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Abstract

Morphology analysis is a foundational NLP
task with relevance in language documen-
tation, machine translation, language mod-
eling, etc. Building morphological analyz-
ers is a resource intensive process limiting
their availability to a few high web-resource
languages. Neural models such as RNNs,
transformers, etc have been applied recently
to morphology analysis tasks. These meth-
ods have shown great improvements over
the baselines, especially in a resource scarce
scenario. In this survey, we focus on su-
pervised and unsupervised approaches that
have been tried for morphology analysis.
We also provide a survey of the current state
of resources that are available for morphol-
ogy analysis.

1 Introduction

The term morphology refers to the phenomenon
of word formation in a rule-governed way. Mor-
phology analysis is the first step of processing
in the NLP pipeline. The focus is on analyzing
the internal structure of words, understanding the
meaning and function related to each part (also
called morpheme), and figuring out how differ-
ent morphemes can be combined to make valid
words. Even in the transformer era, wherein the
entire NLP pipeline is replaced with a transformer,
use of morphological segmentation for tokeniza-
tion instead of statistical subword tokenization has
been shown to produce better embeddings, espe-
cially for morphologically rich languages (Nzey-
imana and Rubungo, 2022) as statistical subword
tokenization cannot capture morphological alter-
nations and non-concatenative morphology. A
morphology analyzer can also help in speeding
up language documentation efforts for endangered
languages, Moeller et al. (2020) leveraged in-
terlinear glossed text to generate unseen forms

of inflectional paradigm using a morphology an-
alyzer. Availability of morphological informa-
tion can also benefit various downstream tasks
such as parsing (Seeker and Çetinoğlu, 2015), ma-
chine translation (Tamchyna et al., 2017), lan-
guage modeling (Park et al., 2021), etc.

Although high quality morphology analyzers
have been built for some Indian languages, they
are either rule based such as Agarwal et al. (2014)
or are neural models trained on morphologically
annotated data which is available in sufficient
quantities only for high resource languages (Jha
et al., 2018). Building morphology analyzers for
low-resource languages still remains a challeng-
ing task. For low-resource languages, morpho-
logical resources are sparse or virtually nonex-
istent. Multilingual models have shown promis-
ing results for cross lingual transfer from high re-
source languages to low-resource languages (Wu
and Dredze, 2019; Lauscher et al., 2020). The
shared representations learned by these models al-
low for effective few shot learning, thus facilitat-
ing coverage to low-resource languages.

Computational morphology consists of varied
tasks such as root word extraction, surface word
segmentation, MSD tagging, learning of allo-
morphy and morphophonological variations, mor-
phological (re)inflection, paradigm completion,
paradigm clustering, simulating cognitive process-
ing of morphology. Our focus in this paper is pri-
marily on morphology analysis and morphology
generation. For an overview of other tasks, we re-
fer the reader to Liu (2021). Morphology analysis
consists of two sub-tasks: root word extraction and
MSD feature tagging. In the case of morphology
generation, the inputs are the MSD and the root
word and the output is the surface form with fea-
tures as described in the input. We provide an ex-
ample highlighting distinction between these tasks
in figure 1. We survey unsupervised approaches to
morphology analysis in section 2. We then look at



supervised approaches in section 3. We then pro-
vide an overview of available resources for South
Asian Languages in section 5. We finally review
the shared tasks in SIGMORPHON in section 7.

2 Unsupervised Approaches to
Morphology Analysis

The key idea in the unsupervised setting is to de-
sign an algorithm that takes a text corpora (which
is unannotated) as input and provides an analysis
of the morphological structures that are present in
the language. The main motivation to study unsu-
pervised approaches is rooted in the quest to find
out the languages learning phenomenon that goes
on inside the human brain. (Creutz and Lagus,
2004) propose a Morfessor baseline member that
uses Maximum-Likelihood (ML) estimate. Ex-
pectation Maximisation is used to optimise the
model (EM). At first, the words are divided at ran-
dom. Words are separated iteratively by draw-
ing morpheme lengths from a Poisson distribu-
tion. Splits are either accepted or rejected accord-
ing to the rejection criteria which has two condi-
tions; rare morphemes and one letter morphemes
are rejected. To produce a power-law distribution,
(Goldwater et al., 2005) offer a two-stage model
in which words are first generated by a gener-
ator component and then the frequencies of the
words are estimated by an adapter. The adaptor
runs a Pitman-Yor process by locating the words
in tables in a rich-get-richer fashion. Instead of
inducing the morphemes in each language sep-
arately, (Snyder and Barzilay, 2008) construct a
non-parametric Bayesian model that uses bilin-
gual parallel corpora to induce commonly occur-
ring morphemes (abstract morphemes) inside par-
allel short phrases. It is a hierarchical Bayesian
model where the defined distributions are drawn
from Dirichlet processes. Although it has only
been tested on bilingual corpora, the model can
also be extended to induce morphemes across mul-
tiple languages. Authors in (Chan, 2006) pro-
pose a Latent Dirichlet Allocation (LDA)-based
method, which is also a generative probabilistic
model, in which data sets are created using a three-
level hierarchical Bayesian mode. When it is ap-
plied to topic modelling, the three levels consist of
documents, topics and a vocabulary. (Chan, 2006)
applies a similar approach by replacing the docu-
ments, topics and a vocabulary with the suffixes,
stems and paradigms, where the latent classes are

the paradigms to be induced.

2.1 Geometric Approaches

The geometric approaches to morphology analysis
deal with travelling and searching effectively in a
geometric space. The the process of specifying a
morphological rule can be thought of as locating
it as a point in a space of very high dimension,
and the task of finding the correct grammar (rule)
can be thought of as traveling through that space.
Three main approaches that have been explored
in this context are: Minimum Description Length
(MDL), Gibbs sampling, and adaptor grammars.
These models have been built on the concept of
probabilistic models and involve finding the rules
(paths in the morphological space) that maximize
a probabilistic score. We describe the approaches
in detail below:

2.1.1 Minimum Description Length (MDL)
Minimum description length was proposed by
(Goldsmith, 2006) in the context of unsupervised
morphology leaning. The main idea is to quan-
tify the information contained in particular mor-
phological description of a particular set of data D
as sum of two quantities: the complexity of the
overall grammar G used to provide the descrip-
tion, and the number of bits needed to represent
the data D , given G, a probabilistic grammar.The
first term represents the algorithmic complexity of
the algorithm while the second term represents the
goodness of fit of particular analysis (that is the
set of rule) of dataset given the grammar (This can
be thought of as the quantity of information in the
corpus that is not explained by the grammar). The
minimum description length is based on the prin-
ciples that: Every regularity in data may be used
to compress that data and Learning can be equated
with finding regularities in data. Goldsmith intro-
duces the morphological structures called ‘signa-
tures’ to encode the data. A signature represents
the inner structure of a list of words that have sim-
ilar inflective morphology. The morphology of a
corpus is represented in three lists: an affix list,
a stem list, and a signature list. The affix and
the stem list contain the letters, whereas the signa-
ture list only contains pointers to stems and affixes.
The aim is to find the morphology that will anal-
yse the corpus in its most compact state. Morfes-
sor (Creutz and Lagus, 2004) is another state of the
art model in the field. It engages the MDL princi-
ple to minimise the length of a codebook (A code-



Figure 1: (a) Morphology analysis consists of lemmatization and morphological tagging on the English word
‘runs’. (b) is a morphological generator produces the inflected form corresponding to the English lemma run and
the MSD tag V;PRES;3P;SG. Source: (Liu, 2021)

book consists of the morphemes that will generate
a corpus.) and a corpus. The length of a corpus is
computed using the maximum likelihoods of the
morphemes, whereas the length of a codebook is
the summation over all morphemes’ lengths. Mor-
fessor Baseline deploys a recursive segmentation
where each discovered morpheme is analysed re-
cursively as long as it improves the cost.

3 Supervised Approaches to Morphology
Analysis

3.1 Morphology Analysis as Learning task

Morphology analysis can be thought of as a learn-
ing task in three different ways. One way of look-
ing at is as a classification task wherein the model
takes each character as input, builds a representa-
tion of the entire word and then outputs one class
(or multiple classes like MSD tags) as the out-
put.This can be regarded as many to one case. In
the many-to-many case, the model first reads in
the characters in the text, generates the representa-
tion of the text and then outputs another sequence
of symbols which may or may not be of the same
length as the input. This is known as sequence to
sequence transduction. The task of morphologi-
cal inflection and reinfection falls in this category.
Another alternative way to look at the task of mor-
phological analysis is sequence labelling. In this
case, the model takes a sequence of character and
labels each and every character (the labelling is
done on the basis of actions that need to be taken
on that particular character). For example while
obtaining the root word of the word going, the out-

put would be label for each charter pertaining to
deletion or retention of that character.

3.2 Neural Approaches

The use of neutral approaches mostly encom-
passes use of an encoder decoder architecture for
the task of sequence labelling. (Faruqui et al.,
2015) was one of the first works to explore the
use of encoder decoder model for the use of mor-
phological inflection. They use a bidirectional
LSTM for the encoder, which takes the charac-
ter sequence of the surface form as input along
with a LSTM decoder. The input to the LSTM
decoder is the encoder output along with decoder
output from previous time steps. Their model
makes no assumptions about morphological pro-
cesses or rules , and the inputs are simply the
individual characters. In one of the experimen-
tal settings, they learnt a separate decoder model
for each type of inflection (which they call a fac-
tored model) and compared it with a model with
common decoder for all the inflections. They
also used the unlabelled data in order to in-
duce the copying bias in the models in an semi-
supervised setting. The highest accuracy was ob-
tained for factored semi-supervised setting on the
Wiktionary inflection dataset (Durrett and DeN-
ero, 2013).They found that their models achieve
better performances on the previous state of the
art models such as plain encoder decoder models
without a semi-supervised setting. The shared task
of SIGMORPHON - 2016 task is based on mor-
phological re-inflection wherein the root word and



the target MSD tags were given and the task was to
transform the root into the target surface form (for
which the tags were given). Nine teams provided
their submissions for the task. The neural sys-
tems outperformed the other systems which were
based on linguistic heuristics or classical transduc-
tion based models by a large margin. The model
by (Kann and Schütze, 2016) which won the com-
petition used bidirectional GRU based encoder de-
coder architecture with soft attention which was
traditionally developed for machine translation.
They trained a separate model for each language
as opposed to separate model for each type of
inflection as was used by (Faruqui et al., 2015).
The second ranked system used a separate model
for each part of speech type and the model they
used was encoder-decoder model with the encoder
augmented with a bidirectional LSTM. (Akyürek
et al., 2019) design a model called Morse which is
a recurrent encoder-decoder model that produces
morphological analyses of each word in a sen-
tence. They discovered that forcing the decoder
to anticipate both the lemma form and the fac-
tored MSDs yields poorer results than decoding
simply the MSDs, especially in low-resource set-
tings and for morphologically more complicated
languages. They also discovered that when train-
ing data is limited and the language includes rich
inflections, predicting factored MSDs is preferable
to predicting unfactored MSDs, and that utilising
related high-resource language data to supplement
low-resource language training is beneficial. Their
model outputs morphological tags one feature at a
time, enabling it to learn unseen/rare tags. At the
heart of the system is a unidirectional LSTM. a
forward LSTM at the word level to obtain the word
embedding for each word; a character level LSTM
to get the word embedding for each word read in
words to the left of the current word and a back-
ward word-level LSTM to read in words to the
right of the current word Take the concatenation
of the forward and backward LSTMs as the right-
hand side of the current word. additional unidirec-
tional LSTM to encode the expected morphologi-
cal changes; the context representations tagging of
the two words before it.

3.2.1 Transformer based architectures
The second subtask of SIGMORPHON 2019
shared task is on morphological tagging and
lemmatization in context. For this subtask, 16
systems were submitted, all of which used neu-

ral network models. The most effective systems
employ BERT pretrained embeddings for contex-
tual representations and perform versions of multi-
headed attention, multi-level encoding, and mul-
tiple decoding. (Kondratyuk, 2019) was the best
performing system. The authors use the multi-
lingual BERT model and many UDify-developed
fine-tuning procedures to achieve remarkable as-
sessment performance on morpho-syntactic tasks.
Their findings reveal that fine-tuning multilingual
BERT on the concatenation of all of accessible
tree banks allows the model to learn cross-lingual
information, which improves lemmatization and
morphology tagging accuracy when compared to
fine-tuning it monolingually. They encode input
sentences using the pretrained multilingual BERT
cased model, then apply additional word-level and
character-level LSTM layers before decoding lem-
mas and morphological tags simultaneously using
simple sequence tagging layers. To identify the
edit actions to turn an inflected word to its lemma,
lemmatization decoding is regarded as a sequence
classification problem, and a feedforward layer
is applied to the lemmatizer LSTM final layer to
achieve the result. A feed forward layer is used to
jointly forecast factored and unfactored MSDs for
morphological tagging. Their system is shown in
figure 2

(Straka et al., 2019) is also one of the best per-
forming systems for the task. They use modified
version of UDipipe 2.0 for the task. After convert-
ing the input words to embeddings, three shared
bidirectional LSTM layers are performed.Then,
softmax classifiers are used to process the out-
put and generate the lemmas and POS tags (mor-
phosyntactic features). The lemmas are created
classifying into a series of edit scripts that eval-
uate the input word form and construct lemmas by
executing character-level modifications on the pre-
fix and suffix words. We add pretrained contextual
word embeddings (BERT) as another input to the
UDIpipe framework. They predict the full POS
tag and regularize the model by predicting indi-
vidual morphological features.

4 Few Shot and Zero Shot Learning

Though the performance of SeqtoSeq models is
very impressive in case of high resource scenar-
ios there is a significant drop in the performance
when it comes to low resource scenario. Scarcity
of labeled examples is one of the core problems in



Figure 2: BERT based Morphological analyzer. The mBERT model acts as a multilingual encoder and the word
level and character level LSTMs are the decoders

most of the NLP tasks for all languages apart from
resource rich languages such as English. This ren-
ders the researchers to look into strategies that
work well with less amount of data and look be-
yond multilingual models. One such strategy is
to use multilingual models that are trained on a
large number of languages and are effectively able
to use the linguistic knowledge that is gained from

one language (which is probably a high resource
language with lots of annotated data) to a low re-
source language. Currently, the most commonly
used technique for few shot transfer in a low re-
source scenario is the use of continuous cross-
lingual representation spaces that encode the lin-
guistic knowledge of multiple languages into a
single space. The cross lingual word embeddings



(Ruder et al., 2019) and massively multilingual
models that are trained using language modelling
objectives (or denoising objectives) have become
the mainstay of current few shot transfer tech-
niques (Conneau et al., 2020). (Lauscher et al.,
2020) study the effectiveness of zero shot and few
shot learning paradigm in the context of low re-
source languages. They train a model in English
and test it on various languages such as Arabic
(AR), Basque (EU), (Mandarin) Chinese (ZH),
Finnish (FI), Hebrew (HE), Hindi (HI), Italian
(IT), Japanese (JA), Korean (KO), Russian (RU),
Swedish (SV), and Turkish (TR), etc for 5 tasks:
3 low level tasks (POS tagging, dependency pars-
ing, NER) and 2 high level tasks: Natural language
inference (NLI) and QA. They have used multi-
lingual pretrained models mBERT and RoBERTa
for these tasks. The authors suggest that pres-
ence of few labelled examples of low resource
languages can highly enrich the performance of
the models in low resource languages especially
when the low resource language has lesser sim-
ilarity to high resource language. The boost in
performance is observed mostly in the low level
tasks such as NER, POS tagging, etc. The authors
also highlight the curse of multilingaulity which
occurs when too many languages are used to pre-
train the language models and leads to slight dip
in the performance. The paper also predicts the
performance that a model will have on a low re-
source language based on the dissimilarity of that
language with the source language and number of
examples present. Morphology analysis has also
been studies in the context of low resource In-
dian languages in (Saunack et al., 2021) where the
main goal is to study effectiveness of cross lingual
transfer for the task of lemmatization. The au-
thors use two step attention process in an LSTM
based encoder-decoder model. They observe that
for most of the Indian Languages, a monolin-
gual model trained on approximately 1000 train-
ing samples gives competitive accuracy. They also
observe that presence of PoS tags as one of the fea-
tures benefits the training.

5 South Asian Languages

South Asia is home to a diverse range of lan-
guages, including four major linguistic groups
and numerous putative linguistic isolates, many
of which are severely underserved by contem-
porary language technology.Furthermore, the lan-

guages of South Asia have a lengthy history and
have experienced complicated evolution as a re-
sult of genetic descent, socio-linguistic interac-
tions, and contact effect. The most important ob-
stacle in developing language technologies, has
been resource scatteredness rather than resource
scatteredness as argued in (Arora et al., 2022).
Most of the languages including endangered ones
have a wealth of data to be retrieved from anno-
tated corpora and grammatical descriptions main-
tained by linguists, if only one is prepared to
wrangle and extract unusual and vivid data for-
mats and digitise old texts. The focus of cur-
rent effort has been on data-scattered languages
rather than resource scarce languages. (Kakwani
et al., 2020) has been one such effort in the di-
rection of developing resources for South Asian
languages. The authors have introduced resources
for 11 Indian languages belonging to two major
resources. These resources include: (a) large-
scale sentence-level monolingual corpora contain-
ing a total of 8.8 billion tokens across all 11
languages and Indian English, primarily sourced
from news crawls, (b) pre-trained word embed-
dings based on FastText, (c) pre-trained language
models based on ALBERT, and (d) multiple NLU
evaluation datasets such as: Article Genre Classi-
fication, Headline Prediction, Wikipedia Section-
Title Prediction, Cloze-style Multiple choice QA,
Winograd NLI, The Choice Of Plausible Alterna-
tives (COPA), Named Entity Recognition, Cross-
lingual Sentence Retrieval, Paraphrase detection,
Discourse Mode Classification, etc.

(McEnery et al., 2000), has also been one of the
efforts of past years that was aimed at convert-
ing 8-bit language data into Unicode. The cor-
pus is made to support translation and transliter-
ation tools for languages: Bengali, Hindi, Pun-
jabi. (Arora, 2020) is one of the tools available
for processing of Indian languages. It contains
pre-trained language models: ULMFiT and Trans-
formerXL for 13 Indian languages: Hindi, Ben-
gali, Gujarati, Malayalam, Marathi, Tamil Pun-
jabi, Kannada, Oriya, Sanskrit, Nepali, Urdu.
It also conatins support for: Textual Similar-
ity, Data Augmentation,Word Embeddings, Sen-
tence Embeddings, Tokenization and Text Gener-
ation in 13 Indic Languages. Workshops such as
(Chakravarthi et al., 2021) have been a significant
effort in the direction of developing resources for
Indian languages. There are resources availabe



for a few languages that are not in usable state
currently or amount of labelled data is limited,
(Joshi et al., 2020) calls such languages as under-
dogs. The languages such as Marathi fall in this
category. The left behinds category is however
a long tailed one and includes several hundreds
of languages. With such little resources, bring-
ing them into the digital realm will be a monu-
mental, if not impossible, task. Because there is
essentially no unlabeled data to utilise, unsuper-
vised pre-training approaches just make the ’poor’
poorer. The scarping-bys are the ones for which
with a significant amount of unlabeled data, they
may be in a stronger position in the ’race’ in a cou-
ple of years. This endeavour, however, will need
a well-coordinated campaign that raises awareness
of these languages while simultaneously spurring
a concerted effort to gather tagged datasets for
them, which they now lack. Indian languages
that fall in the category are:Malayalam, Bho-
jpuri, Nepali, Doteli, Gujarati, Newar, Dzongkha,
Maithili, Tulu, Kannada, Odia, Kashmiri, Romani,
Pashto, Bishnupriya Manipuri, Divehi, Sindhi, Ti-
betan, Pali, Sinhala, Santali, Assamese, Telugu.
Hopefuls are the languages for which a modest
amount of labelled datasets have been gathered,
indicating that scholars and language support net-
works are working to keep them alive in the digital
world. In a few years, promising NLP solutions
for these languages might be developed, Konkani,
Sanskrit, Punjabi fall in this category. In the case
of current South Asian languages, there has been
recent diversity as a result of collaborative initia-
tives, such as an impending shared task on de-
pendency parsing at the WILDRE 2022 workshop
based on new treebanks.

6 Approaches for low resource settings

Languages are categorised according to their
structural and semantic characteristics in the dis-
cipline of linguistic typology. A database of typo-
logical traits between languages has been devel-
oped as a result of extensive work such as (Dryer
and Haspelmath, 2013). Given that there are so
few categories of comparable scope, such docu-
mentation becomes crucial. There has been re-
search in the field of NLP showing the value of
using typological information to direct model cre-
ation (Ponti et al., 2019). Additionally, it has been
demonstrated that transfer learning of resource-
rich languages to resource-poor languages per-

forms better if the two languages share similar ty-
pological traits as shown in (Pires et al., 2019).The
authors demonstrate that Multilingual BERT (M-
BERT) is surprisingly effective at zero-shot cross-
lingual model transfer, in which task-specific an-
notations in one language are used to fine-tune
the model for evaluation in another language. M-
BERT is a single language model that was pre-
trained from monolingual corpora in 104 lan-
guages. They demonstrate through a large num-
ber of probing experiments that transfer is possi-
ble even to languages with different scripts, that
transfer is most effective when languages are ty-
pologically similar, that monolingual corpora can
be used to train code-switching models, and that
the model can identify translation pairs. Because
M-BERT allows for a very simple method of zero-
shot cross-lingual model transfer, it is especially
well suited to this probing study. We refine the
model using task-specific supervised training data
from one language, and then evaluate that task
in a different language, allowing us to observe
the ways in which the model generalises informa-
tion across languages. M-BERT performs cross-
lingual generalisation surprisingly effectively, ac-
cording to results. More crucially, the study of-
fers the findings of a series of probing experiments
meant to explore alternative ideas about how the
model may execute this transfer.

Even while all languages have profound, ab-
stract aspects in common, the patterns used in ev-
eryday, surface-level writing might differ greatly.
The development of strong, multilingually appli-
cable NLP technology has been hampered by this
cross-lingual diversity, and as a result, current
NLP is still primarily restricted to a small num-
ber of resource-rich languages. Most existing
algorithms are far from being language-agnostic
in their architecture design, training, and hyper-
parameter tuning, and frequently unintentionally
introduce language-specific biases (such as mod-
els being adapted to handle morphologically poor
languages as highlighted in Bender (2011)). A
condition that cannot be satisfied for the majority
of the world’s languages is that the bulk of modern
machine learning models rely on supervision from
(huge quantities of) labelled data. Cross-lingual
variance is restricted and far from random, accord-
ing to analysis of cross-linguistic patterns as high-
lighted in (Greenberg, 1963). It is true that typo-
logical traits can be interdependent: The existence



of one feature may suggest the existence of an-
other (in one direction or both). As contrast to un-
restricted universals, which define features shared
universally by all languages, this dependency is re-
ferred to as constrained universal. Such restricted
or unrestricted typological universals are seldom
absolute (that is, exceptionless), but rather trends,
which is why they are referred to as "statistical"
(Corbett 2010).

Languages with abundant resources can trans-
mit linguistic information to languages with lim-
ited resources; these are referred to as source lan-
guages and target languages, respectively. It is
difficult to transfer languages because we must
match word sequences with various lexica and
word ordering, as well as syntactic trees with
various (an-isomorphic) structures (Ponti et al.,
2018). Because of this, it is usually necessary
to change the information from the source lan-
guages to fit the characteristics of the destination
languages. Annotation projection, (de)lexicalized
model transfer, and translation are techniques de-
veloped for language transfer. From the data
in many languages, NLP models may be col-
laboratively trained. This method generally out-
performs language-specific monolingual models
since it can make use of more (although coarser)
data in addition to helping applications that are
inherently multilingual, such as Neural Machine
Translation and Information Extraction (Ammar
et al., 2016).This is especially true in situations
when a target language or all target languages are
resource-lean, such as in code-switching settings
(Khapra et al., 2011). Sharing parameters is a
crucial tactic for multilingual cooperative learning
(Johnson et al., 2017). More specifically, input and
hidden representations in cutting-edge neural net-
works can either be private (language-specific) or
shared across languages. The linking of a network
component’s parameters across languages, such as
word embeddings, character embeddings, hidden
layers, or the attention mechanism leads to shared
representations. Providing details about the lan-
guage of the current text in the form of input lan-
guage vectors is another widely used technique in
multilingual joint modelling. This should make it
easier to adapt the joint model to other languages,
goes the reasoning. In neural language modelling
tasks, or NMT tasks, these vectors can be learnt
from beginning to end.

Similar words—regardless of language—are

represented similarly in multilingual word embed-
dings. Many techniques have been developed to
produce multilingual word embeddings. Monolin-
gual mapping generates independent monolingual
representations and thereby learns a linear map
between a source language and a target language
with the help of a bilingual lexicon (Mikolov, Le,
and Sutskever 2013) or in an unsupervised fash-
ion through adversarial networks (Conneau et al.,
2017). Words from other languages are combined
with their contexts in pseudo-cross-lingual tech-
niques, which then use this mixed corpus to create
representations. Wiktionary (Xiao and Guo, 2014)
or machine translation are used as replacements.

7 SIGMORPHON Shared Tasks

SIGMORPHON (Pimentel et al., 2021) has been
one of the venues that has been arranging work-
shops,shared tasks and competitions on Morphol-
ogy, Phonology in recent times. The shared tasks
provide researchers morphological data to apply
and test deep learning models for morphology
related tasks. The SIGMORPHON shared task
2019 (McCarthy et al., 2019) is examination of
context and cross-lingual transfer The study of
transfer learning in morphology was conducted.
as well as inflections between 100 different lan-
guage pairings in 66 languages as morphosyn-
tactic description and contextual lemmatization.
It consisted of two challenges, first was trans-
fer of morphological inflection knowledge form
high resource language to other. The second chal-
lenge was on lemmatization as well as morpho-
logical feature analysis in context ie. lemma-
tize each word in an unannotated sentence and
tag them with a morphosyntactic description. For
the first task, the data for all languages except
four (Basque, Kurmanji, Murrinhpatha, and So-
rani) comes from English Wiktionary, a huge mul-
tilingual crowd-sourced dictionary including mor-
phological paradigms for numerous lemmata. The
task received 30 submissions—14 for challenge 1
and 16 for challenge 2— from 23 teams. The Uni-
versity of Alberta (UAlberta) conducted a targeted
examination on four language pairings, using ex-
ternal cognate lists to train cognate-projection sys-
tems.Two approaches were considered: one that
trained a high-resource neural encoder-decoder
and projected test data into the HRL, and the other
that projected HRL data into the LRL and trained
a combined system. AX-Semantics utilised low-



and high-resource data to train a seq2seq encoder-
decoder model, using domain adaptation strategies
to focus later epochs on the target language as an
alternative. Cross-lingual training yielded moder-
ate increases in task 1, with gains positively corre-
lated with the linguistic closeness of the two lan-
guages. For task 2, by employing multi-lingual
BERT embeddings fine-tuned on a concatenation
of all accessible languages, Charles-Saarland was
able to obtain the highest overall tagging accuracy,
successfully carrying the cross-lingual aim of Task
1 into Task 2.

SIGMORPHON Shared Task 0, 2020 (Vylo-
mova et al., 2020) was on Typologically Diverse
Morphological Inflection. Data from 45 languages
and just five language families were used to train
the systems, which were then fine-tuned with data
from another 45 languages and ten language fam-
ilies (for a total of 13 languages) before being
tested on all 90 languages. The task received 22
systems (19 neural) from ten teams, with all four
winner systems being neural. For low-resource
languages, the majority of teams focused on the
value of data hallucination and augmentation, en-
sembles, and multilingual training. The task con-
sidered three dimensions of morphological varia-
tion: fusion, inflectional synthesis, and position of
case affixes. Fusion refers to the degree to which
morphemes bind to one another and languages can
vary from strictly isolating to concatenative. The
most frequent system is concatenative morphol-
ogy, which may be found all around the world. In-
flectional synthesis refers to whether grammatical
categories like gender, person, number,tense, as-
pect, modality voice or agreement are expressed
as affixes (synthetic) or individual words (ana-
lytic) as markers. Affixes can variably occur as
prefixes, suffixes, infixes or post-positions. Neu-
ral baselines were based on a neural transducer
(Wu and Cotterell, 2019), which was essentially a
hard monotonic attention model and vanilla trans-
former model adapted for character level language
modelling. There were around 4 winning sys-
tems. One of the submissions in the task also
manually designed finite state grammars for 4 lan-
guages and found them to have superior accuracy
but noted that the accuracy came on the top of
significant person hours. Some submissions also
demonstrated utility of data hallucination.

The shared task 2 of SIGMORPHON 2020
(Kann et al., 2020) was unsupervised morpholog-

ical paradigm completion. The task was to de-
sign a system that takes raw text and a list of
lemmas as input, and output all inflected forms,
also known as, morphological paradigm, of each
lemma. There are various sub-tasks to this task:
To begin, a system must determine which words
in the corpus are part of the same paradigm,
the second step is to determine the paradigm’s
form, this necessitates determining which forms
of various lemmas convey the same morphosyn-
tactic properties, despite the fact that they are
not produced in the same way, third the sys-
tem also needs to produce all the paradigms not
mentioned in the corpus. The baseline used the
following steps: edit tree retrieval, additional
lemma retrieval, paradigm size discovery, and in-
flection generation. The shared task 0 of SIG-
MORPHON 2021 (Pimentel et al., 2021) focused
on typo-logical diversity and cross-lingual vari-
ation of morphosyntactic features. Transformer-
based models outperformed traditional models in
the majority of languages, reaching higher than
90% accuracy in more than half of the languages.
They observed that, the majority of system errors
are caused by allomorphy, honorificity, and form
variation. The systems modelled morphological
inflection as series of inserting, deleting, and/or
replacing fixed characters (in no specific order).
The shared task 2 (Wiemerslage et al., 2021), fo-
cused on Unsupervised Morphological Paradigm
Clustering. The authors made corpora available
for five development and nine test languages, as
well as gold partial paradigms for testing. A super-
vised lemmatizer outperformed all of the systems,
indicating that there is still opportunity for im-
provement. According to the authors, a good un-
supervised paradigm clustering method takes use
of common characteristics in a language’s inflec-
tional morphology while neglecting regular con-
textual and derivational patterns. There were two
types of system submission to the task, similarity-
based systems which used various combinations
of orthographic and embedding-based similarity
metrics for word forms, as well as clustering al-
gorithms such as k-means and agglomerative clus-
tering, Methods based on grammar extract gram-
mars or rules from the data and use them directly
to clustering, or partition words into stems and
affixes before grouping forms that share a stem
(lemma) into paradigms. The authors also note
that all methods produce the greatest results for



English, Spanish, and Bulgarian, in that order.
These three languages are all heavily suffixing,
although inflection is usually expressed with just
one morpheme.

8 Conclusion

This survey provides a review of various ma-
chine learning approaches (supervised and unsu-
pervised) that are used for the task of morphology
analysis. It provides a survey of unsupervised and
geometric approaches such as Minimum descrip-
tion length that are used for the task of discovery
of morphological structures. We also discussed
various neural as well as transformer approaches
that have been used for the task of morphology
analysis. We then dived into approaches that are
used in low resource settings. We finally provided
a survey of the current state of resources for South
Asian languages along with an overview of SIG-
MORPHON shared tasks.
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