Entity
Recognition, by applying MLM and NSP.
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Figure 3: Overall pre-training and fine-tuning proce-
dures for BERT.

T5
Training T5 involves training the model on a
diverse set of tasks using a text-to-text format. The
model is trained with a shared encoder-decoder
architecture and a common loss function across
different NLP tasks. The TS5 model is trained
on C4 - Colossal Clean Crawled Corpus. C4 is
obtained by scraping web pages and ignoring
the markup from the HTML. Fine-tuning TS is
done by further training the pre-trained model on
task-specific labeled data, allowing it to specialize
for specific tasks within the text-to-text framework.

GPT-3

The first thing that GPT-3 overwhelms with is
its sheer size of trainable parameters which is
10x more than any previous model out there. In
general, the more parameters a model has, the
more data is required to train the model. As per
the creators, the OpenAl GPT-3 model has been
trained with about 45 TB of text data.

OpenAl, by default, gives us a few Al models or
engine APIs, that are suited for different tasks such
as QA, sentiment analysis, etc.

Both training and fine-tuning are essential pro-
cesses in developing powerful language models
like BERT, T5, and GPT-3, enabling them to learn
from data and adapt their representations to various
tasks or domains.

5 Question Answering System

Question answering (QA) is indeed a crucial prob-
lem in the field of natural language processing
(NLP) and has been a longstanding milestone in
artificial intelligence. QA systems enable users
to pose questions in natural language and receive
concise and immediate responses, typically encoun-

tered in search engines or information retrieval sys-
tems.

The goal of QA systems is to understand the
user’s query, process it, and provide relevant and
accurate answers from a given knowledge base or
corpus. These systems employ various techniques,
including information retrieval, natural language
understanding, and machine learning, to extract the
most relevant information and generate appropriate
responses to user queries.

QA systems have a wide range of applica-
tions, from general-purpose search engines to
domain-specific question-answering in areas such
as medicine, customer support, and education.
They aim to bridge the gap between human lan-
guage understanding and computational systems,
enabling users to obtain specific and concise an-
swers to their questions in a human-like manner.

5.1 QA Categorization

Figure 4 presents a categorization of QA systems
into different types. The classification is based
on four main aspects: Type of Question, Answer
Type, Answer Source, and Modeling Approach.

Type of Question: Questions can take various
forms, such as multiple-choice questions, con-
versational dialogues, visual format questions,
or general inquiries. In our project, the focus is
primarily on conversational questions, and we are
developing a system specifically tailored to handle
this type of question.

Answer Type: Answers in QA systems can be
in the form of concise facts, relevant paragraphs,
or a combination of both. In our project, we are
using a hybrid approach where the answer type
can vary based on the specific question and context.

Answer Source: QA systems can retrieve
answers or relevant paragraphs from different
sources, including a constructed Knowledge Graph
(KG) or free-form text data. In our project, we uti-
lize both the information stored in the Knowledge
Graph and raw text data for question-answering
purposes.

Modeling Approach: QA systems can be built
using various approaches such as machine learning
(ML), deep learning (DL), rule-based methods, or
a combination of these techniques. In our project,



we employ a rule-based approach and leverage
natural language processing (NLP) techniques for
constructing the Knowledge Graph and KGQA
(Knowledge Graph Question Answering) system.
Additionally, DL models are utilized to retrieve
answers and relevant paragraphs from raw text
data.

By considering these different aspects, our project
aims to develop a comprehensive QA system that
can handle conversational questions, provide hy-
brid answers, retrieve information from both the
Knowledge Graph and text sources, and utilize a
combination of rule-based and DL approaches to
enhance the accuracy and effectiveness of the sys-
tem.

Classification/Categorization of QA Systems

Type of the Answer Evidence/Answer
Question Type Source

Modeling
Approach

" Definition "
Factoid based Hybrid

Knowledge Base

(KB)

Raw Text

MCQ Conversational Visual Machine Deep

RuleBased
Learning Learning

Figure 4: Question-Answering: Categorization

5.2 Popular Datasets

There are largely available QA datasets, generated
either by crowd-sourcing or by manual annotation.
Some of the popular datasets are listed below:

* The Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016), is a widely
used reading comprehension dataset. It
consists of question-answer pairs that are
created through crowd-sourcing, utilizing
Wikipedia as the primary source of informa-
tion. SQuAD is available in two versions:
SQuADI.1 and SQuAD2.0. SQuADI1.1 con-
tains a total of 107,785 question-answer pairs,
while SQuAD2.0 is larger, containing 161,560
question-answer pairs.

The dataset is designed to evaluate and train
models for reading comprehension and ques-
tion answering tasks. It provides a diverse
range of questions covering various topics, al-
lowing researchers and developers to assess
the performance of their question-answering
systems on real-world data. SQuAD has

played a significant role in advancing the field
of natural language processing and has been
instrumental in the development and evalua-
tion of numerous question answering models
and techniques. Its availability and large-scale
nature make it a valuable resource for training
and evaluating QA systems.

* The WikiQA dataset (Yang et al., 2015), is
a collection of 3,047 questions. These ques-
tions were extracted from Bing query logs
using simple heuristics that involved identi-
fying queries beginning with WH-questions
(such as "what," "who," "where," etc.) and
ending with a question mark (’?’). The pur-
pose of the WikiQA dataset is to provide a
resource for training and evaluating question-
answering systems. The dataset contains a
diverse set of questions that users typically
ask in search engines, making it relevant for
developing models that can understand and
respond to real-world user queries.

e The NewsQA dataset (Trischler et al., 2016),
is a collection of 119,633 natural language
questions. These questions were generated by
crowd-workers and are based on 12,744 news
articles sourced from CNN. In the NewsQA
dataset, the crowd-workers also highlighted
the specific text spans within the news articles
that contain the answers to the corresponding
questions. This allows for the development
and evaluation of question-answering systems
that can accurately locate and extract relevant
information from news articles.

There are many more publicly available QA
datasets.

5.3 Evaluation Metrics

There are many evaluation methods available in the
field of QA.

* Precision, Recall, F1 Score: For factoid-based
question-answering, the standard way to mea-
sure performance is to calculate precision, re-
call, or F1 score.

Precision measures the proportion of correctly
predicted positive instances, i.e., correct an-
swers out of all instances predicted as positive.
It quantifies the system’s ability to provide
accurate and relevant answers. Precision is
calculated as the ratio of true positives (cor-
rectly predicted answers) to the sum of true



positives and false positives (incorrectly pre-
dicted answers).

Recall, on the other hand, measures the pro-
portion of correctly predicted positive in-
stances out of all actual positive instances, i.e.,
all correct answers. It captures the system’s
ability to retrieve all the relevant answers. The
recall is calculated as the ratio of true positives
to the sum of true positives and false negatives
(missed answers).

The F1 score combines both precision and re-
call into a single metric, providing a balanced
evaluation of the system’s performance. It
is the harmonic mean of precision and recall
and takes into account both the precision and
recall values. The F1 score is calculated as
2 times the product of precision and recall,
divided by the sum of precision and recall.

These metrics, precision, recall, and F1 score,
help in assessing the accuracy, complete-
ness, and overall performance of factoid-
based question answering systems, providing
insights into how well they are able to pro-
vide correct and relevant answers to the given
questions.

BLEU: Bilingual Evaluation Understudy
(BLEU) is an evaluation metric commonly
used in machine translation tasks, but it can
also be applied to other natural language pro-
cessing tasks, including question answering.
BLEU measures the similarity between a can-
didate response (generated by a system) and
one or more reference responses (provided by
human evaluators). It calculates a modified
n-gram precision by comparing the n-grams
(contiguous sequences of words) in the can-
didate response with those in the reference
responses.

ROUGE: It is a set of evaluation metrics com-
monly used for assessing the quality of au-
tomatic summarization, machine translation,
and question-answering systems. ROUGE-
1, ROUGE-2, and ROUGE-N are the most
widely used variants of the ROUGE met-
rics. ROUGE-1 measures the overlap of un-
igrams (individual words), ROUGE-2 mea-
sures the overlap of bigrams (pairs of consec-
utive words), and ROUGE-N measures the
overlap of n-grams (contiguous sequences of
n words).

6 Dataset

This section provides a comprehensive explanation
of the dataset creation process to facilitate research
on knowledge infusion into deep learning models
for question-answering. The created dataset con-
tains AviationKG, and question-answering datasets,
i.e., AviationQA, and AeroQA.

6.1 AviationKG

We create an Aviation Knowledge Graph using
NTSB reports and ADREP taxonomy in the
Protégé tool. The construction process involves
several steps, including pre-processing the NTSB
reports, creating an ontology, building the Knowl-
edge Graph, evaluating the KG, and addressing
challenges encountered during the creation of
the Aviation KG. Figure 1 illustrates the pipeline
for constructing the KG from NTSB reports. A
total of 4000 NTSB reports spanning from 1962
to 2015, with an average length of 3000 words
per report, are utilized in this construction. These
reports contain both unstructured paragraphs and
structured tables that provide information about
aircraft accidents.

Pre-processing
We preprocess the NTSB reports before proceeding
with entity and relation extraction. First, the NTSB
reports are converted from PDF to TXT files,
followed by the application of techniques like
stopword-removal, PoS tagging, and lemmatiza-
tion.

Ontology Creation

With the help of domain experts and ADREP
taxonomy, we construct an ontology from the
accident reports. For example, domain knowledge
from ADREP ‘Events’ taxonomy is used for
creating the Event class. ‘Events’ taxonomy is
relevant because every accident report has an
event sequence that gives a gist of the cause.
For ontology creation, we extract the ADREP
taxonomy in a tree-like data structure such that
a unique path exists from the root to each leaf
node. Subsequently, we obtain classes by mapping
NTSB occurrences to the adequate root-to-leaf
paths.

Following is an example of an ADREP event
mapped to a NTSB occurrence.



Sample root-to-leaf path in ADREP Taxonomy

Aircraft Events

Operation of the aircraft related event
Aircraft handling related event
Dragged wing/rotor/pod/float

ADREP ‘Events’ taxonomy contains a num-
ber of events and its root node is ‘Aircraft Events’.
An event involving a ‘dragging of a wing’ is
under the category of ‘Aircraft handling’. This
root-to-leaf path of ‘Dragged wing/rotor/pod/float’,
ADREP event is mapped to ‘DRAGGED WING,
ROTOR, POD, FLOAT OR TAIL/SKID’, which
occurs as an event in a NTSB report.

However, ADREP taxonomy is not always
compatible with the NTSB documents for creating
classes. Hence, we apply the following extraction
techniques to the NTSB text for finding entity
classes and their instances:

* Named Entity Recognition (NER) is used to
identify names, organizations, etc., from the
NTSB text. These named entities are inserted
as entity classes in our ontology. For example,
Long Beach, Las Vegas, and Chicago are the
instances of Location class present in NTSB
reports identified by the NER method.

* Term Frequency — Inverse Document Fre-
quency (TF-IDF) technique is used to deter-
mine the important terms across NTSB doc-
uments, which are later organized as entity
classes in ontology. For example, Aircraft
ID, Aircraft Damage, and Pilot Certificate are
some of the important terms identified by the
TF-IDF technique.

* C-value overcomes the drawback of TF-IDF
in obtaining multi-word terms. Multi-words
are necessary to identify the entities such as
Landing Gear, Vertical Stabilizers, etc., in air-
craft reports.

* Sentence Clustering is used for grouping
similar sentences and discovering the entities
among them.

* Syntactic Analysis technique is used where
the corpus is annotated with part-of-speech
tags to find hypernyms, hyponyms, and
meronyms. We extract all the sentences con-
taining three or more nouns in the analysis.

Then, we manually try to identify lexically
related entities. The intuition behind select-
ing nouns is that most of the time, the entities
(classes and instances) are tagged as nouns
in the ontology. Examples of such findings
are — (a) ‘Scratches are found on engine’s na-
celle” From this, we can observe that na-
celle is part of an engine. (b) ‘During the
engine inspection, it was observed that the
wing mounted engine was working, but the
fin mounted engine was not working.” Here,
we observe that wing mounted engine and fin
mounted engine are types of engine.

* DL based techniques are also used for entity
extraction such as NER_DL, Onto_100 and
NER_DL_BERT (trained on CoNLL dataset
and uses BERT embeddings).

Dependency Analysis and Open-IE techniques
are used for relation extraction. The extracted
relations are observed and inserted as properties in
our Aviation Ontology. Furthermore, we manually
add some properties by observing entity classes in
ontology from the NTSB reports.

Knowledge Graph Construction

We have an Aviation Ontology with entity classes,
instances, object properties, and data properties.
The entities and relations must be linked in the
form of triples. We look at entities and relations
in the constructed ontology to extract triples from
the NTSB reports using regular expressions. These
extracted triples are inserted into an ontology to

form a Knowledge Graph.
Metrics Count(#)
Entity Class 239
Individual 8894
Object Property 300
Data Property 71
Axioms 97879
Part of Relation among Classes 494
Property of Relation among Classes 353

Table 1: Properties of Aviation Knowledge Graph: Avia-
tion KG is constructed in Protégé where the class count
and instances are displayed.

Table 1 describes the properties for Aviation
Knowledge Graph constructed from the NTSB
reports in Protégé.

Knowledge Graph Evaluation
We manually evaluate the terms obtained through



entity and relation extraction techniques. A
domain expert in Honeywell Corporation provided
a small set of cases to validate the reach of the
constructed Knowledge Graph. A total of 120
SPARQL queries with gold answers of different
categories were tested, where our KG answered
83 questions, thereby achieving an accuracy of
69.1%.

6.2 Aviation Corpus: A dataset consisting of
Aviation text

The MetaQA dataset requires a C4 corpus for the
MLM training with the SKILL approach. To con-
duct experiments using our AeroQA dataset, we
compiled the Aviation corpus, comprising 665k
lines of English text related to the aviation domain.
This corpus was obtained by scraping 4,000 Na-
tional Transportation Safety Board reports from
the NTSB website, covering the period between
1981 and 2018. The reports, initially in PDF for-
mat, were converted to JSON format for easier
processing. The paragraphs that contain clean text
were extracted from selected sections of the reports
which are Analysis, Probable Cause and Findings,
and Factual Information. The selected paragraphs
were then curated and included in the Aviation cor-
pus, which served as a valuable resource for our
research and experimentation.

6.3 Created QA dataset for knowledge
infusion: AviationQA and AeroQA

In the context of knowledge infusion into language
models for the aviation domain, we will discuss
two carefully curated QA datasets, AviationQA
and AeroQA. These datasets have been specifically
designed to enhance the performance of language
models in answering aviation-related questions.

AviationQA

A synthetic dataset, AviationQA (Agarwal et al.,
2022a) is created for question-answering in the
aviation domain. We web scrape the National
Transportation Safety Board (NTSB) website and
download 12k reports from 2009-2022. A set of 90
question templates is prepared using the common
structure of documents in the format:

* Where did the accident [ ] take place?

* What is the model/series of the aircraft bearing
accident number [ ]?

¢ Was there fire on the aircraft of the accident
number [ ]?

The template of questions is created, and answers
to those questions are extracted from every NTSB
report. Because every report is associated with an
accident number, we place [ ] in the template to
indicate which report the question pertains to, e.g.,
CHIO7LA273, LAX07LA148. NTSB reports are
semi-structured, containing unstructured data in
paragraphs and structured data in tabular format.
We extract answers from each report w.r.t the tem-
plate using the regular expression method. Later,
QA pairs are scrutinized. As some reports’ struc-
ture varies, different scripts are written to fetch
answers for those reports.

We successfully created 1 million factoid QA
pairs in the aviation domain using the template-
based method. The dataset will contribute to
research and development in the aviation industry.

AeroQA

To address the limitations of the AviationQA (Agar-
wal et al., 2022a) dataset and evaluate the reason-
ing ability over the AviationKG knowledge graph,
we have created AeroQA, a multi-hop question-
answering dataset. While AviationQA is a large
dataset in the aviation domain, it is limited in two
key aspects. Firstly, all the questions in Avia-
tionQA are single-hop, which does not allow for
evaluating the model’s ability to reason over knowl-
edge graphs like AviationKG. Secondly, only a
fraction of AviationQA pairs contain questions that
can be answered using the triples from AviationKG,
limiting the exploitation of the full reasoning poten-
tial of the QA pairs. AeroQA is specifically curated
to overcome these limitations and provide a dataset
that facilitates reasoning over KGs in the aviation
domain.

AeroQA, a comprehensive dataset for the
aeronautics domain, was constructed by scraping
NTSB reports from the official NTSB website.
This dataset complements the pre-processed
AviationKG knowledge graph and enables
reasoning tasks. AeroQA encompasses over
31k questions designed for both single-hop and
multi-hop reasoning. The dataset is divided into
three subsets: training, validation, and testing,
with an 80:10:10 split ratio. Below, we present a
selection of examples from the AeroQA dataset to
provide a glimpse into its content.



Examples of Single-hop Questions in AeroQA:

e Q: ‘What certificate does [Pi-
lot_ATLO3LA101] have?
A: Private

* Q: What is the engine manufacturer associated
with [Registration_N127RB]?
A: Lycoming

* Q: What caused
ber_FTW93LA202]?
A: Pre-Flight Planning | Fluid Fuel | Terrain
Condition

[AccidentNum-

Examples of Two-hop Questions in AeroQA:

* Q: What is the aircraft category of the reg-
istered aircraft involved in [AccidentNum-
ber MIAOSLA036]?

A: Airplane

e What could have
cause of the accident
ber_SEA96TA046]?

A: Pilot in Command | Pilot of other Aircraft |
Check Pilot

contributed to the
[AccidentNum-

The AeroQA dataset includes multiple answers for
each question, separated by the ’I” symbol. There
are 83 relations for the 1-hop QA pairs and 26 rela-
tions for the 2-hop QA pairs in the dataset. These
relations serve as templates for constructing the
QA pairs and were derived using the prompt-based
approach with ChatGPT. The template structure
examples of the AeroQA dataset are presented in
Table 2 for 1-hop questions and Table 3 for 2-hop
questions.

7 Knowledge Graph and Deep Learning
based Question Answering Systems

In this section, our focus will be on exploring dif-
ferent hybrid Question Answering (QA) systems
that integrate both Knowledge Graph (KG) and
Deep Learning (DL) approaches. The construc-
tion of a hybrid system is a central concept driving
our project. We will delve into the methodologies
and techniques employed by these hybrid QA sys-
tems to leverage the strengths of both KG and DL.
By combining the structured knowledge represen-
tation of a KG with the learning capabilities of
DL models, these hybrid systems aim to enhance
the accuracy, comprehensiveness, and efficiency of
question-answering.

7.1 Hybrid Question Answering over
Knowledge Base and Free Text

In paper (Xu et al., 2016), the authors introduce
a hybrid question-answering (hybrid-QA) system
that combines the use of a structured knowledge
base (KB) and free text to answer questions. The
motivation behind this approach is the inherent in-
completeness of knowledge bases, which limits
the scope of questions that can be answered solely
based on structured data. To address this limita-
tion, the authors propose an Integer Linear Program
(ILP) model for hybrid-QA (Figure 5). This model
leverages both the KB and free text to find the most
relevant and accurate answer to a given question.
The ILP model is designed to handle various types
of questions and generate query templates that can
be used to retrieve information from the KB and
free text sources.

As an example, the paper presents the question
"Who is the front man of the band that wrote Coffee
TV?" This question serves as an illustration of how
the ILP model can be applied to answer complex
queries by combining information from the KB and
free text sources. By studying the ILP model and
its application in this hybrid-QA system, we can
gain insights into the integration of structured and
unstructured data sources for question answering.

The hybrid-QA system described in the paper
follows a process that involves the decomposition
of the question into triplets, the extraction of rela-
tions from both the knowledge base (KB) and the
text, and the identification of entities from the KB
and text based on the obtained relations. Here is a
rephrased version of the steps:

1. The question is analyzed and decomposed into
triplets consisting of subject (subj), relation
(rel), and object (obj). This decomposition al-
lows for entity linking, where possible, knowl-
edge base entities mentioned in the question
are identified.

2. Two types of relation extractors are used to
predict both KB predicates and textual rela-
tions. These extractors aim to identify the
relationships between entities mentioned in
the question or between question words and
entities.

3. The entities mentioned in the question are fur-
ther identified by considering the predicates
obtained from the KB. Similarly, the predi-
cates obtained from the text are validated with



Relation
hasAircraftManufacturer
hasFederal AviationRegulation
OccurredAtCountry

Template
What is the aircraft manufacturer associated with [HEAD]
What is the Federal Aviation Regulation associated with [HEAD]
In which country did [HEAD] occur

Table 2: The table displays the templates employed in constructing the AeroQA 1-hop dataset. These templates
utilize the placeholder [HEAD], which corresponds to the entity, i.e., accident number, and registration number

mentioned in the report.

Relationl Relation2

Template

hasRegistrationNumber
IsCausedBy IsCausedDueTo

hasPilot haslInstructorRating

hasAirworthinessCertificate

What is the airworthiness certificate of the
registered aircraft involved in [HEAD]
What could have contributed to the cause of
the accident [HEAD]

What was the instructor rating of the pilot in
the aircraft involved in [HEAD]

Table 3: The table showcases the templates used for constructing the AeroQA 2-hop dataset. In these templates, the
placeholder [HEAD] represents the entity, i.e., accident number, and registration number of the report, which is

utilized to generate the 2-hop AeroQA pairs.

the entities mentioned in the question. This
step helps in refining the understanding of the
relationships between entities and the specific
context of the question.

((who is the front man of the band that wrote Coffee & TV )

Figure 5: A running example of the hybrid-QA system
for the question who is the front man of the band that
wrote Coffee & TV, where the blue annotations are cor-
rect.

By performing these steps, the hybrid-QA system
combines the information from the knowledge base
and the text to effectively answer questions that re-
quire both structured and unstructured data sources.

7.2 K-BERT: Enabling Language
Representation with Knowledge Graph

K-BERT (Liu et al., 2020), as described in the pa-
per, utilizes a technique where triples from a knowl-
edge graph (KQG) are integrated into sentences as
domain knowledge. The architecture of K-BERT
is depicted in Figure 6.

In K-BERT, a sentence tree is constructed by
leveraging the KG and the input question. The
sentence tree consists of triplets connected from
the KG, with entities that are matched to the en-
tities mentioned in the input question. This sen-
tence tree is then passed through an embedding
layer and a visible layer, as illustrated in Figure
7. The embedding layer converts the sentence tree
into token-level representations, including token
embeddings, position embeddings, and segment
embeddings. These representations capture the con-
textual information and the relationships between
the entities in the sentence tree. The visible layer,
on the other hand, plays a crucial role in addressing
the knowledge noise (KN) issue. By utilizing the
visible matrix, the visible layer prevents semantic
changes in the sentence representation. For exam-
ple, in Figure 7, the relation between "China" and
"Apple" is faded in the embedding representation
since "China" is not directly related to "Apple".
This helps mitigate the potential influence of exces-
sive knowledge in sentence representation.

The knowledge-rich encoding obtained from K-
BERT can be used for various purposes, such as



classification and question-answering tasks, where
incorporating domain knowledge from the KG is
beneficial. By integrating triples from the KG
into the sentence representation while managing
knowledge noise, K-BERT enhances the model’s
understanding and performance on tasks that re-
quire both textual information and domain-specific
knowledge.

Input sentence: Tim Cook is currently visiting Beijing now

Knowledge Graph

Apple City
e /

K-BERT Knowledge LE\O is_a
layer /

Tim Cook Beijing

China — CﬁP“ﬁll

Sentence tree:

Tim — Cook —— is — currently — visiting — Beijing — now
CEO — Apple China — capital is a — City

) 3
Embedding layer Seeing layer

l Embeddings l Visible matrix

Mask-Transformer Encoder

l

Tasks Sequence labeling

Classification

Figure 6: The model structure of K-BERT
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Figure 7: The process of converting a sentence tree into
an embedding representation and a visible matrix.

7.3 SRLGRN: Semantic Role Labeling Graph
Reasoning Network

SRLGRN (Zheng and Kordjamshidi, 2020), as pre-
sented in the paper, is a graph reasoning network
that leverages the semantic structure of sentences to
learn cross-paragraph reasoning paths and identify
supporting facts and answers jointly. The architec-
ture of SRLGRN, depicted in Figure 8, consists of
several components: Paragraph Selection, Graph

Construction, Graph Encoder, Supporting Fact Pre-
diction, and Answer Span Prediction.

In the Paragraph Selection step, given a question
as input, the BERT model is employed to select the
most relevant two paragraphs from a set of n para-
graphs. These selected paragraphs serve as the ba-
sis for subsequent processing. Next, the Graph Con-
struction step involves creating a sub-graph using
the question and the two selected paragraphs. The
selected paragraphs are passed through an encoder
to generate token and sentence embeddings. These
embeddings, along with the question, contribute
to constructing the sub-graph. The constructed
sub-graph is then encoded using a Graph Convolu-
tional Network (GCN) in the Graph Encoder step.
The GCN incorporates information from the graph
structure and captures the relationships between
graph elements, facilitating reasoning over the sub-
graph. For the task of Supporting Fact Prediction,
the graph sentences and sentence embeddings are
concatenated. This concatenated representation is
used to predict the supporting facts, which are cru-
cial pieces of information that provide evidence
for the answer. Similarly, for Answer Span Predic-
tion, the graph arguments and token embeddings
are concatenated. This concatenated representation
is utilized to predict the answer span, indicating
the specific range of tokens within the context that
contains the answer.

By employing graph reasoning and jointly con-
sidering supporting facts and answer span predic-
tion, SRLGRN enhances the understanding and
reasoning capabilities of the model, enabling it
to effectively tackle complex question-answering
tasks that require cross-paragraph comprehension
and reasoning.

Figure 8: The Semantic Role Labeling Graph Reasoning
Network (SRLGRN) model

7.4 KEPLER: A Unified Model for
Knowledge Embedding and Pre-trained
Language Representation

Knowledge Embedding and Pre-trained LanguagE
Representation (KEPLER) (Wang et al., 2021), as
described in the paper, is a framework that aims to



integrate factual knowledge into Pre-trained Lan-
guage Models (PLMs) and generate effective text-
enhanced knowledge embeddings. The architec-
ture of KEPLER, illustrated in Figure 9, consists
of several components: entity embedding, relation
embedding, Masked Language Modeling (MLM)
encoding, and training objectives.

In KEPLER, the entity descriptions in Knowl-
edge Graph (KGQG) triplets are encoded to obtain
entity embeddings. Similarly, relation embeddings
are created to represent the relationships between
entities in the KG. The MLM encoding is per-
formed on the supporting text, leveraging the pre-
trained PLM. This process involves masking cer-
tain tokens in the text and training the model to pre-
dict the masked tokens based on the surrounding
context. By performing MLM encoding, KEPLER
enhances the understanding and representation of
the text.

Both the knowledge embedding and MLM ob-
jectives are trained on the same PLM, allowing the
model to effectively incorporate factual knowledge
and leverage the power of the PLM for language
understanding. After the training process, the fine-
tuned KEPLER model can be utilized for various
applications, leveraging its integrated knowledge
embeddings and enhanced language representation
capabilities.

KEPLER offers a comprehensive framework that
merges factual knowledge from Knowledge Graphs
(KGs) with the powerful capabilities of Pre-trained
Language Models (PLMs). This integration leads
to enhanced knowledge integration and the genera-
tion of highly effective text-enhanced knowledge
embeddings.

Figure 9: The KEPLER framework

7.5 KGTS5: Sequence-to-Sequence Knowledge
Graph Completion and Question
Answering

KGTS5 (Saxena et al., 2022) presents a novel ap-
proach where both knowledge graph link predic-
tion and question-answering tasks are framed as
sequence-to-sequence (seq2seq) tasks. The frame-

work of KGTS5, depicted in Figure 10, involves
training a T5 model from scratch using KG triplets
and QA pairs. The TS5 model is trained by extract-
ing triplets (s, p, o) from the KG and converting
them into verbalized forms such as (s, p, ?) and (?,
p, 0). This training process enables the TS model to
learn the patterns and relationships within the KG.
Subsequently, the model is fine-tuned using QA
pairs, resulting in the development of a question-
answering system named KGTS.

Figure 11 illustrates a comparison between the
link prediction approach used in conventional
Knowledge Graph Embedding (KGE) and the ap-
proach employed in KGTS5.

[predict tail: john o'connor | position held }—L> ° archbishop
-

I predict head: blondeliini | parent taxon ]—> KGT5

.
predict answer: what does jamaican people speak ]—J_> ® jamaican english

Figure 10: Overview of KGT5 method
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Figure 11: Inference pipeline of (A) conventional KGE
models versus (B) KGTS5 on the link prediction task.

7.6 SKILL: Structure Knowledge Infusion for
Language Models

We investigate incorporating knowledge into lan-
guage models (LMs) using knowledge triples and
textual information. The flow diagram depicted in
Figure 12 illustrates the adopted SKILL (Moiseev
et al., 2022) approach. In this approach, triples
are extracted from the knowledge graph (KG) and
combined with the text to prevent any degradation
in the model’s performance on natural language
understanding tasks. After combining the triples
and text, the T5 model is continually pre-trained
using a salient masked language modeling tech-
nique. This process results in a knowledge-infused
T5 model. Subsequently, the trained model is fine-
tuned for the specific task, which in this case is a
question answering (QA), leading to the creation
of the fine-tuned model.



Fine-Tuned TS

‘ Fine-Tuning

Knowledge
Infused T5

After Training
QA dataset
Continual
Pre-Training
—‘ Triples * Corpus ‘

Knowledge Graph

Figure 12: Illustrative figure represents the SKILL ap-
proach (Moiseev et al., 2022), which involves two steps.
First, the model undergoes continual pre-training using
triples+text. Subsequently, the model is fine-tuned for
specific tasks, such as question answering (QA).

7.7 QA-GNN and GREASELM

In this section, we will explore two state-of-the-art
architectures, namely QA Graph Neural Net-
work (QA-GNN) (Yasunaga et al.,, 2021) and
Graph Reasoning Enhanced Language Models
(GREASELM) (Zhang et al., 2022), which
leverage both Knowledge Graphs (KG) and
Language Models (LM) for question answering
and reasoning.

QA-GNN Model

* The QA-GNN (Yasunaga et al., 2021) ap-
proach combines a question and an answer
to create a QA context node. A subgraph is
extracted based on this QA context node, and
a joint graph is formed by connecting the con-
text node with entities from the QA context
(see Figure 13).

» Language Models (LM) are utilized to obtain
representations from the QA context, captur-
ing the information in a comprehensive man-
ner.

* LMs are employed to determine the impor-
tance of KG nodes in relation to the given QA
context. Relevance scores are calculated using
LM, facilitating the understanding of the rela-
tionship between the context node and other
nodes in the graph.

* A Graph Neural Network (GNN) module is
constructed to update node representations. It
employs iterative message passing between

neighboring nodes, allowing for the refine-
ment and enhancement of representations (see
Figure 14).

If it is not used for hair, a round brush is an example of what?

A. hair brush B. bathroom C.art supplies*
D. shower E. hair salon
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Figure 13: Combining QA context node to form the
sub-graph.
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Figure 14: Overview of QA-GNN approach.

GREASELM

The GREASELM (Zhang et al., 2022) model,
which is derived from QA-GNN, employs a com-
prehensive architecture for reasoning with KG and
LM. The architecture, depicted in Figure 15, con-
sists of the following key components and steps:

» Textual Context: The textual context, along
with a special interaction token, is appended
and passed through multiple layers of LM-
based unimodal encoding. This encoding cap-
tures the textual information in a layered man-
ner.

e Local KG Extraction: A relevant local KG
is extracted, and an interaction node is con-
nected to it. The KG entities interact indi-
rectly with the tokens in the language context
through the interaction node, enabling knowl-
edge integration.

* GREASE LM Layers: In subsequent
GREASE LM layers, both the language rep-
resentation and the KG are updated. The lan-
guage representation continues to be refined



through LM layers, while the KG undergoes
processing using a Graph Neural Network
(GNN), enabling reasoning over its knowl-
edge.

* Modality Interaction (MlInt): At each layer,
the representations of the interaction token
and node are pulled, concatenated, and passed
through a Modality Interaction (MlInt) unit.
This unit mixes their representations, facilitat-
ing the fusion of knowledge from the KG and
language context.

* Iterative Updates: In subsequent layers, the
mixed information from the interaction ele-
ments combines with their respective modal-
ities. This allows the knowledge from the
KG to influence the representations of indi-
vidual tokens, and the context from language
to impact the fine-grained entity knowledge
representations in the GNN.

Through this iterative process of updating repre-
sentations and integrating knowledge from KG and
language context, GREASELM enables effective
reasoning for question answering tasks.

Figure 15: GREASELM Architecture

8 Summary

This survey paper offers a comprehensive overview
of the use of knowledge graphs, deep learning, and
knowledge infusion techniques in language mod-
els for question-answering tasks. It explores the
fundamental aspects and characteristics of knowl-
edge graphs, as well as the training and fine-tuning
methodologies of deep learning models. The paper
extensively examines question-answering, encom-
passing popular datasets and evaluation metrics
employed in this domain. Furthermore, it con-
ducts a thorough investigation of various knowl-

edge infusion techniques, accompanied by the cre-
ation of knowledge graphs and question-answering
datasets.

9 Conclusion and Future Research
Directions

In conclusion, it is evident that the performance
of a DLQA system is constrained without do-
main knowledge. However, incorporating domain-
specific knowledge into the DL system yields sig-
nificant improvements in the results. Integrating
a pre-trained language model (LM) with domain-
specific knowledge becomes crucial. This combina-
tion not only leverages the power of DL models but
also harnesses the comprehensive understanding
provided by the LM, resulting in a more robust and
effective question-answering system. By bridging
the gap between domain-specific knowledge and
language understanding capabilities, this integrated
approach holds great promise for advancing the
field of question-answering and facilitating more
accurate and insightful responses.

As a future research direction, it is crucial to
acknowledge the limitations of current knowledge
sources, including knowledge graphs, and the vast
availability of language models. Therefore, our
future efforts will focus on exploring techniques
to directly integrate domain-specific knowledge
into language models, potentially replacing con-
ventional knowledge bases. This integration aims
to optimize the utilization of knowledge in a more
efficient and effective manner.
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