
Information Extraction with focus on Multi-hop Question Answering,
Intent Detection and Slot Filling : A Survey

Apurva Kulkarni, Pushpak Bhattacharyya
Indian Institute of Technology Bombay, India

apurva1q2w3e@gmail.com, pb@cse.iitb.ac.in

Abstract

Information extraction (IE) is a fundamental
and important problem in natural language pro-
cessing. It covers a vast spectrum of tasks that
have been the focus of research since the early
days of natural language processing. This sur-
vey paper gives an overview of two information
extraction problems - multi-hop question an-
swering and intent detection and slot filling for
dialogue state tracking. We explore the use of
knowledge graph assisted deep learning mod-
els for answering multi-hop questions, which
involve answering questions that require mul-
tiple steps of reasoning. For intent detection
and slot filling, we explore two different types
of problem statements. We first look at mod-
els for the case where intent and slot filling
classes are predetermined, and the user queries
are complete and independent of any ongoing
dialogue. Subsequently, we discuss a versa-
tile intent detection and slot filling system for
dialogue state tracking, which can adapt to dif-
ferent class schemas. This system allows for
handling varying types of intents and slot fill-
ing classes in dialogues from different domains.
Lastly, we examine the challenge of contin-
ual learning in the context of dialogue state
tracking. This involves training the model se-
quentially on multiple tasks while mitigating
the issue of catastrophic forgetting, where the
model’s performance on previous tasks signifi-
cantly deteriorates when learning new tasks.

1 Problem Statement

The problem statements of the three tasks are stated
below.

• Multi-hop question answering: Given a
question and context paragraphs, the task is to
predict the answer span from the context, the
questions requiring multiple supporting facts
from different parts of the context.

• Intent detection and slot filling: Given an in-
put query and the intent and slot filling classes

relevant to the query, the task is to predict the
correct intent class for the query and fill all
possible slots using the information from the
query. The following are the sub-problems
associated with this problem statement.

– Few-shot and Zero-shot intent detec-
tion and slot filling: Given limited
training examples (few-shot) or no train-
ing examples (zero-shot) and an unseen
schema for intent classes and slots, pre-
dict the most appropriate intent class and
identify the correct slot values.

– Continual Learning: Given training
data for multiple tasks in a sequential
manner, learn a model that predicts in-
tent classes and slot values with high ac-
curacy for each incoming task without
large degradation of performance on pre-
viously learned tasks.

2 Motivation

Information extraction systems play a crucial role
in today’s world. Query answering systems are
widely used and allow users to access any informa-
tion they require instantly. This work focuses on
multi-hop question answering, which aims to sim-
ulate more complex real-world questions. Virtual
assistants today play an essential role in helping
users with various tasks like finding flights, book-
ing restaurants, banking, and more, and dialogue
state tracking is a crucial part of such dialogue
systems. With the increase in the popularity of con-
versational interfaces that support a large number
of services in multiple domains, there is a need
for dialogue systems that can effectively support
these services and easily incorporate new services.
Intent and slot filling are key components of a dia-
logue state tracking system. The ability to support
new services and learn from a continuous stream of
data is an essential requirement for multi-domain



dialogue systems. This is known as continual learn-
ing (CL), and it has become a crucial problem as
current deep learning systems are not able to ef-
fectively retain previously learned knowledge and
adapt to new information simultaneously. The main
challenges in CL are catastrophic forgetting and
concept drift. As a multi-domain system is trained
with a continuous stream of data where new do-
mains are introduced one at a time, the systems tend
to forget previously learned knowledge and poorly
perform on earlier tasks. CL has been explored in
fields like computer vision and has recently been
gaining attention in NLP.

3 Background

3.1 Multi-Hop Question Answering

Multi-hop questions involve reasoning over mul-
tiple supporting facts from different parts of the
context to determine the answer to the question.
The supporting facts generally share common enti-
ties, which link the supporting facts together and
allow for reasoning to answer multi-hop questions.
Hence, encoding the information in the context in
the form of a knowledge graph is very useful for
multi-hop question answering as it directly links the
entities from different parts of the context, which
are necessary for answering the question. A lot
of recent research has been focussed on combin-
ing the information stored in a knowledge graph
with the robustness of deep learning techniques for
complex reasoning tasks like multi-hop question
answering. The question answering system that we
experiment with in this work is a knowledge graph
assisted deep learning system, which generates em-
beddings of the nodes of the knowledge graph for
the deep neural network answer prediction module.

3.1.1 Knowledge Graph Embeddings
Knowledge graph embedding is a technique
used to allow deep learning systems to use
information from knowledge graphs. Knowledge
graphs are often sparse and incomplete and
are difficult to integrate into a deep learning
system. Knowledge graph embedding encodes
the information in knowledge graphs to dense,
low-dimensional vector spaces, which is com-
patible with deep learning architectures. These
embeddings also have more global information
from the knowledge graph and can make the sys-
tem robust to missing links in the knowledge graph.

There are many techniques to create knowl-
edge graph embeddings, each trying to capture
specific information from knowledge graphs.
One approach used in these techniques is to
train a model to optimize the embedding vectors
assigned to the nodes such that every triplet
from the knowledge graph satisfies a specific
score function in the vector space. The many
translation based embedding techniques fall under
this category. Another approach is to use some
general embedding for the entities and infuse
information from the knowledge graph to generate
the knowledge graph embedding vectors. Some
popular knowledge graph embedding techniques
are discussed below.

• TransE - Bordes et al. (2013) first proposed
a knowledge graph embedding technique,
TransE, that optimizes the embedding vectors
to satisfy a simple translation based score
function. It was one of the first efforts
that used a translation based score function
which served as the inspiration for many
other translation based techniques that try to
capture more information in the embeddings
by adding complexity to the score function
used.

In TransE, each node and relation in the
knowledge graph is represented by a unique
embedding vector. These vectors are
randomly initialized and are updated to
satisfy the translation based score function
on every triplet in the knowledge graph
through an optimization process. A triplet
from a knowledge graph consists of the head
and tail nodes that represent some entities
and a relation that connects the two. The
score function in TransE forces the vector
representing a head node translated by the
relation vector to be close to the tail node
vector for all the triplets. The score and loss
functions are shown in figure 1.

Figure 1: Score function and Loss function for TransE



The training process for TransE is as follows.
First, all triplets from the knowledge graph
are extracted and stored as the golden triplets
set. Then, a set of corrupted or negative
triplets is created by taking the original
triplets and replacing one node in each
triplet with a random node in the knowledge
graph. This process of creating corrupted
triplets could result in false negatives, so
some techniques to reduce this have been
proposed in later works. Embedding vectors
for nodes and relations in the knowledge
graph are randomly initialized. The loss
function chosen (figure 1) is optimized using
stochastic gradient descent iterating over all
golden and corrupted triplets. This process
generates vector embeddings that satisfy the
score function for golden triplets and not
for incorrect triplets because of how the loss
function in figure 1 is constructed.

TransE is the most popular translation based
embedding technique because of its simplicity
and effectiveness, but it has a few drawbacks.
One of the main drawbacks of the simple
score function is described in the following
situation. If two triplets share the same
relation and tail node with different head
nodes, then the score function will try to
update the vectors of the two head nodes to
be close to each other. However, if the same
head nodes are each connected to different
tail nodes by some other relation in the
knowledge graph, then it would require the
head node vectors to be different according
to the score function. For example, if ‘Modi’
and ‘India’ are related by ‘Prime Minister’
relation, ‘Nehru’ and ‘India’ are related by
‘Prime Minister’ relation, then this would
require embeddings of ‘Modi’ and ‘Nehru’ to
be close according to TransE scoring function,
but another relation like ‘Political Party’
would require them to be far.

• TransH - Feng (2014) proposed TransH,
a translation based embedding technique
similar to TransE but with one added
complexity to the score function. It aimed
to rectify the above mentioned drawback of
TransE caused because of the simplicity of
the score function. TransH adds a step in

the score function to distinguish between the
different relations in the knowledge graph.
This is achieved by projecting all embedding
vectors to a hyperplane specific to each
relation before the translation operation in
the score function. Each relation is assigned
two vectors, one is its embedding vector
like in TransE, and another to define its
unique hyperplane. These are represented
as dr and wr respectively in figure 3. h,
r and t represent the head node, relation
and tail node embeddings respectively. fr
is the score function and L is the loss function.

The training process is the same as that in
TransE. TransH is able to improve on the
drawback of TransE since if two head nodes
are connected to the same tail node by the
same relation; then their embedding vectors
need not be the same; only the projection of
the head vectors onto the hyperplane specific
to that relation need to be the same. This
allows TransH embeddings to capture more
information from the knowledge graph.

• Many other translation based embedding
techniques including TransR (Lin et al.,
2015) and TransD (Ji et al., 2015) followed
the above. In Lin et al. (2015), the authors
observed that entities could have multiple
aspects and cannot capture all relations in the
same space. It modeled entities and relations
in distinct spaces, and the scoring function
projected entities to the relation space before
the translation operation. Other techniques
like TransD (Ji et al., 2015), ComplEx
(Trouillon et al., 2016), DistMult (Yang et al.,
2014) all generate embeddings on the same
principle as above and employ more complex
score functions. Later works introduced
neural network layers in the score function
computation, one of which is discussed below.

• ConvE - The ConvE embedding technique
Dettmers et al. (2018) uses a score function
that performs 2D convolutions over the
knowledge graph embeddings. The training
process is similar to all the techniques
discussed before. The following figure 2
shows the operations in the score function



Figure 2: ConvE embedding score function
(Dettmers et al., 2018)

Figure 3: Score function and Loss function for TransH

computations of ConvE.

• The other class of embedding techniques
takes general embeddings representing
entities in the knowledge graph and infuses
information of the knowledge graph con-
nections into them. Graph Convolutional
Networks (Kipf and Welling, 2016) and
Graph Neural Networks are examples of this,
which require general input embeddings and
output knowledge graph aware embeddings.
The former technique, GCN, is used in our
work and is described in detail in the next
section.

3.1.2 Graph Convolutional Networks
Graph Convolutional Network (GCN) Embedding
is an embedding technique that uses deep neural
networks with graph convolution layers to generate
embeddings from a knowledge graph. Unlike the
translation based embedding techniques discussed
in the previous section, GCN embeddings require
some general initial embedding that represents
each node, like Glove or BERT embeddings. These
input embeddings and all knowledge graph triplets
are passed as input to the GCN model, which
generates embeddings infused with information
from the knowledge graph.

The core operation in the GCN is the graph
convolution. It takes inspiration from the convo-
lution operation, which is a weighted average of
neighboring matrix values. Similarly, the graph
convolution operation averages the corresponding
values of connected neighbor nodes for the output
corresponding to each node. The process is
described in detail below.

The input embeddings for every node and the
knowledge graph triplets are stored. From the
knowledge graph triplet information, the adjacency
matrix is constructed. If ‘N’ is the number of nodes
in the graph, then the adjacency matrix is an ‘NxN’
matrix in which each node corresponds to one
row and one column. An entry in the adjacency
matrix is one if the nodes corresponding to its
row and column are connected in the knowledge
graph; otherwise, it is zero. The graph convolution
operation is shown in figure 4. The first step in it
is the product of a weight matrix, the matrix of
input embedding vectors, and the adjacency matrix.
The result of this is a matrix of vectors formed by
the weighted average of vectors corresponding
to connected neighbor nodes. In the figure, A is
the adjacency matrix, H i is the input embedding
matrix, W is the weight matrix and H i+1 is the
output embedding matrix. The result is passed
through the activation function to get the output
of the graph convolution layer. Multiple graph
convolution layers stacked together form a GCN.

Figure 4: Graph Convolution Operation



As described previously, the output of a
graph convolution layer for a particular node
is a weighted average of the input vectors
corresponding to nodes connected to that node
in the knowledge graph. This way, the output
embeddings of the GCN model are infused with
connection information from the knowledge graph.
Subsequent deep learning models can then use
the original input embeddings and the final GCN
embeddings, allowing them to benefit from the
knowledge graph information.

3.1.3 HotpotQA Dataset
HotpotQA is a question answering dataset with
open-domain multi-hop questions. The dataset
was collected by the authors of (Yang et al., 2018).
The purpose of this dataset was to train question
answering systems to answer more challenging
questions and perform complex reasoning since
most datasets like SQUAD have questions with
direct answers and do not address many challenges
of complex real-world questions. The dataset
contains 113k Wikipedia-based question-answer
pairs and context paragraphs for each pair. The
questions require finding and reasoning over
multiple supporting paragraphs to answer and are
not constrained to any pre-existing knowledge
bases.

The dataset contains two main types of ques-
tions in terms of reasoning, ’bridge’ type and
’comparison’ type. ’Bridge’ type questions require
answering multiple questions in order, where
the answer to one part of the question is needed
to answer the following parts. For example,
the question "Who is the Prime minister of the
country with the second largest population?"
requires answering ’India’ for the country, which
is necessary to answer the first part. An example of
’comparison’ type is "Which book is older, Harry
Potter or Oliver Twist?" where two questions
about when the books were written are parallelly
answered, and then the final answer is determined.
Table 1 shows an example from the HotpotQA
dataset.

3.2 Intent Detection and Slot Filling
3.2.1 ATIS Dataset
The ATIS dataset (Airline Travel Information
Systems) is a dataset consisting of audio record-

ings and corresponding manual transcripts about
humans asking for flight information on automated
airline travel inquiry systems. It is annotated for
intent and slot filling tasks, with 17 unique intent
classes. Examples of instances from the dataset is
shown in tables 2 and 3.

3.2.2 SNIPS Dataset
SNIPS (Coucke et al., 2018) is an open domain
dataset for intent and slot filling tasks with 16000
crowdsourced queries distributed among 7 user
intents. The intent classes are SearchCreative-
Work (e.g. Find me the I, Robot television show),
GetWeather (e.g. Is it windy in Boston, MA right
now?), BookRestaurant (e.g. I want to book a
highly rated restaurant in Paris tomorrow night),
PlayMusic (e.g. Play the last track from Beyoncé
off Spotify), AddToPlaylist (e.g. Add Diamonds to
my roadtrip playlist), RateBook (e.g. Give 6 stars
to Of Mice and Men), and SearchScreeningEvent
(e.g. Check the showtimes for Wonder Woman in
Paris), covering multiple different domains. Fur-
ther annotated examples are shown in tables 4 and
5.

3.2.3 Schema Guided Dataset
The Schema Guided Dataset (SGD) (Rastogi et al.,
2020) is a dataset consisting of 20k annotated
multi-domain, task-oriented conversations between
a human and a virtual assistant spanning 26
services belonging to 16 domains. The dataset
has been annotated for intent and slot filling
tasks. This dataset aims to simulate the real world
requirement of adapting systems to different
domains. To simulate this, it introduces the
complexity of varying intent and slot classes in
instances from different domains, with zero shot
test set evaluation.

The core feature of this dataset is the provision of
schemas for every service in the dataset. A schema
for a service is the combination of possible intents
and slots that can be associated with an utterance
from a dialogue of that service, along with descrip-
tions of the services and classes. This fixes the slot
combinations for a service and ensures that the slot
combinations are realistic and supported by actual
service APIs. Each schema has the name and de-
scription of the service it corresponds to. It also
contains the list of possible intent and slot classes
for the service. Each class has a name and a de-



Question The Oberoi family is part of a hotel company
that has a head office in what city?

Relevant Context Paragraphs

Paragraph 1: The Oberoi family is an Indian family
that is famous for its involvement in

hotels, namely through The Oberoi Group.
Paragraph 2:The Oberoi Group is a hotel company

with its head office in Delhi. Founded in 1934, the company
owns and operates 30+ luxury hotels and two river

cruise ships in six countries.
Answer Delhi

Table 1: Example from HotpotQA

Query Intent Class
show me the fares from
dallas to san francisco

atis-airfare

please give me flights
available from baltimore
to philadelphia

atis-flight

what ground transporta-
tion is there in atlanta

atis-ground
service

Table 2: Examples of ATIS intent classes

Query Slot filling tags
show me the fares
from dallas to san
francisco

O-O-O-O-O-
Bfromloc.cityname-
O-B-
toloc.cityname-
Itoloc.cityname

please give me
flights available
from baltimore to
philadelphia

O-O-O-O-O-O-
Bfromloc.cityname-
O-Btoloc.cityname

what ground trans-
portation is there in
atlanta

O-O-O-O-O-O-
Bcityname

Table 3: Examples of ATIS slot labelling

scription that defines that class. The schema also
has information about the various constraints, like
the required slots for calling the class or the possi-
ble values of the class. An example of a schema is
given below.

The specific intent and slot filling classes of a
particular training example together is referred to
as a schema. For each intent and slot filling class
in the schema, a text description is provided that
defines that class. The dataset also evaluates slot
filling accuracy on all utterances in a dialogue to-

Query Intent Class
i want to listen to
seventies music

PlayMusic

show me the picture
creatures of light
and darkness

SearchCreativeWork

i d like to go to the
popular bistro in oh

BookRestaurant

Table 4: Examples of SNIPS intent classes

Query Slot filling tags
i want to listen to
seventies music

O-O-O-O-O-
Byear-O

show me the picture
creatures of light
and darkness

O-O-O-
Bobjecttype-
Bobjectname-
Iobjectname-
Iobjectname-
Iobjectname-
Iobjectname

i’d like to go to the
popular bistro in oh

O-O-O-O-O-
O-O-Bsort-
Brestauranttype-O-
Bstate

Table 5: Examples of SNIPS slot labelling

gether, which is called joint goal accuracy.

3.3 Continual Learning
The Continual learning problem aims to learn tasks
sequentially from a continuous stream of data with-
out the catastrophic forgetting of previously learned
knowledge. Specifically, the goal is to sequen-
tially learn a model from a set of tasks T which
are trained on sequentially. The model has to maxi-
mize performance on the current task it is trained
on while minimizing catastrophic forgetting on all



Service Service Name: Payment
description: Digital wallet to
make and request payments

Slots

Name: Account type
description: Source of money
to make payment

Name: Amount
description: Amount of money
to transfer on request

Name: Contact Name
description: Name of contact
for transaction

Intents

Name: Make Payment
description: Send money to
your contact

Name: Request Payment
description: Request money
from a contact

Table 6: Example of SGD schema

the previous tasks it has been trained on.
There are many properties that have to be ob-

served when building by CL models. The first
is the minimization of catastrophic forgetting, as
discussed above. Then there is forward transfer,
where the model uses previous knowledge to im-
prove performance on future tasks, and backward
transfer, where the model’s performance improves
on older tasks after training on new tasks. Next is
memory capacity, which is relevant for methods
like rehearsal-based training, where some examples
from older tasks are stored and used while training
new tasks. Finally, there is the plasticity of the
model, which refers to the ability to quickly learn
from new tasks after training on a large number of
tasks. The following sections detail the different
approaches to continual learning.

3.3.1 Rehearsal Methods
Rehearsal techniques involve retaining some train-
ing examples from prior tasks and reusing them dur-
ing future training. The number of examples that

can be retained is problem specific and is fixed to
compare all rehearsal methods. Some approaches
train models to generate these examples, which
are known as pseudo-rehearsal methods. Pseudo-
rehearsal methods use models like generative ad-
versarial networks or generative autoencoders. An-
other rehearsal method is to constrain the gradient
updates so that the loss of the samples in mem-
ory never increases. Details of a few methods are
discussed below.

One basic popular method used to collect re-
play during training is reservoir sampling. In this
method, all incoming samples are retained until the
memory buffer or retained sample set reaches the
maximum allowed size. After this, each incoming
training sample is exchanged with a sample in the
memory reservoir with a probability proportional to
the number of training samples seen before the cur-
rent sample. The details for this method are given
in 1 below, as described in Riemer et al. (2019).
Here M is the maximum memory buffer capacity,
N is the total number of training examples seen
before the current example, and (x,y) is the training
input sample and label.

1 Procedure RESERVOIR(M,N, x, y):
2 if M > N then
3 M [N ]← (x, y)
4 end
5 else
6 j = randomInteger(min =

0,max = N)
7 if j < M then
8 M [j]← (x, y)
9 end

10 end
11 return M

Algorithm 1: Reservior Sampling

Gradient Episodic Memory (GEM) (Lopez-Paz
and Ranzato, 2022) is another very popular method
for continual learning. The main idea of this tech-
nique is to modify the gradient update to ensure
that the loss of the model trained on the examples
from the memory buffer is less than the loss of the
model trained up to the previous task. This allows
for positive back transfer. The disadvantage of this
method is that it uses a quadratic programming
solver that scales with the number of parameters
of the model and is impractical for large language
models.



3.3.2 Regularization Methods
Regularization methods involve slowing down the
learning of parameters important for previous tasks
by regularizing the loss. These methods rely on a
fixed model capacity with an additional loss term
that aids knowledge consolidation while learning
subsequent tasks or data distributions. Techniques
that penalize changes to parameters that are deemed
important for previous tasks during CL fall under
this category. Elastic Weight Consolidation (EWC)
(Kirkpatrick et al., 2016) is an example of this kind
of method, where forgetting is reduced by regular-
izing the loss to prevent large updates to parameters
that are important to previous tasks. The main dis-
advantage of these methods is that they reduce the
plasticity of the models to reduce forgetting, which
hampers learning on new tasks as the number of
tasks in the CL process increases. Hence, these
methods are not feasible for cases where the total
number of tasks is very large.

3.3.3 Architectural methods
Architectural methods involve introducing changes
to model architecture dynamically to prevent forget-
ting. Progressive Networks and Dynamically Ex-
pandable Networks fall under this category. Many
of these methods fully eliminate catastrophic for-
getting as they freeze parameters learnt on previous
tasks and introduce new parameters for each subse-
quent task. The main drawback of these methods
is the increase in the model size which makes them
infeasible for CL with longer sequences of tasks.

• Progressive Networks: Progressive Neural
Networks (PNN) (Rusu et al., 2022) use a
dynamic architecture where catastrophic for-
getting is prevented by instantiating a new
neural network column for each task being
solved. They also have lateral connections
between columns to transfer features learned
from previous tasks. During training, only
the newly introduced column is kept trainable,
and the weights of other columns are frozen.
The main advantage of this method is that it
ensures zero catastrophic forgetting and the
lateral connections allow for positive forward
transfer to newer tasks. The main drawback
of the PNN architecture is the continuous in-
crease in the number of model parameters
with each new task which makes it infeasi-
ble to use PNNs when the number of tasks is
very large.

• Adaptor CL: Adaptor CL is an architectural
method used by Madotto et al. (2020) for CL
for DST. The model uses residual adaptors
with a transformer model for CL. Residual
adapters are trainable parameters added on
top of each transformer layer, which steer
the output distribution of a pre-trained model
without modifying its original weights. For
continual learning, this model learns different
adapter weights for each task without modi-
fying the original weights of the transformer
model. This eliminates catastrophic forgetting
at the cost of increasing model parameters
with each new task.

3.3.4 Meta-learning based methods
Meta-learning or learning-to-learn involves learn-
ing generic knowledge, given a small set of training
examples and numerous tasks, and quickly adapt-
ing to new tasks. In the following sections, we
discuss Model-Agnostic Meta-learning (MAML)
and variations of this method for continual learn-
ing.

3.3.5 Model-Agnostic Meta-learning (MAML)
Model-Agnostic Meta-learning (MAML) (Finn
et al., 2017a) is a meta-learning method designed
to be compatible with any model architecture that
uses gradient descent for any kind of learning task.
The method was created with the goal of fast, few-
shot adaptation on new tasks or for new domains.
In this method, the training happens in two phases,
the first is the meta-training phase in which cor-
responding meta parameters are learnt, and the
second is the fine-tuning phase on the few-shot
training examples.

The meta parameters include the model’s initial
weights and learning rates, which are updated in
the meta-training phase. The objective of the meta
training phase is to learn these meta parameters by
training on data from multiple tasks, allowing the
meta parameters to capture the common features
between all tasks of the particular type of problem.
Learning meta-parameters broadly applicable to
the tasks of a particular type of problem allows for
faster fine-tuning on new tasks with minimal data.
The algorithm for MAML (Finn et al., 2017a) is
discussed below.

In algorithm 2, p(T ) is the distribution over
tasks, and α, β are learning rates for inner and meta
updates. θ is the model initial weights tensor and
L is the loss function. The algorithm trains on



1 Procedure MAML(p(T ), α, β,N):
2 randomly initialize θ
3 for all Ti do
4 Sample batch of tasks Ti ∼ p(T )
5 for n← 1 to N 1 do
6 Evaluate∇θLTi(fθ)
7 θ′i = θ − α∇θLTi(fθ)

8 end
9 Update θ = θ − β∇θLTi(fθ′i)

10 end
11 return θ
Algorithm 2: Model-Agnostic Meta-learning

a batch of selected tasks in the inner loop. θ′i is
the parameter tensor after the inner loop training.
Then the original meta parameters θ, which are the
meta model initial parameters, are updated in the
outer loop with the gradient of the loss on the batch
evaluated with θ′i as the model parameters. This
essentially trains the model initial parameters to
allow for faster convergence during fine tuning on
any task. The learnt initial parameters also give
good performance for related tasks not seen during
meta training.

3.3.6 Online Meta-learning (OML)
Online Meta-learning (OML) (Finn et al., 2017b)
is a variant of the MAML algorithm for the con-
tinual learning setting. Instead of learning initial
weights for the entire model for a set of tasks like
in MAML, it splits the model into representation
layers and adaptation layers and the meta learning
objective tries to learn weights for the representa-
tion layers that reduce catastrophic forgetting. We
use a modification of the algorithm in Finn et al.
(2017b), the details of the algorithm are discussed
below in algorithm 3.

In algorithm 3, p(T ) is the distribution over
tasks, and α, β are learning rates for inner and
meta updates. θ is the representation model initial
weights tensor, W is the adaptation model initial
weights tensor, and L is the loss function. θ′i is the
parameter tensor after the inner loop training. Then
the original meta parameters θ, which are the meta
model initial parameters, are updated in the outer
loop with the gradient of the loss on the batch evalu-
ated with θ′i as the model parameters. This process
simulates the fine tuning of the adaptation layers
in the inner loop, and the meta update changes the
representation layer weights in a way that improves
fine tuning in the next iteration. The learnt initial

1 Procedure OML(p(T ), α, β,N):
2 randomly initialize θ
3 for all Ti do
4 randomly initialize W
5 Sample batch of tasks Ti ∼ p(T )
6 Sample a sequence of k examples

Sk from Ti

7 W0 = W
8 for j ← 1 to k 1 do
9 Xj = Sk[j] Evaluate

∇θLTi(fθ(Xj))
10 θ′i = θ − α∇θLTi(fθ(Xj))

11 end
12 Sample Stest from Ti Update

θ = θ − β∇θLTi(fθ′i(Stest))

13 end
14 return θ

Algorithm 3: Online Meta-learning

parameters also give good performance for related
tasks not seen during meta training.

3.3.7 Look-ahead Model-Agnostic
Meta-learning (La-MAML)

Look-ahead Model-Agnostic Meta-learning (La-
MAML) (Gupta et al., 2020) proposes a modifica-
tion on OML to eliminate the separate meta learn-
ing stage and introduces training procedure with
both meta training and fine tuning combined to-
gether. It also introduces trainable learning rates
for model parameters as a part of the meta train-
ing step. Each parameter of the model is assigned
a separate learning rate which is learnt by meta
training as described in algorithm 4. Also a mem-
ory buffer is used to store training samples from
previous tasks for meta training.

In algorithm 4, p(T ) is the distribution over
tasks, and α, β are learning rates for inner and
meta updates. α is a tensor of learning rates αj

for each model parameter. θ is the model initial
weights tensor and L is the loss function. Unlike
the MAML algorithm, the learning rates which also
get updated in the meta update step.

4 Multi-Hop Question Answering

As discussed in the previous chapter, the require-
ment of complex reasoning in multi-hop question
answering makes knowledge graph assisted deep
learning models a suitable choice for this task.
There are many recent works that use knowledge
graph embeddings and deep neural networks for



1 Procedure LaMAML(p(T ), α, β1, β2, N):
2 randomly initialize θ
3 for all Ti do
4 Sample current task Ti ∼ p(T )
5 for n← 1 to N 1 do
6 Sample from memory buffer

Evaluate∇θLTi(fθ)
7 θ′i = θ − αj∇θLTi(fθ)

8 end
9 Update

αj + 1 = αj − β1∇θLTi(fθ′i)

10 Update θj + 1 = θ − β2∇θLTi(fθ′i)

11 end
12 return θ

Algorithm 4: Look-ahead MAML

multi-hop question answering. Saxena et al. (2020)
and Huang et al. (2019) are two such works with
very similar architectures. While they try to employ
knowledge graphs and deep learning for multi-hop
question answering, the problem statement in these
works is slightly different. Instead of context para-
graphs, the question answering system answers
questions by referring to a knowledge graph. The
system works under the assumption that the answer
is a node in the referred knowledge graph. We de-
scribe the system in Saxena et al. (2020) in detail
below.

Figure 5 shows the system architecture proposed
in Saxena et al. (2020). The system generates
knowledge graph embeddings for all nodes using
the ComplEx embedding technique. The questions
are then mapped to the space of head node embed-
dings and relation embeddings, respectively, using
neural networks. Given an input question, the sys-
tem maps it to the two embedding spaces. The
system assumes that there is a triplet in the knowl-
edge graph corresponding to the question and that
the head node and relation information will be in
the question, with the tail node being the answer.
The system then ranks candidate answer nodes us-
ing the ComplEx embedding scoring function and
selects the highest scoring tail node a the output
answer.

The model proposed in Zheng and Kordjamshidi
(2020) is more relevant to our problem statement,
and our work is based on the above model archi-
tecture. Their proposed system creates a knowl-
edge graph from the context passages and then uses
GCN embeddings and deep neural networks to pre-

dict the answer. The knowledge graph is created by
extracting phrases and relations from the context
using semantic role labeling. The nodes are repre-
sented by Glove embeddings and are passed to the
GCN module along with the input question. The
GCN embeddings are concatenated with the origi-
nal input embeddings and are passed to the answer
span prediction module. By creating a knowledge
graph from the context and embedding it, the sup-
porting facts that can be distant in the context are
connected nodes in the knowledge graph.

5 Intent Detection and Slot Filling

In this section, we cover the different approaches
that exist for intent detection and slot filling, for
both the fixed class and variable class cases.

5.1 Intent Detection and Slot Filling for fixed
classes

Query understanding has been an important topic of
research for the last several years. Intent detection
plays an important role in providing a satisfying
user experience. In Sreelakshmi et al. (2018) the
authors propose a deep learning-based framework
using Bi-Directional Long Short-Term Memory
(BLSTM) for intent detection. The model takes
in word embeddings of the input and learns fea-
tures to identify the intent of the query. They also
discuss use of an enrichment technique of embed-
dings to ensure semantic correctness of the em-
beddings. Kumar et al. (2019) adapts BERT trans-
former model and fine tune the BERT model with
domain specific training for e-commerce domain
queries and demonstrate the performance of pre-
training BERT model on a large corpus and then
performing domain specific fine tuning.

For the ATIS and SNIPS dataset, Chen et al.
(2019) proposed a BERT based architecture that
achieved state of the art results. The key feature
of this architecture is the shared model and com-
bined training of intent detection and slot filling.
The ATIS dataset is a very small dataset, and the
proposed system outperforms conventional BERT
based architectures. The authors also explore the
use of CRF for modeling slot filling. For the joint
training of intent detection and slot filling, differ-
ent learning rates are used for each task, which are
tunable parameters. Wang et al. (2018) proposed a
BiLSTM based model for intent and slot detection
and is one of the best performing models on the
ATIS and SNIPS dataset.



Figure 5: Knowledge graph assisted deep learning system architecture
(Saxena et al., 2020)

5.2 Intent Detection and Slot Filling for
variable classes

For the case of variable intent and slot classes, the
Schema Guided Dataset (SGD) is the only popular
dataset, covering a large number of domains and
class schemas. Rastogi et al. (2020) and Feng et al.
(2021a) propose adaptable model architectures to
account for varying classes. Both have a similar
approach to incorporating the above. The schema
provided has a description for each intent and slot
class. The system passes these descriptions through
BERT and generates schema embeddings for each
class. These embeddings are combined with tradi-
tional prediction neural networks to allow for intent
detection and slot filling variable classes.

Zhang et al. (2021) and Noroozi et al. (2020)
propose robust and efficient architectures and re-
duce repetitive computations. Noroozi et al. (2020)
proposes to split the utterance and schema encod-
ings and concatenate these embeddings in the de-
coder. Since the schema is known beforehand, all
the schema embeddings are computed and stored in
memory before the training process. This reduces
the computation and speeds up the model. Feng
et al. (2021b) uses a sequence to sequence problem
architecture for dialogue state tracking. It uses an
utterance-schema attender to combine the outputs
of the utterance and schema encoders and uses an
LSTM decoder to generate the decoder states.

5.3 Continual learning in dialogue state
tracking

There are many different approaches to continual
learning, each with different advantages and disad-
vantages. The first kind is called rehearsal, where
training examples from previous tasks are reintro-
duced in the training of later tasks. A memory
buffer of a fixed maximum size is allowed for these
methods in which they store and use training sam-
ples from previously trained tasks in different ways.
Reservoir sampling is a simple method used in
many CL methods that use a memory buffer. Lopez-
Paz and Ranzato (2022) and Chaudhry et al. (2018)
are popular methods that use rehearsal along with
a constrained optimization of the loss function and
try to minimize catastrophic forgetting. Kemker
and Kanan (2017) and Shin et al. (2017) uses gen-
erative models to create examples from previous
tasks for rehearsal.

Regularization based approaches are popular for
continual learning. Kirkpatrick et al. (2016) is an
example of this kind of method, where forgetting
is reduced by regularizing the loss to prevent large
updates to parameters that are important to previous
tasks. Aljundi et al. (2018), Nguyen et al. (2017)
and Zenke et al. (2017) use regularization-based
methods to estimate the importance of each model
parameter for previous tasks and penalize changes
to each parameter.

Architectural methods involve introducing
changes to model architecture dynamically to pre-
vent forgetting. Rusu et al. (2022) proposed the pro-



gressive model architecture for continual learning,
which transfers knowledge from previous tasks to
improve convergence speed. Progressive networks
naturally accumulate experiences and are immune
to catastrophic forgetting by design. Adaptor CL
is an architectural method used by Madotto et al.
(2020) for CL for DST. The model uses residual
adaptors with a transformer model for CL. The
drawback of these approaches is the growth of the
number of model parameters with the introduction
of new tasks.

Meta-learning approaches are another strong
candidate for continual learning with works like
Finn et al. (2017b), Gupta et al. (2020), and Zou
and Lin (2022). Finn et al. (2017b) proposes online-
aware meta-learning (OML), which is a meta-
learning technique that reduces interference and
overwriting of previous knowledge during training
updates. Gupta et al. (2020) proposes Look-Ahead-
MAML, a modification of OML that learns differ-
ent learning rates for each parameter in the model
as a part of the meta-training step, and also merges
the meta training and fin-tuning processes together.
While meta-learning techniques lead to good gener-
alization and less hand engineering for training, it
is computationally expensive and requires careful
design.

The problem of CL in dialogue systems has
been explored in Madotto et al. (2020) and Liu
et al. (2021). Liu et al. (2021) proposes the knowl-
edge preservation network architecture for CL and
performs experiments using the SGD Dataset for
slot filling. Madotto et al. (2020) proposed a CL
method using an adaptor-based approach given by
Houlsby et al. (2019). The model uses residual
adaptors with a transformer model for CL. Resid-
ual adapters are trainable parameters added on top
of each transformer layer, which steer the output
distribution of a pre-trained model without modi-
fying its original weights. For continual learning,
this model learns different adapter weights for each
task without modifying the original weights of the
transformer model. This eliminates catastrophic
forgetting at the cost of increasing model param-
eters with each new task. Zhu et al. (2022) intro-
duces a method of training a prompt for each task
in the continual learning process while fixing the
pre-trained model parameters. This prevents for-
getting of previous knowledge and task-specific
prompts can be used to evaluate the performance
on each task.

6 Summary

In this paper, we explore two important information
extraction problems, multi-hop question answering
and dialogue state tracking for task-oriented dia-
logue systems. For multi-hop question answering,
we first discuss knowledge graphs which are im-
portant structures that allow question answering
systems to reason over multiple supporting facts.
We then explore how knowledge graphs can be used
along with deep learning systems with the help of
knowledge graph embedding techniques. We dis-
cuss many specific KG embedding techniques and
multi-hop question answering architectures that use
KG embedding and deep neural networks.

For the problem of intent detection and slot fill-
ing, we first discuss the fixed class, single domain
case. We discuss system architectures for intent
detection and slot filling for datasets like ATIS and
SNIPS where the total number of intent classes
and slots are fixed. We then look at the case of
multiple domains and varying intent classes and
slots. We discuss the schema-guided approach to
dialogue state tracking, which allows models to
deal with variable classes. We discuss specific ar-
chitectures for the SGD Dataset which introduces
the complexity of zero shot prediction on data from
unseen services. We finally discuss the problem
of continual learning for dialogue state tracking
and describe different approaches used to reduce
catastrophic forgetting in models trained on tasks
sequentially.

References
Rahaf Aljundi, Francesca Babiloni, Mohamed Elho-

seiny, Marcus Rohrbach, and Tinne Tuytelaars. 2018.
Memory aware synapses: Learning what (not) to for-
get.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. 2013.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2018. Efficient
lifelong learning with a-gem.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert for
joint intent classification and slot filling.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Mael Primet, and Joseph
Dureau. 2018. Snips voice platform: an embedded

http://arxiv.org/abs/1711.09601
http://arxiv.org/abs/1711.09601


spoken language understanding system for private-
by-design voice interfaces.

T Dettmers, Pasquale Minervini, P Stenetorp, and Se-
bastian Riedel. 2018. Convolutional 2d knowledge
graph embeddings.

Jianlin Feng. 2014. Knowledge graph embedding by
translating on hyperplanes.

Yue Feng, Yang Wang, and Hang Li. 2021a. A
sequence-to-sequence approach to dialogue state
tracking. pages 1714–1725.

Yue Feng, Yang Wang, and Hang Li. 2021b. A
sequence-to-sequence approach to dialogue state
tracking.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017a.
Model-agnostic meta-learning for fast adaptation of
deep networks.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017b.
Model-agnostic meta-learning for fast adaptation of
deep networks.

Gunshi Gupta, Karmesh Yadav, and Liam Paull. 2020.
La-maml: Look-ahead meta learning for continual
learning.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping
Li. 2019. Knowledge graph embedding based ques-
tion answering. pages 105–113.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and
Jun Zhao. 2015. Knowledge graph embedding via
dynamic mapping matrix. pages 687–696.

Ronald Kemker and Christopher Kanan. 2017. Fearnet:
Brain-inspired model for incremental learning.

Thomas Kipf and Max Welling. 2016. Semi-supervised
classification with graph convolutional networks.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2016. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of
Sciences, 114.

Mukul Kumar, Youna Hu, Will Headden, Rahul Goutam,
Heran Lin, and Bing Yin. 2019. Shareable represen-
tations for search query understanding.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation embed-
dings for knowledge graph completion. Proceedings
of AAAI, 29:2181–2187.

Qingbin Liu, Pengfei Cao, Cao Liu, Jiansong Chen,
Xunliang Cai, Fan Yang, Shizhu He, Kang Liu, and
Jun Zhao. 2021. Domain-lifelong learning for dia-
logue state tracking via knowledge preservation net-
works. pages 2301–2311.

David Lopez-Paz and Marc’Aurelio Ranzato. 2022.
Gradient episodic memory for continual learning.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-
ungwhan Moon, Paul Crook, Bing Liu, Zhou Yu,
Eunjoon Cho, and Zhiguang Wang. 2020. Continual
learning in task-oriented dialogue systems.

Cuong Nguyen, Yingzhen Li, Thang Bui, and Richard
Turner. 2017. Variational continual learning.

Vahid Noroozi, Yang Zhang, Evelina Bakhturina, and
Tomasz Kornuta. 2020. A fast and robust bert-based
dialogue state tracker for schema-guided dialogue
dataset.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. Proceedings of the
AAAI Conference on Artificial Intelligence, 34:8689–
8696.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao
Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro. 2019.
Learning to learn without forgetting by maximizing
transfer and minimizing interference.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
2022. Progressive neural networks.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar.
2020. Improving multi-hop question answering over
knowledge graphs using knowledge base embeddings.
pages 4498–4507.

Hanul Shin, Jung Lee, Jaehong Kim, and Jiwon Kim.
2017. Continual learning with deep generative re-
play.

K Sreelakshmi, P Rafeeque, S Sreetha, and E Gayathri.
2018. Deep bi-directional lstm network for query in-
tent detection. Procedia Computer Science, 143:939–
946.

T Trouillon, J Welbl, Sebastian Riedel, Eric Gaussier,
and Guillaume Bouchard. 2016. Complex embed-
dings for simple link prediction.

Yu Wang, Yilin Shen, and Hongxia Jin. 2018. A bi-
model based rnn semantic frame parsing model for
intent detection and slot filling. pages 309–314.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and li Deng. 2014. Embedding entities and relations
for learning and inference in knowledge bases.

https://doi.org/10.18653/v1/2021.acl-long.135
https://doi.org/10.18653/v1/2021.acl-long.135
https://doi.org/10.18653/v1/2021.acl-long.135
http://arxiv.org/abs/2011.09553
http://arxiv.org/abs/2011.09553
http://arxiv.org/abs/2011.09553
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/2007.13904
http://arxiv.org/abs/2007.13904
http://arxiv.org/abs/1902.00751
https://doi.org/10.1145/3289600.3290956
https://doi.org/10.1145/3289600.3290956
https://doi.org/10.3115/v1/P15-1067
https://doi.org/10.3115/v1/P15-1067
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1609/aaai.v29i1.9491
https://doi.org/10.1609/aaai.v29i1.9491
https://doi.org/10.18653/v1/2021.emnlp-main.176
https://doi.org/10.18653/v1/2021.emnlp-main.176
https://doi.org/10.18653/v1/2021.emnlp-main.176
http://arxiv.org/abs/1706.08840
http://arxiv.org/abs/2008.12335
http://arxiv.org/abs/2008.12335
http://arxiv.org/abs/2008.12335
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
http://arxiv.org/abs/1810.11910
http://arxiv.org/abs/1810.11910
http://arxiv.org/abs/1606.04671
https://doi.org/10.18653/v1/2020.acl-main.412
https://doi.org/10.18653/v1/2020.acl-main.412
https://doi.org/10.1016/j.procs.2018.10.341
https://doi.org/10.1016/j.procs.2018.10.341
https://doi.org/10.18653/v1/N18-2050
https://doi.org/10.18653/v1/N18-2050
https://doi.org/10.18653/v1/N18-2050


Zhilin Yang, Peng Qi, Saizheng Zhang, Y. Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher Manning. 2018. Hotpotqa: A dataset for diverse,
explainable multi-hop question answering.

Friedemann Zenke, Ben Poole, and Surya Ganguli.
2017. Continual learning through synaptic intelli-
gence.

Yang Zhang, Vahid Noroozi, Evelina Bakhturina, and
Boris Ginsburg. 2021. Sgd-qa: Fast schema-guided
dialogue state tracking for unseen services.

Chen Zheng and Parisa Kordjamshidi. 2020. Srlgrn: Se-
mantic role labeling graph reasoning network. pages
8881–8891.

Qi Zhu, Bing Li, Fei Mi, Xiaoyan Zhu, and Minlie
Huang. 2022. Continual prompt tuning for dialog
state tracking.

Xiaohan Zou and Tong Lin. 2022. Efficient meta-
learning for continual learning with taylor expansion
approximation.

http://arxiv.org/abs/2105.08049
http://arxiv.org/abs/2105.08049
https://doi.org/10.18653/v1/2020.emnlp-main.714
https://doi.org/10.18653/v1/2020.emnlp-main.714
http://arxiv.org/abs/2203.06654
http://arxiv.org/abs/2203.06654
http://arxiv.org/abs/2210.00713
http://arxiv.org/abs/2210.00713
http://arxiv.org/abs/2210.00713

