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Abstract

Speech synthesis is the task of generating a
speech signal corresponding to a given input
text. The output is expected to sound natural
(prosody, intonation, etc., must be similar to
that of a native speaker) and intelligible (the
pronunciations must be correct). The state-
of-the-art text-to-speech (TTS) architectures
generally follow a three-stage process– translit-
erating the input graphemes to phonemes us-
ing a phonemizer, converting the phoneme se-
quences to time-frequency representation mel-
spectrograms, and finally generating the raw
speech waveforms using the mel-spectrograms.
In this paper, we look at the various architec-
tures that were developed for the text-to-mel
and vocoder models. We start with the classical
approaches– diphone-based and corpus-based
speech synthesis– and proceed towards the re-
cent deep learning based solutions.

1 Introduction

Language is the primary mode of communication
for human beings. Although most animals commu-
nicate in their own way, humans are the only ones
who have excelled at cognitive language communi-
cation. This has been a crucial aspect in the overall
development of humanity through ages. Language
allowed humans to pass down their experiences and
learnings to the next generations, warning them
of dangers as well as providing them with huge
pool of wisdom. For thousands of years, humans
have been trying to understand the world around
them and sharing the acquired knowledge, which
allowed them to progress at a rapid rate. The world
right now owes to the application of this culminated
knowledge for the betterment of society.

Speech and written text are at the heart of all
communication. While speech is one of the easiest
and quickest ways to communicate one’s thoughts
and ideas, written text retains information for a very
long time (such as books), allowing many people
to read after long intervals. As one would expect,

the speech and written text are related. Thus, one
mode of communication can be converted to an-
other, retaining the content information. However,
the human speech has overall more information
than the corresponding text. This extra information
is in the form of pitch, shimmer, jitter, stuttering,
intonation, etc. This makes the conversion from
written text to speech a difficult problem.

1.1 Problem Statement

Text-to-Speech synthesis is the task of generating
a speech signal corresponding to a given input text.
The ultimate goes of this task is to generate speech
that is intelligible and natural sounding. Intelligi-
bility implies that the utterance of each word in the
input text is correct and can be understood by a
native listener. Natural sounding emphasizes that
the speech characteristics, like prosody, intonation,
etc., must be similar to that of a native speaker. Fur-
thermore, the audio quality of the generated speech
should be good, that is, it should not have noise
or any speech artifacts. This has been shown in
Figure 1.

Figure 1: The Task of Text-to-Speech Synthesis

The conversion of text to corresponding speech
is a one-to-many mapping, since there are multi-
ple ways to utter the same sentence. So, including
variations in the output speech for the same sen-
tence is another task for text-to-speech synthesis.
Also, most of the current TTS systems generate
read-speech (the speech uttered by a person read-
ing some text). Hence, generating good conversa-
tional speech that capture the disfluencies correctly
is another milestone that is yet to be achieved.



1.2 Motivation
Speech generation or synthesis, the artificial pro-
duction of human speech, is a problem that peo-
ple have been trying to solve for a long time. In
1779, a German-Danish scientist modeled the vo-
cal tract of humans and was able to produce the
five long vowel sounds in English1. Later, people
also worked on conditioning the speech synthesis
on a given input text. This would enable people
with visual impairments or reading disabilities to
comprehend written pieces of text. It can also give
voice to people with speaking disabilities, for ex-
ample, people with damaged vocal tract. Further,
with the development in the fields of automatic
speech recognition and machine translation, a good
text-to-speech system would enable the production
of speech-to-speech machine translation systems,
removing the most critical communication barrier
among people speaking different languages.

It is important to empower everyone with the
tools and ability of learning. Many of the devel-
oping nations face a variety of problem, one of
them being low-literacy rates. For example, some
people might not be able to read the script of a
language, but can listen and understand properly.
If we can make a system to automatically read out
text, it would give everyone a chance at gaining
knowledge through books. In such cases, technolo-
gies such as machine translation and text-to-speech
conversion could prove immensely helpful.

2 Classical Approaches to Speech
Synthesis

The earlier approaches to speech synthesis involved
using a database of sound units. Multiple variations
of all possible sounds that could be uttered in a spe-
cific language are recorded. The raw speech wave-
form are generated by concatenating these small
speech units in appropriate order. Depending on
the algorithm used to concatenate, these units are
changed using digital signal processing techniques.
The generated speech was intelligible but not natu-
ral sounding.

2.1 Diphone-based Speech Synthesis
A diphone is made up of two phones (simplest
speech sounds) that are connected. There are many
diphone-based approaches that use signal process-
ing techniques like Pitch Synchronous Overlap-
Add (PSOLA) (Charpentier and Moulines, 1989),

1From https://en.wikipedia.org/wiki/Speech_synthesis

Frequency Domain PSOLA (FD-PSOLA), Time
Domain PSOLA (TD-PSOLA), and other deriva-
tives (Khan and Chitode, 2016). In all of these,
the speech is first decomposed into smaller seg-
ments (at the level of diphones) and then combined
smartly to produce the expected output (overlapped
addition). The character level breakdown of text
(graphemes or converted to phonemes) can serve
as the information for selecting the smaller speech
unit. The methods used in above techniques for
obtaining segmented signals are as follows:
PSOLA: Speech is divided into pitch-synchronous
short-term waveforms which are then varied in time
or spectral domain to obtain different synthetic ver-
sions of the same speech unit. Since the approach
works directly on raw waveforms of speech signal,
there is no information loss.
FD-PSOLA: First, the spectral envelope is com-
puted using the linear predictive analysis. Next, the
pitch of the segmented speech is modified via linear
interpolation, to obtain synthetic speech units. Due
to modifications of magnitudes in frequency do-
main (no phase considerations), there are unnatural
discontinuities at the concatenation boundaries.
TD-PSOLA: The prosody of the speech waveforms
can be manipulated using this approach. This re-
sults in the production of high quality time scale
and pitch modifications. TD-PSOLA is computa-
tionally efficient, but requires a large dataset.

2.2 Corpus-based Speech Synthesis
Like diphone-based speech synthesis, corpus-based
speech synthesis is a part of concatenative speech
synthesis paradigm. In this approach, we select
sound units from a large database and concatenate
them to minimize a cost function. Here, the text
can also have additional annotations containing
prosodic and phonetic context information. The
database is first transformed into a state transition
network, with phonemes as states, as shown in Fig
2. The network is fully connected since hypotheti-
cally any sequence of phonemes is possible.

The cost function to be minimized is composed
of two parts- target cost and concatenation cost.
These costs are calculated as the weighted sum of
difference between feature vectors of target and se-
lected unit. The target cost measures the difference
between the selected sound unit and the target unit.
The feature vector used for this cost includes pitch,
power, duration, voicing, vowel/consonant, conso-
nant type, and point of articulation. The concate-
nation cost measures the quality of two connected



Figure 2: State Transition Network in Unit Selection
Synthesis 2

units. For this cost, the feature vector includes cep-
stral distance, difference in log power, and pitch.
The weights for these cost functions are learned
using weight search space or regression training.

Using the fully connected network and the cost
functions we can use viterbi decoding for selecting
final units in the appropriate order to generate the
speech. Since the search space for viterbi decoding
would be very large, it is pruned based on phonetic
context, target cost, and concatenation cost.

3 Text to Mel spectrogram

Many diverse speech synthesis algorithms were
developed by the researchers going from concate-
native approaches to the deep learning models.
Some of the prominent concatenative approaches
were diphone-based signal processing methods and
corpus-based data driven methods (Khan and Chi-
tode, 2016). Later with the advancements in deep
learning and availability of more data, better mod-
els were developed such as WaveNet, Tacotron,
and more. Of the two approaches, deep learning
provides more natural sounding speech with high
quality audio.

3.1 WaveNet

WaveNet (Oord et al., 2016), developed by Google
DeepMind, was among the first deep neural ar-
chitectures that was trained to generate raw audio
waveforms and produced amazing results. It is
an autoregressive generative model, that is, the
sample at each timestep is predicted based on
the previously predicted samples. So, the joint

2Figure taken from the original paper (Hunt and Black,
1996)

probability of the speech waveform with samples
x = {x1,x2, ...,xT} is written as,

p(x) =
T

∏
t=1

p(xt |x1,x2, ...,xt−1) (1)

This conditional probability is modeled using
deep learning models, which are dilated causal con-
volutional layers (Van Oord et al., 2016) in the
case of WaveNet. Due to the dilation, the receptive
field of the convolution layers increases drastically,
allowing the model to consider larger context at
a time. Figure 3 shows the causal nature of the
convolutional layers and how it increases the re-
ceptive field of the layers. Also, similar to lan-
guage modelling tasks, the output of the model
is a categorical distribution for the next timestep.
The model achieves this through softmax layer fol-
lowed by cross-entropy loss to maximize the log-
likelihood of the data with respect to the parameters
of the model. In the softmax layer, though there are
65,536 possible output values (16-bit integers) they
transform the data according to ITU-T (1988) and
have a 256 dimensional softmax output. They also
used Gated Activation Units (Van Oord et al., 2016)
as the activation functions, along with residual and
skip connections.

Figure 3: Stack of dilated causal convolutional layers 3

The authors use an internal North American En-
glish dataset containing 24.6 hours of speech data.
They also trained WaveNets conditioned on linguis-
tic features of text and logarithmic fundamental
frequency (log F0) values, which are obtained us-
ing external models.

3.2 Tacotron2

Tacotron2 (Shen et al., 2018), an end-to-end speech
synthesis architecture by Google, is among the ini-
tial state-of-the-art approaches using deep learn-
ing architectures for text-to-speech systems and
generated outputs which were almost indistinguish-
able human speech. Like WaveNet, Tacotron2 is
also an autoregressive model. However, unlike the

3Figure taken from the original paper (Oord et al., 2016)



WaveNet, Tacotron2 first generates the mel spectro-
grams from the input text. These mel spectrograms
are then converted to speech waveforms by the use
of vocoders. The architecture consists of two com-
ponents. First, a recurrent sequence-to-sequence
network with attention mechanism which predicts
the mel spectrograms of the desired output. Second,
a vocoder (generally a neural network) that trans-
forms the mel spectrograms to speech waveforms
in time-domain.

In first stage of generating the mel spectrograms,
the encoder consists of convolutional layers to
model longer term context, followed by a bidi-
rectional LSTM layer. This forms the encoder
output which is passed through a location sensi-
tive attention that summarizes the entire input for
the decoder, at each timestep. The decoder com-
prises of two uni-directional LSTM layers which
receives, along with the attention vector, the pre-
diction from previous timesteps via a pre-net (2-
layer feed-forward neural network). The pre-net
serves the purpose to bottleneck the information
flow, which the authors claim was essential for the
model learning. After this, the output is passed
through two feed-forward neural networks– one for
predicting the mel spectrogram frame and other to
predict the "stop token" (indicating end of genera-
tion). The predicted mel spectrogram frame is also
passed through a post-net consisting of 5 convolu-
tional layers, in order to rectify some discrepancies,
which is again added to the original prediction. The
architecture is shown in Figure 4.

Figure 4: Architecture of Tacotron2 4

The model is trained on an internal North Amer-
ican English dataset which contains 24.6 hours of
speech data by a single professional female speaker.

4Figure taken from the original paper (Shen et al., 2018)

The MSE loss is minimized over the ground-truth
compared with the output of the model before post-
net and after post-net. Dropouts with probability
0.5 are used for regularization. During inference, a
dropout of 0.5 is kept in the pre-net layers to allow
variation in the outputs of the model.

The authors slightly modify the architecture of
WaveNet to train a vocoder to invert these gener-
ated mel spectrograms to the waveforms. Also,
instead of predicting discrete signal sample outputs
using a softmax layer, they use a 10-component
mixture of logistic distributions (MoL) as per Sal-
imans et al. (2017), to generate 16-bit samples
at 24000 Hz. To compute this distribution, the
WaveNet output is passed through a linear layer
to predict the mean, log scale, mixture weight for
each of the components. For this task, they use the
negative log-likelihood loss.

3.3 FastSpeech
The tremendous success of Tacotron2 caught the
attention of many researchers, proving the poten-
tial of text-to-speech systems. One of the concerns
around Tacotron2 was that it takes too long to gen-
erate outputs owing to its autoregressive nature. So,
Microsoft came up with FastSpeech (Ren et al.,
2019), with the main objective of developing a non-
autoregressive model for text-to-speech synthesis.
Like Tacotron2, this model also has two compo-
nents - mel spectrogram generation followed by
neural vocoders. The authors boast a daunting 270x
speed up in mel spectrogram generation and 38x
speed up in overall end-to-end speech synthesis.

The core problem and tricky part of developing a
non-autoregressive model is determining the phone
durations in the output speech, in parallel. This was
solved by exploiting the learnings of autoregressive
models via the teacher-student learning paradigm.
In solving this, they also achieved more control
over the prosody and speech of generated speech,
which are inherently linked to phone durations and
the pauses in-between. Even after achieving all this,
the output of the model maintains a high quality,
making it a powerful model. The authors also men-
tion that autoregressive models suffer the problem
of word skipping and repeating due to wrong atten-
tion alignments between text and speech. They fur-
ther claim that this problem is alleviated in case of
FastSpeech, thus producing better quality speech.

The model is trained on the LJSpeech dataset
which contains a total of 24 hours of speech. Input
to the model are the phonemes corresponding to



Figure 5: Architecture of FastSpeech 5

the text obtained via grapheme-to-phoneme con-
version. The ground-truth mel spectrograms are
generated using the same signal sampling parame-
ters as used for Tacotron2. It should be noted that
the mel spectrograms used in the training of TTS
models must be the same that are used in the train-
ing of vocoders. If not, the output speech, though
intelligible, often consists or various artifacts like
increase or drop in pitch, white noise, etc. Thus,
most models have adopted the signal sampling pa-
rameters of Tacotron2 to be the default.

The model consists of a feed-forward Trans-
former network which drops the traditional
encoder-attention-decoder architecture. This feed-
forward Transformer is similar to the Transformer
model from Vaswani et al. (2017), comprising of
multi-head attention with residual and skip con-
nections, layer normalization, and positional em-
beddings. The overall FastSpeech architecture is
shown in Figure 5. They also train a length regula-
tor which specifies the duration for which a specific
phoneme is to be uttered. It consists of training a
duration predictor which is a relatively small net-
work to estimate the learned alignment predictions
of another autoregressive model. The outputs of
duration predictor specify the number of times the
hidden states corresponding to a phoneme have to
be repeated. It also has a tuning parameter α , which
can speed up or slow down the output speech.

5Figure taken from the original paper (Ren et al., 2019)

3.4 ForwardTacotron

ForwardTacotron6is a non-autoregressive text-to-
mel model without any attention mechanisms. It
brings together the best of Tacotron and FastSpeech
models. The techniques for the non-autoregressive
training are adopted from the FastSpeech (Ren
et al., 2019) model, while the architecture is mo-
tivated by the Tacotron model to eliminate the
memory-intensive transformer blocks. The archi-
tecture can be seen in Fig 6. The Prenet and Postnet
are CBHG (Convolutional Bank Highway GRU)
blocks introduced in Tacotron. There are three
major differences between ForwardTacotron and
FastSpeech:

1. While the duration predictor (discussed be-
low) for FastSpeech is trained with the main
model, for the ForwardTacotron model, it is
trained separately from rest of the model.

2. Unlike FastSpeech, ForwardTacotron consists
of pitch and energy predictors (same archi-
tecture as the duration predictor). Outputs of
these predictors are passed through a single
convolutional layer and added to the input em-
beddings, before the length regulator.

3. FastSpeech makes use of knowledge distil-
lation by training on the mel spectrograms
generated by the external alignment model.

6The developers of this model have not released any paper.
Refer https://github.com/as-ideas/ForwardTacotron
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Figure 6: Architecture of ForwardTacotron with the
Duration Predictor and Length Regulator (the cutout is
reproduced) 7

However, ForwardTacotron is trained using
the original mel spectrograms.

Length Regulator
The mismatch between the number of mel spectro-
gram frames and number of input tokens is handled
by the length regulator using the duration predictor
outputs. The encoder outputs are repeated as per
the duration predicted for each input token. For
fractional duration, the closest integer is chosen.
Series Predictors
Along with the main model, three sequence-to-
sequence models are trained for predicting dura-
tion, pitch, and energy corresponding to each input
token. The ground truth for these are obtained
from the alignments learnt by the external align-
ment model. The duration is the number of mel
spectrogram frames that attended the input token.
The pitch is calculated by averaging over the cor-
responding aligned frames of raw pitch obtained
from original speech. The energy is calculated by
averaging the norm of aligned mel spectrogram
frames for the input token. During training, teacher
forcing is used by passing the ground truth values
instead of series predictor outputs. The series pre-
dictor outputs are used only during the inference.

7https://github.com/as-ideas/ForwardTacotron

3.5 Recent Advancements

Apart from the models discussed above, there have
been other text-to-mel models which improved
upon their predecessors in some way. However,
the above mentioned models introduced new ideas
that significantly improved over the previous works.
Following the progress of these models, there has
been consistent work in improving the text-to-mel
models for solving specific problems. While the
audio quality is close to the natural speech for all
such models, the new architectures either reduce
the training and inference time or allow variations
in the generated speech.

Parallel Tacotron 2 (Elias et al., 2021) elimi-
nates the need for an external aligner for durations
by differential duration modelling, while being
non-autoregressive in nature. LightSpeech (Luo
et al., 2021) leverages the neural architecture search
(NAS) to find a lightweight and efficient model that
can faithfully replicate the performance of Fast-
Speech with minor degradation. FastSpeech 2 (Ren
et al., 2021a) improves upon FastSpeech by intro-
ducing variance adapter containing pitch and en-
ergy predictors and extends it FastSpeech 2s which
directly generates the speech waveform (fully end-
to-end speech synthesis). PortaSpeech (Ren et al.,
2021b) discusses that there are two types of gener-
ative non-autoregressive TTS models- variational
autoencoders and normalizing flows. Both these ap-
proaches have their advantages and disadvantages.
PortaSpeech finds a middle ground and brings to-
gether the best of both worlds with only slight per-
formance degradation. The most recent VQTTS
(Du et al., 2022) breaks the traditional pipeline of
text-to-mel followed by a vocoder. It argues that
mel spectrogram is highly correlated in both time
and frequency axes, making it difficult for a model
to predict the mel spectrograms from a text. So it
introduces new paradigm where the text is first con-
verted to a self-supervised vector quantized acous-
tic feature followed by a vector to waveform model
(modified HiFiGAN).

4 Vocoders

Most of the latest neural architectures for text-to-
speech first generate the mel spectrograms which
are then converted to raw speech waveforms via
vocoders. There have been many different ap-
proaches to develop these vocoders, out of which
the deep learning based neural networks work ex-
ceptionally well. However, with the increasing



speed of speech generation by TTS models, the
speed of vocoders started becoming the bottleneck
in the end-to-end TTS systems. So people started
attempting to improve the vocoders by making use
of developing deep learning architectures. The nat-
uralness of generated speech being one of the most
important aspect in text-to-speech, GANs became a
preferred choice of research direction in developing
vocoders.

4.1 Waveglow

WaveGlow (Prenger et al., 2019), by NVIDIA, is
one of the initial neural network based vocoders
which produced high quality outputs. It is a flow-
based, non-autoregressive, generative model which
combines WaveNet (Oord et al., 2016) and Glow
(Kingma and Dhariwal, 2018). The core idea of a
flow based network is the make the function rep-
resented by the network to be invertible. This is
achieved by forcing each layer in the network to be
a bijective mapping. The motivation behind doing
this is to be able to compute the log-likelihood and
directly minimize it. So, if zzz is a random noise sam-
ple or latent space representation, then the model
transforming zzz to output xxx can be written as

xxx = fff 0 ◦ fff 1 ◦ ...◦ fff k(zzz) (2)

zzz = fff−1
k ◦ fff−1

k−1 ◦ ...◦ fff−1
0 (xxx) (3)

The Equation 3 is possible due to the invertible
nature of the flow network. These sequence of
transformations are referred to as normalizing flows.
To work with this framework, the paper introduces
an affine coupling layer. The equations governing
the function of this layer are given in Equations 4.

xxxa,xxxb = split(xxx)
(logsss, ttt) =WN (xxxa,mel spectrogram)

xxxb′= sss⊙ xxxb + ttt
fff−1

coupling (xxx) = concat(xxxa,xxxb′)

(4)

where, xxx is the input to the network, and ⊙ is the
element-wise dot-product.

The split function implies a spilt in the channel
dimension. So half of the channels are processed
and concatenated with the other unprocessed half.
One interesting aspect to note here is that the trans-
formation WN() need not be invertible. The reason
for this is that the channels which are input to WN()
are also the ones that are passed unprocessed to the
output of the layer, and hence do not affect the

overall invertibility. Thus, this WN() transforma-
tion can be replaced by a neural network, which in
this paper is similar to the WaveNet. In this affine
coupling layer, the upsampled mel spectrograms
are introduced to condition the generated output.
In the whole model, 12 such coupling layers are
used. Overall architecture is shown in Figure 7.

Figure 7: Architecture of WaveGlow 8

The WaveGlow model works very well and pro-
duces high quality speech outputs. Owing to the
flow based nature of the model, training the model
is also very simple. Also due to its autoregressive
nature, it is very fast in producing the outputs.

4.2 MelGAN

The outputs of GANs have been highly realistic due
to the adversarial loss introduced in the architecture.
However, for a long time people believed that train-
ing GANs to generate high quality speech wave-
forms is very tough and challenging. MelGAN
(Kumar et al., 2019), is the first paper to show that
by introducing some architectural changes and in-
culcating domain knowledge, it is possible to train
GAN models that produce coherent speech wave-
forms. The model is non-autoregressive and fully
convolutional making it extremely fast (2x faster
than real-time on CPU). Although the WaveGlow
model outperforms MelGAN in terms of MOS, the
number of parameters of WaveGlow are almost 20
times that of MelGAN.

The generator of MelGAN is a fully convolu-
tional model with transposed convolutional layers
followed by residual blocks with dilated convolu-
tions. The residual blocks ensure better long range
correlation by effectively increasing the receptive

8Figure taken from the original paper (Prenger et al., 2019)



Figure 8: Architecture of MelGAN 9

fields of output timesteps. The authors mention
that according to (Odena et al., 2016), the kernel
size and stride of the transposed convolution lay-
ers must be chosen carefully, else "checkerboard"
artifacts are introduced in the output. The train-
ing objective is a combination of adversarial loss
(slight variant) and feature matching task. Feature
matching consists of L1 loss between the feature
maps of real and fake audio that are learnt by the
discriminator.

The discriminator follows a multi-scale archi-
tecture with 3 discriminators - one operating on
raw audio and others on downsampled versions by
factors of 2 and 4. Weight normalization is used in
discriminator as well as generator. The architecture
is shown in Figure 8.

4.3 Parallel WaveGAN

Parallel WaveGAN (Yamamoto et al., 2020), is an-
other approach to develop GAN models for speech
synthesis. The model is fully convolutional and
non-autoregressive (fast parallel computations), is
based on the WaveNet architecture, and leverages
the advantages of GAN. Hence, the name Parallel
WaveGAN. The paper proposes a new loss function
to train models for generating speech, called as the
multi-resolution STFT loss. The model only has
1.44 million parameters which almost 80 times less

9Figure taken from the original paper (Kumar et al., 2019)

than WaveGlow and 4 times less than MelGAN.
This shows the potential of GAN architectures in
providing high quality results with smaller models.

Figure 9: Parallel WaveGAN training framework 10

For the generator model of GAN, a WaveNet
based architecture is trained with noise as input
and conditioned on the mel spectrograms. The dis-
tinctive feature of Parallel WaveGAN is that the
use of non-causal convolutions for the models, in-
stead of causal convolutions. The architecture also
makes use of residual and skip connections. The
discriminator is also a stack of non-causal dilated
1-D convolutions. The training process has been

10Figure taken from the original paper (Yamamoto et al.,
2020)



depicted in Figure 9. All convolutional layers have
weight normalization, both in the discriminator and
the generator.

The speech corpus used for training the model
was recorded by a female professional Japanese
speaker. The dataset is said to be phonetically and
prosaically balanced. It contains approximately 24
hours of speech, with a sampling rate of 24 kHz.

4.4 HiFi-GAN
HiFi-GAN (Kong et al., 2020) is another GAN
based vocoder which uses the multi-resolution
discriminative framework. This model has
excellent performance, with the audio quality close
to human speech. Owing to the success of this
architecture, the recent vocoders compare their
results with this model to emphasize the quality
of their outputs. It consists of one generator and
two discriminators. HiFi-GAN is trained using the
adversarial loss (used in original GAN architec-
ture) and additional two losses for improving the
training stability. The generator and discriminators
are fully convolutional.

Multi-Period Discriminator (MPD):
Since the human speech is generated from the pe-
riodic vibrations of glottis, the resulting speech
waveform also contains the corresponding sinu-
soidal signals. MPD aims at capturing these di-
verse periodic patterns. It consists of a mixture of
sub-discriminators each of which looks at equally
spaced samples in the raw input audio. If p is the
defined spacing, then the 1D input of length T is
reshaped into the 2D shape of (T/p × p). This is
passed through a stack of strided 2D convolution
layers with kernel width set to 1, followed by leaky
ReLU.
Multi-Scale Discriminator (MSD):
The MSD is similar to the multi-resolution dis-
criminator of MelGAN, discussed in Section 4.2.
It also consists of mixture of sub-discriminators
which look at the input at different resolutions-
original, ×2 average pooled, and ×4 average
pooled. This allows the discriminator to capture
long-term dependencies and consecutive patterns
in the input.

Additional Loss Terms:
Apart from the adversarial GAN loss, HiFi-GAN
includes two more loss terms. First is the mel spec-
trogram reconstruction loss which calculates the L1
distance between the mel spectrogram of generated

speech waveform and that of the original audio.
ParallelWaveGAN had proved that efficacy of us-
ing such a loss in improving the perceptual quality
of the generated audio. Another loss is the feature
matching loss which calculates the L1 distance of
every intermediate feature of the discriminator be-
tween the original audio and the generated speech.
The final loss for generator is the weighted sum of
adversarial loss along with the above two losses,
while that for the discriminator is only the adver-
sarial loss.

4.5 GAN Vocoder

As we have seen, all the recent vocoders are GAN
models with amazing results. They outperform
many of the existing autoregressive and flow-based
vocoders in both objective and subjective metrics.
Furthermore, the size of these GAN models are
much smaller, allowing them to synthesize speech
orders of magnitude faster than other vocoders, like
Waveglow. You et al. (2021) hypothesizes that the
success of these GAN-based vocoders is due to the
multi-resolution discriminating framework, and not
the specific architectures chosen for the generator.

The paper compares the performance of six dif-
ferent generator architectures while maintaining the
multi-resolution discriminating framework. The
six generators are that of MelGAN, Parallel Wave-
GAN, HiFi-GAN, Universal MelGAN (Jang et al.,
2020), VocGAN (Yang et al., 2020), and their own
generator architecture. The LJSpeech dataset is
used as is, without any modification. The results
of the training can be seen in Figure 10. Fur-
ther, the objective score Mean Cepstral Distortion
(MCD) and the subjective score Mean Opinion
Score (MOS) support the hypothesis that the out-
puts of all these vocoders are not perceptually dis-
tinguishable.

4.6 CARGAN

Chunked Autoregressive GAN (Morrison et al.,
2022) (aka CARGAN), is among the most recent
GAN-based vocoders and performs exceptionally
well. As the name suggests, it is an autoregres-
sive architecture but instead of generating one sam-
ple at a time, it produces a chunk of samples in
one go. Thus, CARGAN is a hybrid model which
strikes a trade-off between better quality of autore-
gressive models and fast training and inference of
non-autoregressive models. The model reduces the
pitch errors by 40-60% and reduces the training



Figure 10: Results of Multi-Resolution Discriminative
training for Vocoder 11

time by 58% when compared to previous state-of-
the-art vocoders.

The paper claims that certain artifacts are intro-
duced by the existing vocoders, which correspond
to the inability of the generator to correctly learn
and predict the pitch and periodicity of the speech
waveform. Autoregressive architectures contain the
inductive bias for learning the relationship between
the pitch and phase. Consider a perfectly periodic
signal (sampling rate r) which instantaneous fre-
quency f = { f1, ..., fT } and the instantaneous phase
φ = {φ1, ..., φT }, then we have

φt = φt−1 +
2π

r
ft (5)

So, we can see that there is a cumulative sum-
mation operation for finding the phase. Since au-
toregression considers the information from the
previously generated output, this operation is inher-
ent to it. Specifically, the model can find the φt−1
and ft based on the previously generated samples.
Though the above equation is true only for a single
sample generation, we can inductively show that it
holds while generating chunk of samples as well.
The architecture can be seen in Figure 11.

The model is fully convolutional and consists
of three components- autoregressive conditioning
stack to summarize previous k-samples, a generator

11Figure taken from the original paper (You et al., 2021)

Figure 11: Training of CARGAN 12

which combines the previous output with the input
conditioning to generate the raw waveform, and a
bunch of discriminators for the adversarial training.
The first two components are trained to minimize
the adversarial, mel spectrogram reconstruction,
and feature matching losses, as in HiFiGAN. The
discriminator is trained with only the adversarial
loss. During training, each data sample is generated
by randomly choosing a starting frame index for
the mel spectrogram of an audio and considering
fixed number of frames after it.

5 Voice Conversion

Voice conversion is the task of changing the voice
of input speech waveform to a desired voice of a
different speaker, keeping the linguistic content the
same. As we have seen for vocoders, GANs have
become capable of generating excellent speech
waveforms from mel-spectrograms. This suggests
that the GANs are able to learn the general charac-
teristics of speech waveform. So, now we will look
at some GAN-based models for the task of voice
conversion. All these models are a specific type
of GAN architecture, that is, CycleGAN. This ar-
chitecture intuitively seems like the perfect choice
for voice conversion, with two distinct domains–
voices of source speaker and target speaker. Also,
we wish to preserve some specific information from
the source domain (linguistic information) when
transforming it to the target domain.

5.1 CycleGAN-VC Models

Many different CycleGAN-based models were de-
veloped to tackle the voice conversion problem.
We will look at a specific set of these models from
the CycleGAN-VC series. In these models, Mel-
cepstral coefficients (MCEPs) of the correspond-
ing speech signals formed the input and output

12Figure taken from the original paper (Morrison et al.,
2022)



of these models. The first among these was pro-
posed in (Kaneko and Kameoka, 2018), called as
CycleGAN-VC. All the generators and discrim-
inators are gated convolutional neural networks
(CNNs with Gated Linear Unit as activation) with
residual connections. While the original Cycle-
GAN paper showed the effectiveness of identity-
mapping loss (Eq. 6) for colour preservation, in
CycleGAN-VC it is used to impose the condition
of preserving the linguistic information.

Lid (GX→Y ,GY→X ) = Ey∼PData (y) [∥GX→Y (y)− y∥1]

+Ex∼PData (x) [∥GY→X (x)− x∥1]
(6)

CycleGAN-VC2 (Kaneko et al., 2019) improves
over CycleGAN-VC by introducing three new tech-
niques. Firstly, it introduces a new loss term, which
the authors call as the two-step adversarial loss (Eq
7) which added to the original adversarial loss to
obtain the final loss. For this loss, additional dis-
criminator D′

X for X domain (similarly D′
Y for Y

domain) is introduced. For the reverse direction,
similar loss term is calculated. Both these loss to-
gether form the two-step adversarial loss. Next,
the architecture of generator is changed to 2-1-2D
CNN. So, the initial and final layers are 2D convolu-
tional layers, while the middle part, where the main
conversion occurs, is 1D convolutional layers with
residual connections. Finally, the discriminator is
changed from FullGAN to a PatchGAN.

Ladv2 (GX→Y ,GY→X ,D′
X ) = Ex∼PX (x) [logD′

X (x)]

+Ex∼PX (x) [log(1−D′
X (GY→X (GX→Y (x))))]

(7)

CycleGAN-VC/VC2 take MCEPs as inputs and
generate the MCEPs of the target speech. How-
ever, mel-spectrograms are known to capture the
characteristics of speech that correspond to human
hearing. The authors observed that these models
compromised the time-frequency structure of the
outputs, when trained with mel-spectrograms in-
stead of MCEPs. So, CycleGAN-VC3 (Kaneko
et al., 2020) was developed with time-frequency
adaptive normalization (TFAN) module to handle
mel-spectrograms as inputs and outputs. Mathemat-
ically, the output of TFAN is evaluated according
to Eq 8.

f ′ = γ(x)
f −µ( f )

σ( f )
+β (x) (8)

The µ( f ) and σ( f ) denote the channel-wise
mean and standard deviation of a given feature f .

Further, for a given timestep x, the scale β (x) and
bias γ(x) are applied in an element-wise manner.
This allows the TFAN module to adjust the scale
and bias of the features, while taking the timestep
x under consideration.

5.2 MaskCycleGAN-VC

The latest in the series of CycleGAN-VC models
is the MaskCycleGAN-VC (Kaneko et al., 2021).
While the CycleGAN-VC3 allows training with
mel-spectrograms instead of MCEPs, it introduces
a new module with learnable parameters called
TFAN. Also, this TFAN module needs to be inter-
changed with every instance normalization layer
in the CycleGAN-VC2 model, due to which the
increase in parameters is significant. To avoid this,
MaskCycleGAN-VC introduces a novel auxiliary
masked training called filling in frames (FIF). This
can be seen in Figure 12. Apart from FIF, the au-
thors experimented with three other masking tech-
niques, but found that FIF provided the best results.

In FIF, a random temporal mask (all values along
frequency axis are equal) is applied on the input and
passed to the generator. The generator is expected
to learn the characteristics of mel-spectrograms of
the specific domain and fill in the missing frames.
So, this auxiliary task helps the model learn the
time-frequency structures in a mel-spectrogram in
a self-supervised manner. The MelGAN vocoder
was used for converting mel-spectrograms to raw
speech waveforms.

6 Summary

In this paper, we looked at the various approaches
that have been developed by the people to solve
the challenging task of speech synthesis. There
was a significant performance boost in going from
the classical approaches involving signal process-
ing techniques to deep learning based architectures.
The approach of first converting the text to mel
spectrograms followed by the use of vocoders to
convert it into raw waveforms seems to work ex-
tremely well. Many other attempts at TTS also use
this approach in their models. In case of Indian
languages, a thorough study of such approaches is
yet to be done. We also discussed some approaches
for tackling the task of voice conversion.

The performance metrics as reported by the cor-
responding papers has be presented in Table 1.
Since ForwardTacotron did not have a paper and
did not conduct the MOS experiments, the table



Figure 12: Filling in Frames training for MaskCycleGAN-VC 13

Model Dataset Task Metric Value
WaveNet North American English Text-to-Speech MOS 4.21
Tacotron2 + WaveNet North American English Text-to-Speech MOS 4.52
FastSpeech + WaveGlow LJSpeech Text-to-Speech MOS 3.84
WaveGlow LJSpeech Vocoder MOS 3.81
MelGAN LJSpeech Vocoder MOS 3.79
Parallel WaveGAN Japanese Dataset Vocoder MOS 4.06
HiFiGAN LJSpeech Vocoder MOS 4.36

Table 1: Performance metrics of various speech synthesis models

does not include the model. Similarly, the CAR-
GAN did not present any MOS evaluation results
and hence not present in the table.
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