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Abstract

In this paper, we present a comprehensive
study of societal biases that result from the
application of standard NLP tasks, focus-
ing on how data and techniques contribute
to biases and the progress towards detect-
ing them. We look at different metrics for
measurement of bias. We analyze how so-
cial biases with respect to different demo-
graphics get reflected on corpora of major
entertainment source like movies and mul-
tilingual social media posts.

1 Problem Definition

Bias is the presence of any prejudice or favour-
ing toward a person or a group based on their
innate or acquired features when it comes to
decision-making. Consequently, a biased algo-
rithm is one whose conclusions are weighted in
favour of a specific demographic. Bias is also
exhibited in multiple components of a Natural
Language Processing (NLP) system including
the training data, resources, pretrained mod-
els (e.g. word embeddings) (Bolukbasi et al.,
2016), and algorithms themselves. A very pop-
ular example of bias in machine translation:
“He is a nurse. She is a doctor” was translated
to Hungarian and back to English. The round-
trip translation resulted in “She is a nurse. He
is a doctor” (Sun et al., 2019a), depicting rep-
resentation bias. Bias is ubiquitous, being ex-
hibited in Caption Generation, Speech Recog-
nition, Sentiment Analysis, Language Model,
Word Embedding and so on.

It has been observed that the Entertain-
ment industries like Bollywood, Hollywood
are also riddled with social biases (Khadilkar
et al., 2021a) as their content reflects social
norms or beliefs in some form. (Chattarjee,
2016)(Khan and Taylor, 2018) In this work we
will explain various methodologies to detect

these biases in Hollywood movies1 along with
techniques to detect the demographic groups
against which the bias has occurred by iden-
tifying the biased dialogue turns and also in-
troduce a new dataset for social bias detection
in Hindi along with novel multilingual train-
ing framework which helps to get better per-
formance compared to baselines.

2 Motivation
Movie biases can be introduced by the screen-
writer’s own bias in addition to the story’s
demands. As the material may spark con-
troversy, annoyance, and financial loss, movie
production companies prefer to confirm that
any bias included in a script is a result of the
story’s demand. Recall that the substance of
films like The Last Temptation of Christ, The
Birth of a Nation, and textit has caused contro-
versy. As a result, the production companies
take care to screen2 out potentially harmful
speech during the original scripting stage. Be-
fore production, the scripts go through several
versions to check their content. This process
is heavily dependent on human intervention,
including decisions and attempts to control it.

A recent Bollywood movie on acid attack,
Chhapak, was inspired from a true story of an
acid attack survivor who set up an NGO and
was a recipient of the International Women of
Courage award. Her biopic and her initiative
of Stop Acid Sale when released, triggered reg-
ulatory legislation that made it difficult to buy
certain types of acids without legal authoriza-
tion. Devising NLP methods to identify how
popular entertainment influences society will
be a worthy future research challenge.

An AI-supported solution to detect the bi-
1https://imsdb.com/
2https://en.wikipedia.org/wiki/List_of_

banned_films
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ases existing in the screenplay at the author-
ing stage is urgently needed as Deep Learning
(DL) models approach human-level accuracy
in a variety of tasks. This can reduce human
labour and speed up the entire scripting pro-
cess. Although data is essential to DL mod-
els, there is currently no dataset that can be
used to uncover biases in the domain of movie
scripts.

People in India, as a multilingual coun-
try, like to express themselves in their na-
tive speech. Because social media is such a
strong communication tool, any prejudice in
these messages can have disastrous implica-
tions. The most important job in combat-
ing such operations is to detect bias. Hindi
is the world’s third most widely spoken lan-
guage. Given the prevalence of Hindi content
on social media platforms, early detection of
biased texts in languages such as Hindi is very
critical.

3 Bias in NLP

Bias is a fraught and complex term with par-
tially overlapping, or even competing, defi-
nitions ((Campolo et al., 2017)). In sociol-
ogy, bias is a prejudice in favor or against a
person, group or community that is consid-
ered to be unfair. In a similar context ma-
chine learning models may make predictions
that are skewed towards certain groups of peo-
ple.In the field of computer vision, some face
recognition algorithms fail to detect faces of
black users or labeling black people as “goril-
las”((Crawford, 2017)). In the field of audio
processing, it is found that voice-dictation sys-
tems recognize a voice from a male more accu-
rately than that from a female (Tatman, 2017).
If we take deep NLP,word embeddings and re-
lated language models are widely trained on
large databases from the Internet and may en-
code stereotyped biased knowledge (Garrido-
Muñoz  et al., 2021).

As models and datasets become increasingly
large and complex, it is critical to detect the bi-
ases and evaluate the fairness of models accord-
ing to multiple definitions of bias and mitigate
them in learned representations. We should
develop techniques that empower everyone in
NLP to combat bias, that is, the ”unjust,
unfair, or prejudicial treatment of people re-

lated to race, age, sexual orientation, religion,
gender, and other characteristics historically
associated with discrimination and marginal-
ization, when and where they manifest in
algorithmic systems or algorithmically aided
decision-making” ((Kai-Wei et al., 2019)). Ul-
timately, ”people who are the most marginal-
ized, people who would benefit the most from
such technology, are also the ones who are
more likely to be systematically excluded from
this technology” because of bias of the machine
learning models ((Kai-Wei et al., 2019)).

In this section we will will a thorough survey
of the methods available for detecting various
types of biases in NLP pipeline. We will also
discuss the different metrics used by the re-
searchers to quantify the bias detected by the
system along with the mitigation methods to
alleviate their impacts.

4 Detection of Bias

In this section, we discuss methodologies to
detect the biases across variety of NLP tasks
along with the work around for many of
them.As word embeddings are one of the main
building block of the neural NLP models, we
will also focus on the detection of embedding
biases and the algorithms to debias them.

4.1 Text Representations
Word embeddings have become an important
component in many NLP models and are
widely used for a vast range of downstream
tasks. However, these word representations
have been proven to reflect social biases (e.g.
race and gender) that naturally occur in the
data used to train them ((Caliskan et al.,
2017); (Garg et al., 2017)). For example, the
vector for the adjective honorable would be
close to the vector for man, whereas the vec-
tor for submissive would be closer to woman.
These stereotypes are automatically learned
by the embedding algorithm and could be
problematic if the embedding is then used
for sensitive applications such as search rank-
ings, product recommendations, or transla-
tions. An important direction of research is
to develop algorithms to debias the word em-
beddings. In (Alipourfard et al., 2018) au-
thors noticed that while using state-of-the-art
word embeddings in word analogy tests, “man”



would be mapped to “computer programmer”
and “woman” would be mapped to “home-
maker.” This bias toward woman triggered
the authors to propose a method to debias
word embeddings by proposing a method that
respects the embeddings for gender-specific
words but debiases embeddings for gender-
neutral words by following these steps:

1. Identify gender subspace. Identifying a
direction of the embedding that captures
the bias (Bolukbasi et al., 2016).

2. Hard debiasing or soft debiasing:

(a) Hard debiasing (neutralize and equal-
ize). Neutralize puts away the gender
subspace from gender-neutral words
and makes sure that all the gender-
neutral words are removed and ze-
roed out in the gender subspace
((Bolukbasi et al., 2016)). Equal-
ize makes gender-neutral words to
be equidistant from the equality set
of gendered words (Bolukbasi et al.,
2016).

(b) Soft bias correction. Tries to move
as little as possible to retain its sim-
ilarity to the original embedding as
much as possible, while reducing the
gender bias. This trade-off is con-
trolled by a parameter (Bolukbasi
et al., 2016).

Following on the footsteps of these authors,
other future work attempted to tackle this
problem (Zhao et al., 2018b) by generating
a gender-neutral version of (Glove called GN-
Glove) that tries to retain gender information
in some of the word embedding’s learned di-
mensions, while ensuring that other dimen-
sions are free from this gender effect. This
approach primarily relies on Glove as its base
model with gender as the protected attribute.
However, a recent paper (Gonen and Goldberg,
2019) argues against these debiasing tech-
niques and states that many recent works on
debiasing word embeddings have been superfi-
cial, that those techniques just hide the bias
and don’t actually remove it. Many of the de-
baising works related to word embedding have
focused on binary labels(e.g. male/female);
but most real-world demographics attributes

like race, religion are not binary. Many of
these demographic attributes have more than
2 sub-categories. (Manzini et al., 2019a) pa-
per has described a technique to debias the
word embeddings for multiclass demographic
attributes. A recent work (Brunet et al., 2018)
took a new direction and proposed a prepro-
cessing method for the discovery of the prob-
lematic documents in the training corpus that
have biases in them, and tried to debias the
system by perturbing or removing these doc-
uments efficiently from the training corpus.
Most debiasing techniques, however, concen-
trate on post-processing pre-trained word em-
beddings. In a very recent work (Zhao et al.,
2019a), authors target bias in ELMo’s con-
textualized word vectors and attempt to an-
alyze and mitigate the observed bias in the
embeddings. They show that the corpus used
for training of ELMo has a significant gender
skew, with male entities being nearly three
times more common than female entities. This
automatically leads to gender bias in these pre-
trained contextualized embeddings. In (May
et al., 2019a) authors extend the research in
detecting bias in word embedding techniques
to that of sentence embedding. They try to
generalize bias-measuring techniques, such as
using the Word Embedding Association Test
(WEAT (Caliskan et al., 2017)) in the context
of sentence encoders by introducing their new
sentence encoding bias-measuring techniques,
and the Sentence Encoder Association Test
(SEAT). They used state-of-the-art sentence
encoding techniques, such as CBoW, GPT,
ELMo, and BERT, and find that although
there was varying evidence of human-like bias
in sentence encoders using SEAT, more recent
methods like BERT are more immune to bi-
ases. That being said, they are not claiming
that these models are bias-free, but state that
more sophisticated bias discovery techniques
may be used in these cases, thereby encourag-
ing more future work in this area.

4.2 Natural Language Understanding
Tasks

Coreference resolution is the task to iden-
tify all the entity mentions in a given text
which correspond to the same entity. (Web-
ster et al., 2018) defines and measures bi-
ases through a disparity in correctly resolv-



ing pronoun-name relationships for the male
and female genders using Gendered Ambigu-
ous Pronouns (GAP) dataset ((Webster et al.,
2018)). The Maybe Ambiguous Pronoun
(MAP) dataset ((Cao and Daumé III, 2020))
expands GAP to go beyond binary gen-
ders with a broader dataset. Both Wino-
Bias ((Zhao et al., 2018a)) and Winogender
((Rudinger et al., 2018)) generate Winograd
schema style datasets to investigate occupa-
tional gender stereotypes. Additionally, (Lu
et al., 2018) create simple sentence templates
to evaluate biases using the ratio of accurate
pronoun resolution for stereotypical vs non-
stereotypical occupational associations. While
all of the above can potentially cover ad-
ditional demographics and undesired associ-
ations, it is important to question which is
more applicable to investigate harms faced by
a group.

Natural Language Inference determines
the directional relationship between two sen-
tences, as to whether the second sentence (hy-
pothesis) is entailed, contradicted, or neutral
to the first sentence (premise). (Dev et al.,
2019) demonstrates how the task captures and
mirrors stereotypical associations (with binary
gender, religion, etc) learned by text repre-
sentations. Their bias measure consists of a
dataset with sentence pairs: one sentence with
an explicit demographic attribute (e.g., gen-
der), and the other with implicit, stereotypical
associations (e.g., occupations). Bias is mea-
sured as the accuracy of models in identifying
that all sentences have no directional relation,
i.e., classified having the ‘neutral‘ label. Since
an overall score is calculated for bias over a set
of templates, a variety of templates can be in-
dependently assessed together to evaluate fair-
ness of NLI model outcomes across multiple
demographic groups, thus not restricting mea-
surements to a single stereotype.

Sentiment or language polarity anal-
ysis of text is useful for understanding con-
sumer perception from reviews, tweets, etc.
However, this task has been demonstrated
to be stereotypically influenced by demo-
graphic characteristics such as race and gen-
der ((Kiritchenko and Mohammad, 2018)), age
((Diaz et al., 2018)) and names of individ-
uals ((Prabhakaran et al., 2019)). Existing

works keep sentence templates constant be-
tween samples and change the assumed de-
mographic attribute of the person in a sen-
tence (e.g.,through changing names). This
ideally should not change the sentiment clas-
sification of the sample— changes in senti-
ment indicate the existence of stereotypical
associations. Since evaluation hinges on this
contrast in classification across groups, bias
against a group is also measured in comparison
to another. (Elazar and Goldberg, 2018) has
show the protected demographic information
like gender, age leaks into intermediate repre-
sentation of neural networks trained on text
data for an emoji-based sentiment detection
task. They also have suggested an adversarial
method to decrease the leakage of protected
attribute while performing the sentiment de-
tection task.

Question Answering models perform
reading comprehension tasks and also propa-
gate stereotypical associations from underly-
ing language representations, as demonstrated
through UnQuover ((Li et al., 2020)). In this
work, biases exhibited by QA systems are mea-
sured using constructed sentence templates
containing limited direct demographic infor-
mation (e.g., names) accompanied by under-
specified questions containing no related de-
mographic information. The setup is such
that all sub-categories of a demographic at-
tribute (e.g., religion: Christian, Buddhist,
etc) should be equally predicted as the answer.
A statistically significant, higher value for one
sub-category is interpreted as bias. This gives
us the understanding of comparative biases
across several demographic dimension values
and is a closer reflection of the complexities of
real-world biases.

(De-Arteaga et al., 2019) set up a measure
for evaluating bias in text classification where
the task is to predict a person’s occupation
given their biography.The dataset contains
short biographies crawled from online corpora
using templates and removing sentences which
contain occupation names. Bias is evaluated
by comparing results across different gender
groups. (Zhao et al., 2020) extend the original
dataset to Spanish, French, and German. A
challenge is equally scraping diverse data for
different demographics, as reflected in the fo-



cus on binary gender for this measure.
Toxic language ranges from more explic-

itly offensive forms (e.g., vulgar insults) to
more subtle forms (e.g., microaggressions).
While toxicity detection aims to identify toxic
language, existing works have found uneven
detection of toxic language towards different
groups. (Prabhakaran et al., 2019) show that
there are varying levels of toxicity towards dif-
ferent names. (Dixon et al., 2018) analyze bi-
ases in a toxicity classification model through
the Wikipedia Talk Pages dataset as well as
through a templated test set. Jigsaw ((Jig-
saw, 2019)) contains comments from the Civil
Comments platform labeled with six types of
toxicity (e.g., toxic, obscene, etc) and identity
attributes (e.g., white, woman, etc).

Hate speech detection is the task of iden-
tifying abusive language that is specifically di-
rected towards a particular group. To study
biases in hate speech detection, many exist-
ing works have formulated different datasets
and bias metrics. (Davidson et al., 2017) and
(Founta et al., 2018) annotate Twitter datasets
for hate speech detection. (Blodgett et al.,
2016) provide a corpus of demographically-
aligned text with geolocated messages based
on Twitter. (Sap et al., 2019a); (Xia et al.,
2020) use those datasets to show racial biases
through a higher false positive rate for AAE,
while (Davidson et al., 2019a) use the dataset
of (Blodgett et al., 2016) for racial bias evalua-
tion by comparing probabilities of tweets from
different social groups being predicted as hate
speech.

4.3 Natural Language Generation
Tasks

Autocomplete generation is the task of
having a language model generate continua-
tions from a prompt. (Sheng et al., 2019)
and (Huang et al., 2020) both curate sets
of prompts containing different demographic
groups to prompt for inequalities in gener-
ated text. The former uses a regard metric
to measure social perception towards groups,
and the latter uses distributional differences
in sentiment scores. Whereas these two works
manually curate prompt sets, (Dhamala et al.,
2021) extract the beginnings of Wikipedia ar-
ticles to collect the BOLD dataset of prompts
about various demographic groups. The au-

thors then use several metrics (sentiment, tox-
icity, regard, etc) to measure biases in gener-
ated text. There are also works that extract
existing prompts and augment the prompt
set with manual annotations. For example,
(Groenwold et al., 2020) use extracted African
American English prompts to create a parallel
set of White-Aligned English Twitter prompts
and compare the sentiment of generated texts.
While manually constructed prompts allow for
more targeted evaluations, automatically ex-
tracted prompts allow for more comprehensive
and syntactically-varied evaluations.

For machine translation, the English
WinoMT dataset ((Stanovsky et al., 2019)) is
a widely used dataset for quantifying gender
biases. By concatenating examples from Wino-
gender ((Rudinger et al., 2018)) and WinoBias
((Zhao et al., 2018a)), the authors create a
challenge set to assess translations of stereo-
typical and nonstereotypical occupations for
gendered coreference associations. There are
also extensions of WinoMT for different lan-
guages ((Kocmi et al., 2020)) and datasets
collected through mining ((Webster and Go-
nen, 2020)). Bias metrics for translation typi-
cally rely on translation accuracy. A challenge
for translation bias measures is obtaining cor-
rect translations in several languages, which
is perhaps simpler for manually constructed
prompts with similar syntax.

Dialogue generation is similar to auto-
complete generation in that both require the
model to generate a text continuation given
some prompt. The differences lie in the use
contexts—dialogue generation is used for spe-
cific tasks (e.g., patient help) within some do-
main (e.g., healthcare). (Liu et al., 2019) con-
struct a Twitter based dataset with parallel
context pairs between different groups, and
(Liu et al., 2020) rely on extracted conversa-
tion and movie datasets to evaluate gender bi-
ases. Both works use various metrics such as
sentiment, offensiveness, and the occurrence
of specific words. (Dinan et al., 2019) present
an example of a bias measure that uses a
crowdsourced dataset (LIGHT from (Urbanek
et al., 2019)) to evaluate gender biases—in
this case, through the percentage of gendered
words. There are many possible bias metrics
for this open-ended task and limited examina-



tion on trade-offs between different metrics.

5 Metrics for measurement of Bias
5.1 Implicit Association Test (IAT)
In psychology, the Implicit Association Test
(IAT) is used to measure subconscious gender
bias in humans, which can be quantified as the
difference in time and accuracy for humans to
categorize words as relating to two concepts
they find similar versus two concepts they find
different ((Greenwald et al., 1998); (Caliskan
et al., 2017)). For example, subjects are much
quicker if they are told to label insects as un-
pleasant and flowers as pleasant than if they
are asked to label these objects in reverse. The
fact that a pairing is faster is taken to indi-
cate that the task is more easy, and therefore
that the two subjects are linked in their mind
subconsciously. Similarly, to measure subcon-
scious associations of genders with arts and
sciences, participants are asked to categorize
words as pertaining to (males or the sciences)
or (females or the arts) (Nosek et al., 2009).
The participants are then asked to categorize
words as pertaining to (males or the arts) or
(females or the sciences). If participants an-
swered faster and more accurately in the for-
mer setting, it indicates that humans subcon-
sciously associate males with the sciences and
females with the arts.

5.2 Word Embedding Association Test
(WEAT)

(Caliskan et al., 2017) propose the Word Em-
bedding Association Test (WEAT) as a way
to examine the associations in word embed-
dings between concepts captured in the Im-
plicit Association Test (IAT) intended to as-
sess implicit stereotypes held by test subjects,
such as unconsciously associating stereotypi-
cally black names with words consistent with
black stereotypes. It is considered that this
measure is analogous to reaction time in the
IAT, since the shorter time implies a semantic
‘nearness’ ((Mcdonald and Lowe, 1998)).

1. Adopting Psychological Tests
WEAT : The null hypothesis is that
there is no difference between the two sets
of target words in terms of their relative
similarity to the two sets of attribute
words.In formal terms, let X and Y be

two sets of target words of equal size, and
A,B the two sets of attribute words

s(X,Y,A,B) =
∑
x∈X

s(x,A,B)−
∑
y∈Y

s(y,A,B)

(1)
where each addend is the difference be-
tween the mean of cosine similarities of
the respective attributes:

s(w,A,B) = meana∈A cos(w, a)−meanb∈B cos(w, b)
(2)

In other words, s(w,A,B) measures the as-
sociation of the word w with the attribute,
and s(X,Y,A,B) measures the differential
association of the two sets of target words
with the attribute. To compute the signif-
icance of the association between (A, B)
and (X, Y) a permutation test on s(X, Y,
A, B) is used.

p = Pr [s (Xi, Yi, A,B) > s(X,Y,A,B)]
(3)

where the probability is computed over
the space of partitions (Xi, Yi) of X ∪ Y
so that Xi and Yi are of equal size. The
effect size is defined to be

d =
meanx∈X s(x,A,B)− meany∈Y s(y,A,B)

std− devw∈X∪Y s(w,A,B)
(4)

The idea is that the more positive the
value given by WEAT, the more the tar-
get X will be related to attribute A and
target Y to attribute B. On the other
hand, the more negative the value, the
more target X will be related to attribute
B and target Y to attribute A. Commonly
these values are between +/-0.5 and +/-2.
The ideal score is 0. 3

5.3 Sentence Embedding Association
Test (SEAT)

SEAT, as proposed by(May et al., 2019b),
compares sets of sentences, rather than sets
of words, by applying WEAT to the vec-
tor representation of a sentence. Because
SEAT operates on fixed-sized vectors and
some encoders produce variable-length vector

3https://www.kdnuggets.com/2020/08/
word-embedding-fairness-evaluation.html
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sequences, SEAT uses pooling as needed to ag-
gregate outputs into a fixed-sized vector. We
can view WEAT as a special case of SEAT in
which the sentence is a single word. In fact,
the original WEAT tests have been run on
the Universal Sentence Encoder ((Cer et al.,
2018)).

To extend a word-level test to sentence con-
texts, each word is slotted into each of sev-
eral semantically bleached sentence templates
such as “This is < word >.”, “< word > is
here.”, “This will < word >.”, and “< word >
are things.”. This design tries to focus on the
associations a sentence encoder makes with a
given term rather than those it happens to
make with the contexts of that term that are
prevalent in the training data; a similar de-
sign was used in a recent sentiment analysis
evaluation corpus stratified by race and gen-
der ((Kiritchenko and Mohammad, 2018)).

5.4 Mean Average Cosine Similarity
(MAC)

WEAT as proposed by (Caliskan et al., 2017)
provides a geometric interpretation of the dis-
tance between two sets of target words and
two sets of attribute words. The mean average
cosine similarity (MAC) uses the intuition be-
hind WEAT and applies this notion to a mul-
ticlass domain as proposed by (Manzini et al.,
2019a). Instead of comparing the associations
of one target set T1 and an attribute set A1,
to the association of T2 and A2, MAC consid-
ers the association of one target set T1 to all
attribute sets A at one time.

The MAC metric is computed by calculating
the mean over the cosine distances between
an element t in a target set T to each ele-
ment in an attribute set A, as seen below equa-
tion, in which the cosine distance is defined
as cosdistance(t, a) = 1− cos(t, a). This is re-
peated for all elements in T to all attribute
sets. The MAC then describes the average co-
sine distance between each target set and all
attribute sets.

sMAC (t, Aj) =
1

|Aj |
∑
a∈Aj

cosdistance (t, a) (5)

5.5 Metrics to Detect Bias in NLG
Tasks

Language generation tasks often involve
stochastic generation of open-ended and
lengthy texts, traits that are not directly com-
patible with traditional algorithmic bias defini-
tions (e.g.,equalized odds, equal opportunity,
demographic parity ((Dwork et al., 2011)). Be-
cause of the difficulty in defining metrics, exist-
ing works define bias loosely as demographic
inequality and use intermediate proxy metrics
to comparatively measure bias. Examples in-
clude:

1. Regard Ratio: negative-neutral-
positive regard score ratios of text
generated from bias-inducing prompts.
((Sheng et al., 2019))

2. Sentiment Ratio: negative-neutral-
positive sentiment score ratios of text
generated from African American En-
glish (AAE) versus White-Aligned En-
glish (WAE) prompts. ((Groenwold et al.,
2020))

3. Individual and Group Fairness
through Sentiment: comparisons of
the sentiment distributions of generated
text across demographics and prompts.
((Huang et al., 2020))

4. Gendered Word Co-occurrence
Score: mean and standard deviations
of the absolute log ratio of proba-
bilities: P (word|femaleterms) to
P (word|maleterms) across all words in
generated text. ((Bordia and Bowman,
2019))

6 Bias in Movie Scripts
Despite the fact that there have been many
efforts to identify social biases in texts ((Sap
et al., 2017; Kagan et al., 2020; Garcia et al.,
2014; Xu et al., 2019)), less attention has been
paid to doing so in the area of entertainment.
Various studies demonstrate the gender dispar-
ity and stereotypes in popular culture Fast
et al. (2016), Ramakrishna et al. (2015) and
Ramakrishna et al. (2017). rely on linguistic
characteristics to measure age, racial, and gen-
der disparities in literature and film Khadilkar
et al. (2021b). Unlike other earlier efforts, this



one compares gender prejudice and other sub-
tle biases between the two major film indus-
tries of Bollywood and Hollywood using Cloze
tests and WEAT measurements.

Despite the fact that there have been many
efforts to identify social biases in texts, less at-
tention has been paid to doing so in the area
of entertainment. Various studies demonstrate
the gender disparity and stereotypes in popu-
lar culture. rely on linguistic characteristics
to measure age, racial, and gender disparities
in literature and film. Unlike other earlier ef-
forts, this one compares gender prejudice and
other subtle biases between the two major film
industries of Bollywood and Hollywood using
Cloze tests and WEAT measurements.

7 Multilingual Bias Detection

The presence of social bias in language repre-
sentations is mainly due to the undesired and
skewed associations within the training data.
Considering the increasing societal impact of
NLP applications, studying these undesired
relationships is the scientific endeavour ((Ben-
der and Friedman, 2018; Crawford, 2017)).
The initial works to tackle this issue aimed at
measuring and mitigating gender biases from
word embeddings ((Bolukbasi et al., 2016;
Caliskan et al., 2017; Zhao et al., 2017; Garg
et al., 2017; Sun et al., 2019b)). Additionally,
There have been multiple works to detect race,
religion bias in word embedding ((Manzini
et al., 2019b)). Many follow-up works ((May
et al., 2019c; Zhao et al., 2019b; Kurita et al.,
2019)) have also focused on contextualised
language representation like BERT.

More recently, many datasets ((Nadeem
et al., 2021; Nangia et al., 2020; Sap et al.,
2020)) have been created to measure social
biases like gender, race, profession, religion,
age, etc. Blodgett et al. (2021) has reported
that these datasets lack clear definitions and
have ambiguities and inconsistencies in anno-
tations. Researchers have also investigated
these biases through various NLP tasks like
machine translation ((Stanovsky et al., 2019;
Savoldi et al., 2021)), question answering((Li
et al., 2020)), coreference resolution((Webster
et al., 2018)).

There have been a lot of notable efforts
towards detection of data bias in hate speech
and offensive languages ((Waseem and Hovy,
2016; Davidson et al., 2019b; Sap et al., 2019b;
Mozafari et al., 2020)). Borkan et al. (2019)
has discuss the presence of unintended bias
in hate speech detection models for identity
terms like islam, lesbian, bisexual, etc. Recent
studies have also investigated the usefulness
of counter-factual data augmentation ((Dixon
et al., 2018; Nozza et al., 2019; de Vassi-
mon Manela et al., 2021)) to reduce the effect
of unintended bias in these tasks.

However, most of the research in bias detec-
tion, mitigation are in English language and
have focused on western culture. Few recent
works have explored the issue of social bias
in languages such as Arabic, Italian, Spanish,
French, and Korean ((Lauscher et al., 2020;
Sanguinetti et al., 2020; Zhou et al., 2019;
Kurpicz-Briki, 2020; Moon et al., 2020)).
There are very few research works towards
tackling this challenge on Indian context.
Pujari et al. (2019) explore bianry gender bias
in Hindi languages and Gupta et al. (2021)
investigate gender bias in Hindi-English
machine translation using different fairness
metrics. Sambasivan et al. (2021) analyze
and discuss multiple dimensions of algorith-
mic fairness in India. Through a detailed
qualitative study, the authors suggest seven
potential dimension of algorithmic unfairness
in India such as, Caste, Gender, Religion,
Ability, Class, Sexual Orientation, Ethnicity.

Kumar et al. (2021) released a multilingual
dataset in four languages like Hindi, Bangla,
Meitei, and Indian English. The dataset has
social media comments which are mostly code-
mixed with English and annotated for labels
like gender bias, religion bias, class bias, and
ethnic bias. In this paper, we majorly focus
on the political bias, personal attacks, religion
bias, and other biases like race, gender, etc. in
Hindi language.

8 Summary

In this paper we have summarized all the pre-
vious works related to different biases in va-
riety of NLP tasks like Natural language un-



derstanding and generation tasks and also dis-
cussed about various metrics for measurement
of bias. Some works related to multilingual
bias were discussed.
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