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Abstract

Disfluencies that appear in the transcrip-
tions from automatic speech recognition
systems tend to impair the performance of
downstream NLP tasks like machine trans-
lation. Disfluency removal models can help
alleviate this problem. However, the un-
availability of labeled data in low-resource
languages impairs progress. In this survey
paper, we clearly state the problem in hand
and the motivation behind doing disflu-
ency removal. Next, we discuss speech-to-
speech machine translation to understand
where disfluency detection fits. Then, we
cover the disfluency phenomenon in great
detail. We also describe the prior works to
solve the disfluency detection problem.

1 Problem Statement
Spontaneous speech contains many irregulari-
ties, e.g., disfluency, which are not evident in
read speech. Due to the presence of irregular-
ities in speech, the transcriptions from Auto-
matic Speech Recognition systems may also re-
tain the irregularities, which makes the down-
stream tasks difficult. Machine Translation is
not an exception to that. Our problem state-
ment is to explore the disfluencies and develop
models to remove disfluencies from Automatic
Speech Recognition transcriptions and prepare
them for Machine Translation.

2 Motivation
Translation of speech in one language to
speech or text in another language sees a
huge range of applications, e.g., movie subti-
tling, movie dubbing, conversing with foreign-
language speakers. Previously, people had to
confine themselves to their native languages
only. Nevertheless, these developments have
reduced the language barrier and allowed peo-
ple from different places to share their ideas.

Many of the current systems are able to
handle fluent speeches well, but they suffer
in the case of spontaneous speeches. Spon-
taneous speech contains many irregularities,
e.g., disfluency, which are not evident other-
wise. Even if Automatic Speech Recognition
(ASR) does its task of transcribing each of
the uttered words correctly, the transcriptions
may reflect the irregularities. Downstream
NLP tasks such as parsing, machine transla-
tion, and summarization are usually trained
on well-formed sentences. Hence, disfluencies
in automatically transcribed text pose a signifi-
cant challenge for downstream NLP tasks (Rao
et al., 2007; Wang et al., 2010). Disfluency de-
tection/correction is often used as a prepro-
cessing step for NLP, where the goal is to
identify/remove the disfluent words (Shriberg
et al., 1992). While disfluency detection has
been extensively studied for English (Honal,
2003; Zayats et al., 2014), it has received far
less attention in other languages. This is
largely due to the lack of labeled data for other
languages. This motivates us to investigate
disfluencies and their removal mechanism in
both high-resource and low-resource settings.

3 Speech-to-Speech Machine
Translation

Speech-to-Text translation is the task of trans-
lating speech in one language to the text in an-
other language. There are two ways to build
speech-to-speech Machine Translation models,
viz. (1) using direct end-to-end models (Jia
et al., 2019b; Lee et al., 2022), (2) using cas-
caded models. Cascaded models convert the
translated text (from source speech) into the
speech in the target language using a text-to-
speech (TTS) model (Wang et al., 2017). Now,
we will discuss the two approaches for the
speech-to-text translation (ST) task — Cas-



caded models and end-to-end models (Sperber
and Paulik, 2020).

Our main goal is to find the best translation
T ∗ ∈ T (T denote candidate translations from
MT hypothesis space) from the input speech
features X. S ∈ H denotes a transcription from
the ASR hypothesis space. Equation 1 clearly
shows our goal.

3.1 Cascaded Model
We can arrive at Equation 2 by marginalizing
over all the transcription S ∈ H. Then, we
use the chain rule to get Equation 3. Condi-
tional independence assumption of input (S)
and output (T ), given the transcript (X) leads
to equation 4. In Equation 5, we consider H′

contains only 1 hypothesis, the 1-best ASR
output. Equation 5 justifies the decomposition
of cascaded models into MT and ASR models.

T ∗ = argmax
T∈T

P (T |X) (1)

= argmax
T∈T

∑
S∈H

P (T, S|X) (2)

= argmax
T∈T

∑
S∈H

P (T |S,X)P (S|X) (3)

≈ argmax
T∈T

∑
S∈H

PMT (T |S,X)PASR(S|X)

(4)

≈ argmax
T∈T

∑
S∈H′

PMT (T |S,X)PASR(S|X)

(5)

Cascaded models use a pipeline of ASR and
MT for speech-to-text MT. Firstly, the ASR
model (Schneider et al., 2019; Baevski et al.,
2020) generates the transcription in the source
language. Then, the MT model (Bahdanau
et al., 2015; Vaswani et al., 2017) translates
the transcription to the target language.

Limitations
Erroneous Early Decisions: Cascaded
models suffer from the well-known problem of
error propagation due to considering an erro-
neous 1-best ASR output. A possible solution
to this problem is to increase the hypothesis
space H′ in Equation 5.

Information Loss: Cascaded models lose
useful information due to the conditional inde-
pendence assumption in Equation 4. Prosody

not only helps in disambiguation but also con-
veys useful information about the speaker, but
the transcription from the ASR model is un-
able to capture that. Hence, the MT model is
unaware of the prosody (since the MT model
only considers the ASR transcription).

3.2 End-to-end Model
End-to-end models (Bansal et al., 2017; Weiss
et al., 2017; Jia et al., 2019a; Liu et al., 2019)
directly generate text in the target language
from the source speech. These models have to
learn the complex mapping of source speech
utterances to the translated text. Due to this
fact, these models need a huge amount of data
to work well. Also, the end-to-end corpora
(speech utterances and translated text pair) is
harder to get than ASR or MT data.

4 Disfluency
Spontaneous speech, like the conversation be-
tween multiple people, may contain irregular-
ities. One of the irregularities is disfluency.
In contrast to texts containing more formal
language, such as articles in a newspaper or
broadcast news texts, spontaneous speech in-
cludes a huge number of sentences that are not
fluent. The elements that make a sentence not
fluent are referred to as “disfluencies”. Speak-
ers often use filler words, repeat fluent phrases,
suddenly change the content of speech, and
make corrections to their statements. These
are some common disfluencies. Also, speak-
ers use words like “yeah”, “well”, “you know”,
“alright”, etc., which do not contribute to the
semantic content of the text but are only used
to fill pauses or start a turn, are considered to
be disfluent. We give an example of a disfluent
sentence. Disfluent parts are highlighted.
Example: Well, this is this is you know a
good plan.

4.1 Types of Disfluencies
Here, we assume that the disfluencies occur at
the sentence level and do not span over multi-
ple sentences. The annotation of disfluencies
varies slightly from corpus to corpus. We will
discuss the classification borrowed from Honal
(2003). The complexity of disfluencies ranges
from simple types to complex types. We will
start with simple types. Filled pauses like
“uh”, “um”, “ah” and discourse markers like



“well”, “yeah”, “alright”, “you know”, “okay”
are considered as simpler disfluencies. Many
times, words like “yeah”, “okay” are marked
as filled pauses. Interjection includes words
like “oops”, “ugh”, “uh-huh”. In repetition or
correction, the phrase which is abandoned is
repeated with only slight or no changes in the
syntactical structure. On the other hand, if a
completely different syntactical structure with
a different semantic is started after the aban-
doned phrase, then it is a false start. Edit oc-
curs to indicate that the words which just pre-
viously have been said are not intended. We
present the types of disfluencies in a tabular
format with examples in Table 1.

4.2 Surface Structure of Disfluencies
Now, we demonstrate the structure of disfluen-
cies, which gives a common pattern (Shriberg,
1994). A disfluency can be divided into three
sections: reparandum (followed by interrup-
tion point), then interregnum, then repair. We
show an example in Figure 1. It is important
to note that none of the sections is manda-
tory to be present. But obviously, a disfluent
sentence would contain at least one section.
Reparandum contains those words which are
originally not intended to be in the utterance.
Thus this section consists of one or more words
that will be repeated or corrected (in case of
Repetition or Correction) or abandoned com-
pletely (in case of a False Start). Then comes
the interruption point which marks the end of
the reparandum. It is not connected with any
kind of pause or audible phenomenon. It is
followed by the interregnum. This part con-
sists of an editing term, or a non-lexicalized
filler pause like “uh”, “um” or discourse mark-
ers like “well”, “you know” or interjections or
simply an empty pause, i.e., a short moment
of silence. The last part is repair. Words
from the reparandum are finally corrected or
repeated (in case of Repetition or Correction),
or a completely new sentence is started (in case
of False Start) in the repair section. Figure 2
shows an example of disfluency without inter-
regnum. It is an example of Correction, i.e.,
“we will” is corrected as “we can”. Figure 3
shows an example of disfluency which does not
have reparandum or repair. This example con-
tains the discourse marker “well” in the inter-
regnum.

Figure 1: Surface Structure of Disfluency

Figure 2: Disfluencies with empty interregnum

Figure 3: Disfluencies with only interregnum

5 Disfluency Detection

In this section, we will discuss various ap-
proaches for disfluency detection. It is impor-
tant to note that the approaches in different
subsections might be overlapping.

5.1 Sequence Tagging Model

Sequence tagging based approaches use classi-
fication techniques to label individual words
(Liu et al., 2006; Ostendorf and Hahn, 2013;
Zayats et al., 2014; Ferguson et al., 2015;
Hough and Schlangen, 2015; Zayats et al.,
2016; Wang et al., 2018). We classify
each token as fluent/disfluent tags or be-
gin/inside/outside (BIO) tags. Previous works
have used Hidden Markov Models (HMM)
(Liu et al., 2006), Conditional Random Field
(CRF) (Liu et al., 2006; Georgila et al., 2010;
Ostendorf and Hahn, 2013; Zayats et al.,
2014), Max-Margin Markov Networks (M3N)
(Qian and Liu, 2013), Semi-Markov CRF
model (Ferguson et al., 2015), Recurrent Neu-
ral Network (RNN) (Hough and Schlangen,
2015), bidirectional Long Short-Term Memory
(Bi-LSTM) (Zayats et al., 2016), Bi-LSTM
with attention mechanism (Wang et al., 2016),
Transformer (Wang et al., 2020a) etc. as se-
quence tagger.



Type Description Constituents Examples
Filled Pause Non lexicalized sounds with no se-

mantic content.
uh, um, ah, etc but uh we have

to go through the
same thing.

Interjection A restricted group of non lexical-
ized sounds indicating affirmation
or negation.

uh-huh, mhm,
uh-uh, ugh,
uh-oh, oops etc.

Oops, I did not
know that you
would get hurt.

Discourse
Marker

Words that are related to the
structure of the discourse in so far
that they help beginning or keep-
ing a turn or serve as acknowledg-
ment. They do not contribute to
the semantic content of the dis-
course.

well, you know,
okay, yeah etc.

Well, this is a
good plan.

Repetition or
Correction

Exact repetition or correction of
words previously uttered. A cor-
rection may involve substitutions,
deletions or insertions of words.
However, the correction continues
with the same idea or train of
thought started previously.

If I can’t don’t
know the answer
myself, I will find
it.

False Start An utterance is aborted and
restarted with a new idea or train
of thought.

We’ll never find
a day what about
next month?

Edit Phrases of words which occur
after that part of a disfluency
which is repeated or corrected af-
terwards or even abandoned com-
pletely. They refer explicitly to
the words which just previously
have been said indicating that
they are not intended to belong
to the utterance.

We need two tick-
ets, I’m sorry,
three tickets
for the flight to
Boston.

Table 1: Types of Disfluencies with description and example (Honal, 2003)

5.2 Parsing based Model

Parsing-based approaches detect disfluencies
along with identifying the syntactic structure
of the sentence (Rasooli and Tetreault, 2013;
Honnibal and Johnson, 2014; Wu et al., 2015;
Yoshikawa et al., 2016; Jamshid Lou and
Johnson, 2020b). Jamshid Lou and Johnson
(2020b) focus on joint disfluency detection and
constituency parsing of transcriptions. In Fig-
ure 4, we show an example from the paper.
The reparandum, filled pauses and discourse
markers are denoted by EDITED, INTJ and
PRN, respectively.

5.3 Noisy Channel Model
The main idea behind a noisy channel model
of disfluency is that we assume there is a flu-
ent source sentence X to which some noise has
been added, resulting in a disfluent sentence Y .
The goal is to find the most likely fluent sen-
tence given Y (Johnson and Charniak, 2004;
Zwarts and Johnson, 2011; Jamshid Lou and
Johnson, 2017).

5.4 Translation Based Models
Dong et al. (2019) treat disfluency detection as
a translation task from disfluent sentences to
fluent sentences. They adapt a neural machine
translation model to achieve that. Addition-



Figure 4: Example of parse tree from the Switchboard corpus (Jamshid Lou and Johnson, 2020b)

ally, they use constrained decoding, denoising
autoencoder. They also take into account a
penalty factor to reduce wrong deletions (i.e.,
fluent words tagged as disfluent).

5.5 Using Acoustic/Prosodic Cues

Most of the research work on the disfluent text.
However, they miss the prosodic cues from the
speech. So, some prior works investigated the
use of acoustic-prosodic features along with
the disfluent text (Ferguson et al., 2015; Za-
yats and Ostendorf, 2019; Tran et al., 2018)

5.6 Data Augmentation

Since the available amount of data for dis-
fluency correction is small, previous research
worked on augmenting data. These data aug-
mentation techniques help in overcoming the
dearth of gold-standard data. Yang et al.
(2020) propose Planner-Generator based ar-
chitecture for generating disfluencies from flu-
ent sentences. The Planner decides where to
insert disfluent segments, and the Generator
generates appropriate disfluent segments ac-
cordingly.

Lee et al. (2020) use auxiliary tasks, namely,
Named Entity Recognition (NER) and Part-of-
speech Tagging (POS), along with disfluency
detection. Since Switchboard disfluency detec-
tion data does not have NER tags, they use an
off-the-shelf model to annotate silver-standard
NER training data.

Passali et al. (2022) generate large-scale dis-
fluency detection data using rules. They focus
on repetition, replacement and restart disfluen-
cies.
Rocholl et al. (2021) first finetune BERT

model (Devlin et al., 2019) on Switchboard
dataset. Then, they use the model for pre-
dicting disfluency labels of Fisher corpus (Cieri
et al., 2004). Next, they use the automatically
labeled silver data as an additional source of
training data for further finetuning.

5.7 Semi-supervised Methods
Prior works (Wang et al., 2018, 2020a; Saini
et al., 2021; Wang et al., 2021) have proposed
the use of unlabeled data alongside the labeled
data for improving the performance of disflu-
ency detection models. Wang et al. (2018)
use denoising auto-encoder, multi-task learn-
ing, weight sharing and generative adversar-
ial network (GAN) to achieve that. They use
two partially shared encoders (Transformer
based), one totally shared decoder (Trans-
former based) and a discriminator. They use
one encoder for unlabeled data and the other
one for labeled data. The discriminator is
used to judge whether the output from the en-
coder is from labeled or unlabeled data. They
have two tasks in hand — generating fluent
sequence and generating (disfluency) label se-
quence.
Wang et al. (2020a) construct a large-scale

pseudo training data by randomly adding or



removing words from unlabeled data. Then,
they propose two self-supervised objectives
for pre-training a model with pseudo training
data, followed by finetuning the model on a lit-
tle amount of disfluency detection data. They
use the following two tasks for self-supervised
learning: (1) a sequence tagging task to detect
the newly added noisy words, and (2) a sen-
tence classification task to distinguish the orig-
inal sentences from the corrupted sentences.

5.8 Unsupervised Methods

Some prior works investigated unsupervised
disfluency detection, which does not use la-
beled sentences at all. Wang et al. (2020b)
combine self-training and self-supervised learn-
ing to achieve that. They first construct
two types of large-scale pseudo data, viz.
by (1) randomly adding or removing words
from fluent sentences and (2) randomly adding
words to fluent sentences. They train a sen-
tence grammaticality judgment model using
pseudo data (1) with a self-supervised learn-
ing method, and a weak disfluency correc-
tion model (teacher model) using pseudo data
(2) with self-supervised learning. Then, they
generate pseudo labels of ASR outputs us-
ing the teacher model. Words tagged as dis-
fluent in the pseudo labels are deleted from
the sentences. Then, they pass these sen-
tences through sentence grammaticality judg-
ment model to select sentences with high-
quality pseudo labels. Next, they train a stu-
dent model on the selected pseudo-labeled sen-
tences. They iterate the process by using the
student model as the teacher model (to gener-
ate new pseudo labels) and training a new stu-
dent model, until performance stops improv-
ing.

Saini et al. (2021) use ideas from style trans-
fer models, backtranslation, and reconstruc-
tion loss to achieve unsupervised disfluency
correction. They use a single encoder and a
single decoder to translate in both directions,
i.e., disfluent text to fluent text and vice versa.
The decoder is additionally conditioned using
a domain embedding (from a pre-trained CNN
model), which conveys the direction of trans-
lation.

5.9 End-to-end Disfluency Removal
and Machine Translation

Saini et al. (2020) integrate both disfluency
removal and machine translation into a sin-
gle model. They experiment with translat-
ing disfluent Spanish to fluent English text.
They make use of partially shared encoders
and a fully shared decoder to perform denois-
ing (noisy to fluent English) and translation
(disfluent Spanish to disfluent English) alter-
natively. They do not use fluent references
during training.

5.10 End-to-end Speech Recognition
and Disfluency Removal

Most of the end-to-end speech recognition re-
search work on transcribing speech without re-
moving the disfluencies. However, there are
a few studies that look at end-to-end speech
recognition and disfluency removal. These
works do away with the need for a disfluency
correction post-processing step. Jamshid Lou
and Johnson (2020a) show that end-to-end
models learn to generate fluent transcriptions
from disfluent speech. However, the models
slightly lag behind the baseline, which is the
pipeline of ASR and disfluency detection mod-
els. Mendelev et al. (2021) focus on removing
only partial words (e.g., “cal-” in the sentence
“open my cal- cal- calendar”) from speech
transcriptions.

5.11 End-to-end Speech Translation
and Disfluency Removal

Majority of the end-to-end speech translation
research work on translating speech in the
source language to the text of the target lan-
guage without removing disfluencies if they ex-
ist in the source speech. However, there are
a few studies that look at end-to-end conver-
sational speech translation, which entails con-
verting source disfluent speech into target flu-
ent texts. These works get rid of a separate
disfluency detection module. Salesky et al.
(2019) report results using a speech-to-text
model trained on the original disfluent Fisher
Spanish-English Spoken Language Translation
(SLT) task.

5.12 Small Models
Rocholl et al. (2021) work on small-sized mod-
els for disfluency detection. They have demon-



strated that the model size could be reduced
by 99% (the model size is as low as 1.3 MB)
and inference latency by 80% while maintain-
ing competitive performance.

6 Dataset
Switchboard1 (Godfrey et al., 1992) in En-
glish is the most commonly used dataset for
disfluency detection. We use various filters
at the time of extracting disfluent data from
the Switchboard corpus. We filter out utter-
ances marked as nonspeech (x), indeterminate,
interrupted, or contains just a floor holder
(%), incorrect transcription (o@ or +@). We
also remove sentences with transcription er-
rors, which are detected by the ∗ mark in
the transcription of the utterance. We merge
utterance segments if the segments are con-
tinued by the same speaker. Then, we re-
move tags put inside angular brackets like
<throat_clearing>, <inhaling> from the tran-
scriptions. We also remove tags put inside
curly braces like {very faint}, {water running}.
We remove tags put inside square brackets like
[Clanking], [child_talking], [Children]. We
eliminate ill-formed sentences, i.e., sentences
with unbalanced brackets. We also ignore
those disfluent sentences whose fluent counter-
part has only one word.
Following the experimental settings in Wang

et al. (2021), we split the Switchboard corpus
such that the dev set consists of all sw_04[5-
9]*.utt files, the test set consists of all sw_04[0-
1]*.utt files, and the training set consists of
all the remaining files. We do not include
sentences without disfluencies in the training
data, but do so in the dev, test set. Table 2
shows the number of sentences in each split of
the dataset.

Split Number of Sentences
Train 76673

Validation 5778
Test 2690

Table 2: Switchboard Dataset Statistics

Following Honnibal and Johnson (2014),
most of the prior work lowercased the text
and removed all punctuation marks and par-
tial words. There are some works (Wang et al.,

1https://catalog.ldc.upenn.edu/LDC97S62

2020a,b) which discard the “um” and “uh” to-
kens and merge “you know” and “i mean” into
single tokens.

7 Evaluation Metrics

Most of the prior works evaluate disfluency de-
tection models using token-level precision, re-
call and f1 score. However, a few studies find
the bleu score between the generated fluent
sentences and the fluent reference sentences.

8 Conclusion

In this paper, we looked at how disfluencies
hamper the performance of speech-to-speech
machine translation models. We discussed
the structure of disfluencies. We also de-
scribed various methods for tackling the disflu-
ency detection problem. We found that some
models effectively utilize monolingual data via
data augmentation or semi-supervised learn-
ing. Even some models are capable of doing
disfluency detection in unsupervised settings.
We also found that some models integrate dis-
fluency removal along with other modules like
MT and ASR. We also saw that a tiny model
of size 1.3 MB could achieve competitive per-
formance in disfluency detection.

References
Alexei Baevski, Yuhao Zhou, Abdelrahman Mo-

hamed, and Michael Auli. 2020. wav2vec 2.0:
A Framework for Self-Supervised Learning of
Speech Representations. In Advances in Neu-
ral Information Processing Systems, volume 33,
pages 12449–12460. Curran Associates, Inc.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In 3rd
International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings.

Sameer Bansal, Herman Kamper, Adam Lopez,
and Sharon Goldwater. 2017. Towards speech-
to-text translation without speech recognition.
In Proceedings of the 15th Conference of the Eu-
ropean Chapter of the Association for Compu-
tational Linguistics: Volume 2, Short Papers,
pages 474–479, Valencia, Spain. Association for
Computational Linguistics.

Christopher Cieri, David Miller, and Kevin Walker.
2004. The fisher corpus: a resource for the next
generations of speech-to-text. In Proceedings

https://catalog.ldc.upenn.edu/LDC97S62
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://aclanthology.org/E17-2076
https://aclanthology.org/E17-2076
http://www.lrec-conf.org/proceedings/lrec2004/pdf/767.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/767.pdf


of the Fourth International Conference on Lan-
guage Resources and Evaluation (LREC’04), Lis-
bon, Portugal. European Language Resources
Association (ELRA).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapo-
lis, Minnesota. Association for Computational
Linguistics.

Qianqian Dong, Feng Wang, Zhen Yang, Wei Chen,
Shuang Xu, and Bo Xu. 2019. Adapting trans-
lation models for transcript disfluency detection.
Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 33(01):6351–6358.

James Ferguson, Greg Durrett, and Dan Klein.
2015. Disfluency detection with a semi-Markov
model and prosodic features. In Proceedings
of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies, pages 257–262, Denver, Colorado. Associa-
tion for Computational Linguistics.

Kallirroi Georgila, Ning Wang, and Jonathan
Gratch. 2010. Cross-domain speech disfluency
detection. In Proceedings of the SIGDIAL 2010
Conference, pages 237–240, Tokyo, Japan. Asso-
ciation for Computational Linguistics.

John J. Godfrey, Edward C. Holliman, and
Jane McDaniel. 1992. Switchboard: Telephone
speech corpus for research and development. In
Proceedings of the 1992 IEEE International Con-
ference on Acoustics, Speech and Signal Process-
ing - Volume 1, ICASSP’92, page 517–520, USA.
IEEE Computer Society.

Matthias Honal. 2003. Correction of Disfluencies
in Spontaneous Speech using a Noisy-Channel
Approach.

Matthew Honnibal and Mark Johnson. 2014. Joint
incremental disfluency detection and depen-
dency parsing. Transactions of the Association
for Computational Linguistics, 2:131–142.

Julian Hough and David Schlangen. 2015. Recur-
rent neural networks for incremental disfluency
detection. In Proc. Interspeech 2015, pages 849–
853.

Paria Jamshid Lou and Mark Johnson. 2017. Dis-
fluency detection using a noisy channel model
and a deep neural language model. In Proceed-
ings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume
2: Short Papers), pages 547–553, Vancouver,

Canada. Association for Computational Linguis-
tics.

Paria Jamshid Lou and Mark Johnson. 2020a.
End-to-end speech recognition and disfluency re-
moval. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages
2051–2061, Online. Association for Computa-
tional Linguistics.

Paria Jamshid Lou and Mark Johnson. 2020b. Im-
proving disfluency detection by self-training a
self-attentive model. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3754–3763, Online. As-
sociation for Computational Linguistics.

Ye Jia, Melvin Johnson, Wolfgang Macherey,
Ron J Weiss, Yuan Cao, Chung-Cheng Chiu,
Naveen Ari, Stella Laurenzo, and Yonghui Wu.
2019a. Leveraging weakly supervised data to im-
prove end-to-end speech-to-text translation. In
ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 7180–7184. IEEE.

Ye Jia, Ron J Weiss, Fadi Biadsy, Wolfgang
Macherey, Melvin Johnson, Zhifeng Chen, and
Yonghui Wu. 2019b. Direct speech-to-speech
translation with a sequence-to-sequence model.
arXiv preprint arXiv:1904.06037.

Mark Johnson and Eugene Charniak. 2004. A
TAG-based noisy-channel model of speech re-
pairs. In Proceedings of the 42nd Annual
Meeting of the Association for Computational
Linguistics (ACL-04), pages 33–39, Barcelona,
Spain.

Ann Lee, Peng-Jen Chen, Changhan Wang, Jiatao
Gu, Sravya Popuri, Xutai Ma, Adam Polyak,
Yossi Adi, Qing He, Yun Tang, Juan Pino, and
Wei-Ning Hsu. 2022. Direct speech-to-speech
translation with discrete units. In Proceedings
of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 3327–3339, Dublin, Ireland. As-
sociation for Computational Linguistics.

Dongyub Lee, Byeongil Ko, Myeong Cheol Shin,
Taesun Whang, Daniel Lee, Eun Hwa Kim, Eu-
ngGyun Kim, and Jaechoon Jo. 2020. Auxiliary
sequence labeling tasks for disfluency detection.
arXiv preprint arXiv:2011.04512.

Yang Liu, Elizabeth Shriberg, Andreas Stolcke,
Dustin Hillard, Mari Ostendorf, and Mary
Harper. 2006. Enriching speech recognition
with automatic detection of sentence boundaries
and disfluencies. IEEE Transactions on audio,
speech, and language processing, 14(5):1526–
1540.

Yuchen Liu, Hao Xiong, Zhongjun He, Jiajun
Zhang, Hua Wu, Haifeng Wang, and Chengqing

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1609/aaai.v33i01.33016351
https://doi.org/10.1609/aaai.v33i01.33016351
https://doi.org/10.3115/v1/N15-1029
https://doi.org/10.3115/v1/N15-1029
https://aclanthology.org/W10-4343
https://aclanthology.org/W10-4343
https://doi.org/10.1162/tacl_a_00171
https://doi.org/10.1162/tacl_a_00171
https://doi.org/10.1162/tacl_a_00171
https://doi.org/10.21437/Interspeech.2015-264
https://doi.org/10.21437/Interspeech.2015-264
https://doi.org/10.21437/Interspeech.2015-264
https://doi.org/10.18653/v1/P17-2087
https://doi.org/10.18653/v1/P17-2087
https://doi.org/10.18653/v1/P17-2087
https://doi.org/10.18653/v1/2020.findings-emnlp.186
https://doi.org/10.18653/v1/2020.findings-emnlp.186
https://doi.org/10.18653/v1/2020.acl-main.346
https://doi.org/10.18653/v1/2020.acl-main.346
https://doi.org/10.18653/v1/2020.acl-main.346
https://arxiv.org/pdf/1811.02050.pdf
https://arxiv.org/pdf/1811.02050.pdf
https://arxiv.org/pdf/1904.06037
https://arxiv.org/pdf/1904.06037
https://doi.org/10.3115/1218955.1218960
https://doi.org/10.3115/1218955.1218960
https://doi.org/10.3115/1218955.1218960
https://doi.org/10.18653/v1/2022.acl-long.235
https://doi.org/10.18653/v1/2022.acl-long.235
https://arxiv.org/pdf/2011.04512
https://arxiv.org/pdf/2011.04512


Zong. 2019. End-to-end speech translation
with knowledge distillation. arXiv preprint
arXiv:1904.08075.

Valentin Mendelev, Tina Raissi, Guglielmo Cam-
porese, and Manuel Giollo. 2021. Improved ro-
bustness to disfluencies in rnn-transducer based
speech recognition. In ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6878–
6882. IEEE.

Mari Ostendorf and Sangyun Hahn. 2013. A se-
quential repetition model for improved disflu-
ency detection. In Proc. Interspeech 2013, pages
2624–2628.

Tatiana Passali, Thanassis Mavropoulos, Grigo-
rios Tsoumakas, Georgios Meditskos, and Ste-
fanos Vrochidis. 2022. LARD: Large-scale Ar-
tificial Disfluency Generation. arXiv preprint
arXiv:2201.05041.

Xian Qian and Yang Liu. 2013. Disfluency detec-
tion using multi-step stacked learning. In Pro-
ceedings of the 2013 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies, pages 820–825, Atlanta, Georgia. Asso-
ciation for Computational Linguistics.

Sharath Rao, Ian Lane, and Tanja Schultz. 2007.
Improving spoken language translation by au-
tomatic disfluency removal: evidence from con-
versational speech transcripts. In Proceedings
of Machine Translation Summit XI: Papers,
Copenhagen, Denmark.

Mohammad Sadegh Rasooli and Joel Tetreault.
2013. Joint parsing and disfluency detection in
linear time. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 124–129, Seattle, Washington,
USA. Association for Computational Linguis-
tics.

Johann C Rocholl, Vicky Zayats, Daniel D Walker,
Noah B Murad, Aaron Schneider, and Daniel J
Liebling. 2021. Disfluency detection with un-
labeled data and small bert models. arXiv
preprint arXiv:2104.10769.

Nikhil Saini, Jyotsana Khatri, Preethi Jyothi,
and Pushpak Bhattacharyya. 2020. Gener-
ating fluent translations from disfluent text
without access to fluent references: IIT Bom-
bay@IWSLT2020. In Proceedings of the 17th
International Conference on Spoken Language
Translation, pages 178–186, Online. Association
for Computational Linguistics.

Nikhil Saini, Drumil Trivedi, Shreya Khare, Te-
jas Dhamecha, Preethi Jyothi, Samarth Bharad-
waj, and Pushpak Bhattacharyya. 2021. Dis-
fluency correction using unsupervised and semi-
supervised learning. In Proceedings of the 16th

Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main
Volume, pages 3421–3427, Online. Association
for Computational Linguistics.

Elizabeth Salesky, Matthias Sperber, and Alexan-
der Waibel. 2019. Fluent translations from dis-
fluent speech in end-to-end speech translation.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Pa-
pers), pages 2786–2792, Minneapolis, Minnesota.
Association for Computational Linguistics.

Steffen Schneider, Alexei Baevski, Ronan Col-
lobert, and Michael Auli. 2019. wav2vec: Un-
supervised Pre-Training for Speech Recognition.
In Proc. Interspeech 2019, pages 3465–3469.

Elizabeth Shriberg, John Bear, and John Dowding.
1992. Automatic detection and correction of re-
pairs in human-computer dialog. In Speech and
Natural Language: Proceedings of a Workshop
Held at Harriman, New York, February 23-26,
1992.

Elizabeth Ellen Shriberg. 1994. Preliminaries to a
theory of speech disfluencies. Ph.D. thesis, Cite-
seer.

Matthias Sperber and Matthias Paulik. 2020.
”Speech Translation and the End-to-End
Promise: Taking Stock of Where We Are”.
In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics,
pages 7409–7421, Online. Association for Com-
putational Linguistics.

Trang Tran, Shubham Toshniwal, Mohit Bansal,
Kevin Gimpel, Karen Livescu, and Mari Osten-
dorf. 2018. Parsing speech: a neural approach to
integrating lexical and acoustic-prosodic infor-
mation. In Proceedings of the 2018 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers),
pages 69–81, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is All you Need. In Advances in Neu-
ral Information Processing Systems, volume 30.
Curran Associates, Inc.

Feng Wang, Wei Chen, Zhen Yang, Qianqian Dong,
Shuang Xu, and Bo Xu. 2018. Semi-supervised
disfluency detection. In Proceedings of the 27th
International Conference on Computational Lin-
guistics, pages 3529–3538, Santa Fe, New Mex-
ico, USA. Association for Computational Lin-
guistics.

https://arxiv.org/pdf/1904.08075
https://arxiv.org/pdf/1904.08075
https://doi.org/10.21437/Interspeech.2013-604
https://doi.org/10.21437/Interspeech.2013-604
https://doi.org/10.21437/Interspeech.2013-604
https://arxiv.org/pdf/2201.05041
https://arxiv.org/pdf/2201.05041
https://aclanthology.org/N13-1102
https://aclanthology.org/N13-1102
https://aclanthology.org/2007.mtsummit-papers.51
https://aclanthology.org/2007.mtsummit-papers.51
https://aclanthology.org/2007.mtsummit-papers.51
https://aclanthology.org/D13-1013
https://aclanthology.org/D13-1013
https://arxiv.org/pdf/2104.10769
https://arxiv.org/pdf/2104.10769
https://doi.org/10.18653/v1/2020.iwslt-1.22
https://doi.org/10.18653/v1/2020.iwslt-1.22
https://doi.org/10.18653/v1/2020.iwslt-1.22
https://doi.org/10.18653/v1/2020.iwslt-1.22
https://doi.org/10.18653/v1/2021.eacl-main.299
https://doi.org/10.18653/v1/2021.eacl-main.299
https://doi.org/10.18653/v1/2021.eacl-main.299
https://doi.org/10.18653/v1/N19-1285
https://doi.org/10.18653/v1/N19-1285
https://doi.org/10.21437/Interspeech.2019-1873
https://doi.org/10.21437/Interspeech.2019-1873
https://aclanthology.org/H92-1085
https://aclanthology.org/H92-1085
https://doi.org/10.18653/v1/2020.acl-main.661
https://doi.org/10.18653/v1/2020.acl-main.661
https://doi.org/10.18653/v1/N18-1007
https://doi.org/10.18653/v1/N18-1007
https://doi.org/10.18653/v1/N18-1007
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/C18-1299
https://aclanthology.org/C18-1299


Shaolei Wang, Wangxiang Che, Qi Liu, Pengda
Qin, Ting Liu, and William Yang Wang. 2020a.
Multi-task self-supervised learning for disfluency
detection. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, pages
9193–9200.

Shaolei Wang, Wanxiang Che, and Ting Liu. 2016.
A neural attention model for disfluency detec-
tion. In Proceedings of COLING 2016, the 26th
International Conference on Computational Lin-
guistics: Technical Papers, pages 278–287, Os-
aka, Japan. The COLING 2016 Organizing Com-
mittee.

Shaolei Wang, Zhongyuan Wang, Wanxiang Che,
and Ting Liu. 2020b. Combining self-training
and self-supervised learning for unsupervised
disfluency detection. In Proceedings of the 2020
Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1813–
1822, Online. Association for Computational
Linguistics.

Shaolei Wang, Zhongyuan Wang, Wanxiang Che,
Sendong Zhao, and Ting Liu. 2021. Combining
self-supervised learning and active learning for
disfluency detection. ACM Trans. Asian Low-
Resour. Lang. Inf. Process., 21(3).

Wen Wang, Gokhan Tur, Jing Zheng, and
Necip Fazil Ayan. 2010. Automatic disfluency
removal for improving spoken language transla-
tion. In 2010 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages
5214–5217. IEEE.

Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton,
Yonghui Wu, Ron J Weiss, Navdeep Jaitly,
Zongheng Yang, Ying Xiao, Zhifeng Chen,
Samy Bengio, et al. 2017. Tacotron: Towards
end-to-end speech synthesis. arXiv preprint
arXiv:1703.10135.

Ron J Weiss, Jan Chorowski, Navdeep Jaitly,
Yonghui Wu, and Zhifeng Chen. 2017. Sequence-
to-sequence models can directly translate foreign
speech. arXiv preprint arXiv:1703.08581.

Shuangzhi Wu, Dongdong Zhang, Ming Zhou, and
Tiejun Zhao. 2015. Efficient disfluency detec-
tion with transition-based parsing. In Proceed-
ings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the
7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 495–503, Beijing, China. Association for
Computational Linguistics.

Jingfeng Yang, Diyi Yang, and Zhaoran Ma. 2020.
Planning and generating natural and diverse dis-
fluent texts as augmentation for disfluency de-
tection. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1450–1460, Online. As-
sociation for Computational Linguistics.

Masashi Yoshikawa, Hiroyuki Shindo, and Yuji
Matsumoto. 2016. Joint transition-based depen-
dency parsing and disfluency detection for auto-
matic speech recognition texts. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1036–1041,
Austin, Texas. Association for Computational
Linguistics.

Vicky Zayats and Mari Ostendorf. 2019. Giving
attention to the unexpected: Using prosody in-
novations in disfluency detection. In Proceed-
ings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
86–95, Minneapolis, Minnesota. Association for
Computational Linguistics.

Vicky Zayats, Mari Ostendorf, and Hannaneh Ha-
jishirzi. 2016. Disfluency Detection Using a
Bidirectional LSTM. In Proc. Interspeech 2016,
pages 2523–2527.

Victoria Zayats, Mari Ostendorf, and Hannaneh
Hajishirzi. 2014. Multi-domain disfluency and
repair detection. In Fifteenth Annual Confer-
ence of the International Speech Communication
Association.

Simon Zwarts and Mark Johnson. 2011. The im-
pact of language models and loss functions on
repair disfluency detection. In Proceedings of
the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language
Technologies, pages 703–711, Portland, Oregon,
USA. Association for Computational Linguis-
tics.

https://aclanthology.org/C16-1027
https://aclanthology.org/C16-1027
https://doi.org/10.18653/v1/2020.emnlp-main.142
https://doi.org/10.18653/v1/2020.emnlp-main.142
https://doi.org/10.18653/v1/2020.emnlp-main.142
https://doi.org/10.1145/3487290
https://doi.org/10.1145/3487290
https://doi.org/10.1145/3487290
https://arxiv.org/pdf/2010.04301
https://arxiv.org/pdf/2010.04301
https://arxiv.org/pdf/1703.08581
https://arxiv.org/pdf/1703.08581
https://arxiv.org/pdf/1703.08581
https://doi.org/10.3115/v1/P15-1048
https://doi.org/10.3115/v1/P15-1048
https://doi.org/10.18653/v1/2020.emnlp-main.113
https://doi.org/10.18653/v1/2020.emnlp-main.113
https://doi.org/10.18653/v1/2020.emnlp-main.113
https://doi.org/10.18653/v1/D16-1109
https://doi.org/10.18653/v1/D16-1109
https://doi.org/10.18653/v1/D16-1109
https://doi.org/10.18653/v1/N19-1008
https://doi.org/10.18653/v1/N19-1008
https://doi.org/10.18653/v1/N19-1008
https://doi.org/10.21437/Interspeech.2016-1247
https://doi.org/10.21437/Interspeech.2016-1247
https://www.isca-speech.org/archive_v0/archive_papers/interspeech_2014/i14_2907.pdf
https://www.isca-speech.org/archive_v0/archive_papers/interspeech_2014/i14_2907.pdf
https://aclanthology.org/P11-1071
https://aclanthology.org/P11-1071
https://aclanthology.org/P11-1071

