
Survey: Knowledge Graph Assisted Deep Learning Based
Question Answering System

Harsh Peswani, Pushpak Bhattacharyya
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
{harshpeswani, pb}@cse.iitb.ac.in

Abstract
Question Answering (QA) is one of the es-
sential downstream tasks in NLP. Question
Answering in the maintenance domain re-
quires us to utilize user manuals containing
instructions to operate the device safely.
It is a challenging task as it requires han-
dling multiple types of questions, such as
factoid, non-factoid, confirmation, and list
types. Moreover, there is a scarcity of data
available for the maintenance domain. To
tackle this task, we need a pipeline that
contains a question-answering system and
an information retrieval module. The in-
formation retrieval module retrieves all the
relevant paragraphs from the user manual
to answer the questions. Question Answer-
ing module answers all types of questions
using the extracted paragraphs.

1 Problem Statement
Question Answering is one of the essential
downstream task in NLP. The user asks the
question to the Question Answering system,
and the goal of the system is to answer the
user in the natural language.

Figure 1: Question Answering (Sultana and
Badugu, 2020)

2 Challenges and Motivation
User manuals contain instructions to operate
the device safely. User manuals typically have
30-40 pages of instructions. Significantly less

number of people read the user manual. Peo-
ple usually call technicians when there is a
problem with their device, or they have a ques-
tion about their device. Due to the scarcity of
technicians, it takes time for users to get an
appointment with the technicians. There is
also a huge workload on the technicians. Our
solution is simple; users can ask the question-
answering system about the problem instead
of calling the technicians. The goal of the
question-answering system is to give a correct
and complete solution to the issue asked by the
user, thus reducing the dependency on techni-
cians and the technicians’ workload.

There are many challenges while designing
such a system. We need an accurate informa-
tion retrieval system. The answers can be in
multiple paragraphs, which may or may not
be continuous. The job of the information re-
trieval module is to find all the paragraphs.
The answer will be incomplete if it fails to find
all the paragraphs. If it gives a wrong para-
graph, the response generated by the question-
answering module can be incorrect. Some of
the information in the input to the reading
comprehension can be noise. Designing such
an accurate information retrieval system is a
great challenge. User manuals contain images
and tables. Inferring answers from them is a
great challenge. Transfer learning is an inte-
gral part of the system. There is very little
data available for question-answering in the
maintenance domain. We have to rely on the
general domain dataset to solve this problem
and ensure it will also work in the maintenance
domain.

The second part of the system consists of
the question-answering system, which contains
even more challenges than the information re-
trieval system. Questions in user manuals can

be of four types (Reddy and Madhavi, 2017).

• Factoid Type Questions: These are
fact-based questions. Usually, factoid-
type questions start with ’wh-words.’ For
example, what is the capital of India?
The answers are generally named entities.

• List Type Questions: These are the
questions in which the list of points is the
answer. For example, List the name of
10 comedy movies? The answer to this
question will be a list of the named enti-
ties. Another example can be: List the
steps to write a good report? The answer
to this will not be a list of the named en-
tities. Instead, it will contain the list of
statements in some order.

• Confirmation Questions [yes or no]:
These are the questions in which the an-
swer is a boolean (yes or no). An example
of confirmation-type questions is: Does
the sun rises in the east? The answer is
yes or no.

• Non Factoid Type Questions: These
are open-ended questions requiring com-
plex answers. These can be opinions, de-
scriptions, or explanations. An example
of non-factoid questions is How to read
research papers? The answer to this ques-
tion will contain some opinions, and the
answer will be descriptive.

These four types not only contain challenges
of their own but dealing with all four types
gives rise to many other challenges. Classi-
fying the question into these four types is
difficult, especially between Descriptive and
List type questions. It is impossible to classify
between descriptive and list types of questions
just by looking into the question, as generally,
list types of questions are part of descriptive
type. This classification depends on how the
answer is in the user manual. For instance, if
the question is ”How to start the dishwasher?”
the classification of this question depends on
whether the answer in the manual is in points
or a paragraph. The questions can be such
that the multi-hops are required to answer
the question, which is another challenge.

3 Literature Survey

Information Retrieval and Question Answer-
ing are the tasks on which we focus in this
paper. In this section, we will discuss previ-
ous works done in this field.

3.1 Sentence-BERT
BERT and its variants have excellent results
on the sentence-pair tasks (e.g., sentence sim-
ilarity). Sentences are passed to the trans-
former network (BERT), which predicts the
target value. There is one problem with this
approach, assume we have 100 sentences, and
the task is sentence similarity. We will have
4950(100∗ (100−1)/2) pair of sentences. This
is no problem for our system. Now, assume
instead of 100, we have 10,000 sentences. Now
we will have 49995000((10000 ∗ (10000− 1)/2)
pair of sentences, which will take about 65
hours for inference computation. The solution
which comes to our mind is to use the sentence
embeddings obtained from BERT (averaging
or using [CLS] token), but it performs worse
than using glove embeddings.

Sentence-BERT uses siamese network architec-
ture to alleviate these problems, which we will
see in further sections.

3.1.1 Architecture
Sentence-BERT uses the siamese network to
reduce the time complexity at the time of infer-
ence. Figure 2 (Reimers and Gurevych, 2019)
shows the architecture of the siamese network.

Figure 2: Sentence-BERT Siamese Network

Sentence A and Sentence B are given as
an input to the BERT (which shares weights),
then there is a pooling layer from which we get
embeddings of fixed size length (u and v). u,
v, and |u-v| are concatenated and multiplied
with the trainable weight. Different objective
functions are used for training this network,
which we will discuss in the next section.

3.1.2 Training
The architecture of the siamese network is
shown in figure 2 (Reimers and Gurevych,
2019). We can see that there is a pooling layer
added after BERT to obtain embeddings of
the fixed size. The pooling strategy can be
MAX pooling, MEAN pooling, or just taking
the output of [CLS] token. Different objec-
tive functions (Reimers and Gurevych, 2019)
which can be used for training the network.

• Classification Objective Function:
Cross-Entropy loss is generally used for
the classification objective. u, v, |u-v| (see
figure 3.1.1) are concatenated and multi-
plied by the trainable weight (Wt), then
softmax is used for classification.

o = softmax(Wt(u, v, |u− v|))

• Regression Objective Function: Co-
sine similarity is computed between u and
v vectors (see figure 3.1.1), then MSE is
used as the objective function.

• Triplet Objective Function: Triplet
consists of an anchor sentence (a), posi-
tive sentence (p), and negative sentence
(n). We want the embeddings of the an-
chor sentence and positive sentence to be
as close as possible, and the embeddings
of the anchor sentence and negative sen-
tence should be as distant as possible.

loss = max(||sa − sp|| − ||sa − sn||+ ϵ, 0)

where sa is the embedding of the anchor
sentence, sp is the embedding of the posi-
tive sentence, sn is the embedding of the
negative sentence.

3.1.3 Results
Figure 1 (Reimers and Gurevych, 2019) shows
the results of this model on various datasets.

We can see from this result that Sentence
BERT is giving the state of the art results in
almost all the datasets and tasks. It is per-
forming consistently better, meaning sentence
BERT gives sentence embeddings with seman-
tic meaning embedded in them.
Table-2 (Reimers and Gurevych, 2019)

shows the result on NLI and STSb datasets
with three different pooling strategies. We can
use MEAN, MAX, or CLS pooling techniques.
By default MEAN pooling strategy should be
used. We can see the same from the results.

3.2 Language Model Pre-training for
Dense Passage Retrieval

Dense Retrieval models are very hard to train,
it requires a heavily engineered finetuning pro-
cess. To deal with this problem, the authors
used Condenser (see section 3) network to pre-
train the LM model. CoCodenser is an exten-
sion to Condenser. In CoCodenser contrastive
loss is also used to warm up the passage em-
bedding space.

3.2.1 Condenser
The condenser (Gao and Callan, 2021) con-
sists of three types of layers (each consisting
of a stack of transformer blocks). Each type of
layer serves different purposes. Figure 3 (Gao
and Callan, 2021) shows the architecture of
the condenser.

Figure 3: Condenser

First, the input sentence is given to the early
layers, then the late layers (see figure (see fig-
ure 3 (Gao and Callan, 2021)), here comes the
exciting part, input to head layers is given by

Model MR CR SUBJ MPQA SST TREC MRPC Avg.
Avg. GloVe embeddings 77.25 78.30 91.17 87.85 80.18 83.0 72.87 81.52
Avg. fast-text embeddings 77.96 79.23 91.68 87.81 82.15 83.6 74.49 82.42
Avg. BERT embeddings 78.66 86.25 94.37 88.66 84.40 92.8 69.45 84.94
BERT CLS-vector 78.68 84.85 94.21 88.23 84.13 91.4 71.13 84.66
InferSent - GloVe 81.57 86.54 92.50 90.38 84.18 88.2 75.77 85.59
Universal Sentence Encoder 80.09 85.19 93.98 86.70 86.38 93.2 70.14 85.10

SBERT-NLI-base 83.64 89.43 94.39 89.86 88.96 89.6 76.00 87.41
SBERT-NLI-large 84.88 90.07 94.52 90.33 90.66 87.4 75.94 87.69

Table 1: Results

NLI STSb
Pooling Strategy
MEAN 80.78 87.44
MAX 79.07 69.92
CLS 79.80 86.62

Table 2: Results (Classification Objective)

the late and early layers. Late layers give in-
put to the CLS token, and the early layers give
input to all other tokens. If the model wants
to use the late layers, it is forced to utilize
the CLS token. This way, the CLS token will
be trained to generate meaningful embeddings.
The objective function used to train this net-
work is the MLM objective function.

Lmlm =
∑

i∈masked

CrossEntropy(Whcdi , xi)

3.2.2 coCondenser

coCondenser (Gao and Callan, 2021) uses con-
denser architecture (see figure 3). coCon-
denser uses MLM with contrastive loss. While
CLS token in condenser network contains sen-
tence embedding, inner product/dot product
between pair of sentences with same semantic
meaning will not be high because condenser
network is not trained in a way that it should
give similar embeddings to the sentences with
same semantic meaning. coCondenser elim-
inates this problem by introducing a con-
trastive learning objective. The contrast learn-
ing objective ensures that similar sentences
have a high inner product, and sentences with
different semantic meanings should have an in-
ner product near zero.

Lco
ij = − log exp(< hi1, hi2 >)∑n

k=1

∑2
l=1 Iij!=kl exp(< hij , hkl >)

L =
1

2n

n∑
i=1

2∑
j=1

[Lmlm
ij + Lco

ij]

3.3 Results
The datasets used for experiments are MS-
MARCO, Natural Question Test, and Trivia
QA Test.

Figure 4: Results

Figure 4 (Gao and Callan, 2021) shows the
results of the experiments. The metrics used
are MRR@10 (mean reciprocal rank) (higher
the better) and R@k (higher the better). We
can see from the result that the coCondenser
performs better than the condenser network
by a significant margin. It is due to the con-
trastive loss. coCondenser is performing con-
sistently better on all three datasets, which
shows that coCondenser gives sentence embed-
dings with embedded semantic meanings.

3.4 UnifiedQA
Question Answering has different formats,
such as Extractive span selection, multiple-
choice, Abstractive, and Confirmation type.

For all these different formats, different mod-
els are designed, often with different archi-
tectures. These boundaries between models
should not exist. Human beings do not think
this way.

Figure 5: Examples of different formats of Ques-
tions

The authors made a single model and
showed that such boundaries are not required.
The unified model performs equal to or better
than the models designed specifically for han-
dling a particular type of format.

UnifiedQA is a single model which can an-
swer all types of questions. The architecture
is the same for all formats of questions. Fig-
ure 5 (Khashabi et al., 2020) shows an exam-
ple of questions of each format, i.e., Extrac-
tive span selection, multiple-choice, Abstrac-
tive, and Confirmation type.

3.4.1 Datasets
Datasets used for the training are from all
four types of formats of question answer-
ing. 5 extractive datasets, 3 abstractive
datasets, 9 multiple-choice datasets, and 3
yes/no datasets are used for the experiments.

Figure 6 (Khashabi et al., 2020) shows all
20 datasets which are used for training. Some
of the datasets have paragraphs, while some
do not have paragraphs. For example, ARC
does not have paragraphs. SQUAD 2.0 (Ra-
jpurkar et al., 2018) has idk-type questions,
which means that some question cannot be an-

swered by the given paragraph, while all other
does not contain idk-type questions.

Figure 7: Statistics of the Datasets

Figure 7 (Khashabi et al., 2020) shows the
statistics of the datasets. The table also shows
the input length, output length, and best-
published result on that particular dataset. If
we combine all the datasets, 1.5 Million Ques-
tions are used to train the model. Average
answer lengths are from 1 word to 20.2 words.

3.4.2 Encoding

Datasets that will be used for training are
of different types. Some contain paragraphs,
while some do not. Some dataset types are
MCQ types, while others are not. Naturally,
the question arises of how we can give input
to any model as there are different types of
datasets. There must be the same or simi-
lar way to give input to the model. The au-
thors proposed that all datasets will be en-
coded in one particular format. The format
is question options (if present) paragraph (if
present)). All the data points present in the
dataset will be encoded in this particular for-
mat.

Figure 6: Datasets

Figure 8: Text-to-Text Encoding

Figure 8 (Khashabi et al., 2020) shows
the example of encoding for all varieties of
datasets. Notice that the encoding is the same
for all types of datasets. Now we can give any
question from the dataset as an input to the
model.

3.4.3 Model

The model used is T5 (Raffel et al., 2020) (T5
for conditional generation). The input to the
model is the encoding which is described in
the previous section. The output is a word or
a sentence. Figure 9 (Khashabi et al., 2020)
shows the pre-training and finetuning of the
T5 model.

Figure 9: T5

3.4.4 Results
The author hypothesizes that the boundaries
between different formats are unnecessary; in
fact, datasets of one format can help the model
answer the question of different formats.

Figure 10: UnifiedQA Results

Figure 10 (Khashabi et al., 2020) shows the
same. Unified QA, on average, performs bet-
ter than all the dedicated models combined,
showing that datasets of one format can help
the model answer the question of a different
format.

3.5 Dense passage retrieval for
open-domain question answering

This section will discuss another technique
that uses dense vectors to retrieve the relevant
paragraphs. Similar to SentenceBERT, this
technique also generates embedding for ques-
tions and paragraphs. The major difference is
that the same model generates the embedding
of question and paragraph in the case of sen-
tenceBERT. In contrast, in the case of DPR

Dataset Train Dev Test
Natural Questions 79,168 58,880 8,757 3,610
TriviaQA 78,785 60,413 8,837 11,313
WebQuestions 3,417 2,474 361 2,032
CuratedTREC 1,353 1,125 133 694
SQuAD 78,713 70,096 8,886 10,570

Table 3: Number of questions in the Datasets

(Karpukhin et al., 2020), a different model gen-
erates the embedding for the question and pas-
sages.

3.5.1 Training
The authors finetuned two independent BERT
to get the embedding of questions and pas-
sages. The loss function they used ensures
that embedding of question and relevant pas-
sage is similar and embedding of the question
with other passages is not similar. Naturally,
we need a training dataset that contains ques-
tions paired with relevant passages for positive
examples and questions paired with irrelevant
passages for negative examples.

Negative Examples
To generate negative examples, the authors
used random sampling from positive passages
paired with other questions which appear in
the training set. Using this technique, we can
get negative examples and train the network.

3.5.2 Dataset
The authors used various datasets to train the
network. The datasets used for training are
shown in table-3 (Karpukhin et al., 2020). The
figure shows the number of question passage
pairs in the train, dev, and test set.

3.5.3 Results
Metrics used for comparing different models
are top-20 and top-100. Top-20 accuracy is
the percentage of the top 20 retrieved pas-
sages containing the answer. Top-100 accu-
racy means the percentage of top 100 retrieved
passages that contain the answer.

Table-4 (Karpukhin et al., 2020) shows the
result of the DPR. We can see from the ta-
ble that DPR gives state-of-the-art in all five
datasets.

3.6 TAPAS: Weakly Supervised Table
Parsing via Pre-training

TAPAS (Herzig et al., 2020) uses BERT (De-
vlin et al., 2018) like architecture. The table
is flattened into words, then converted into to-
kens. The input to the model is a ”question
[SEP] flattened table”. The authors added two
classification layers, one for selecting cells and
the other for selecting the aggregation opera-
tor. Figure-11 (Herzig et al., 2020) shows the

Figure 11: TAPAS Architecture

architecture of the model. We can see that one
classification layer selects the aggregation op-
erator and the other classification layers select
the subset of table cells.

3.6.1 Embedding of the Table
Along with the token embedding few more
things are given as an input to the model. Po-
sitional encoding is the same as in BERT. Seg-
ment embedding can take two different values,
0 and 1. It takes value 0 if the token is of
query, and it takes value one if the token is
of the table. Column embedding contains the
column number of the cell in the table. Sim-
ilarly, the row number contains the cell’s row
number in the table. Figure-12 (Herzig et al.,

Training Retriever Top-20 Top-100
NQ TriviaQA WQ TREC SQuAD NQ TriviaQA WQ TREC

None BM25 59.1 66.9 55.0 70.9 68.8 73.7 76.7 71.1 84.1

2* Single DPR 78.4 79.4 73.2 79.8 63.2 85.4 85.0 81.4 89.1
BM25+DPR 76.6 79.8 71.0 85.2 71.5 83.8 84.5 80.5 92.7

2* Multi DPR 79.4 78.8 75.0 89.1 51.6 86.0 84.7 82.9 93.9
BM25 + DPR 78.0 79.9 74.7 88.5 66.2 83.9 84.4 82.3 94.1

Table 4: Results

Figure 12: Table Embedding

2020) shows an example of the table embed-
ding in the same figure.

3.6.2 Pre-training
Authors mined text and tables fromWikipedia
to pre-train the model. Pre-training objective
is similar to the BERT, which is masked lan-
guage modeling. The algorithm masks some of
the table’s cells, and the end task is to predict
those masked tokens. This way, the model can
learn interesting correlations between the task
and the table’s cells.

3.6.3 Finetuning
There can be two cases, first is that the answer
to the question is directly a subset of cells, or
the answer to the question is some aggregator
operator on those subsets of cells.

Case1: Cell Selection
For cell selection, the loss is given as:

WIKISQL WIKITQ SQA
Logical Form X X
Conversational X X
Aggregation X
Examples 80654 22033 17553
Tables 24241 2108 982

Table 5: Datasets Statistics

Final loss is a linear combination of all three
losses.

3.6.4 Case2: Scaler Answer

In this case, the answer is a number that may
or may not appear in the table. Instead, it is
the aggregator of the subset of cells.

Where,

Model ALL SEQ Q1 Q2 Q3
Pasupat and Liang (2015) 33.2 7.7 51.4 22.2 22.3
Neelakantan et al. (2017) 40.2 11.8 60.0 35.9 25.5
Iyyer et al. (2017) 44.7 12.8 70.4 41.1 23.6
Sun et al. (2018) 45.6 13.2 70.3 42.6 24.8
Müller et al. (2019) 55.1 28.1 67.2 52.7 46.8

TAPAS 67.2 40.4 78.2 66.0 59.7

Table 6: Result on SQA dataset

Model Test T 2

Pasupat and Liang (2015) 37.1
Neelakantan et al. (2017) 34.2
Haug et al. (2018) 34.8
Zhang et al. (2017) 43.7
Liang et al. (2018) 43.1
Dasigi et al. (2019) 43.9
Agarwal et al. (2019) 44.1
Wang et al. (2019) 44.5

TAPAS 42.6
TAPAS (pre-trained on WIKISQL) 48.7
TAPAS (pre-trained on SQA) 48.8

Table 7: Result on WIKITQ dataset

Now, loss is given by:

Where,

Final loss is the linear combination of above
two losses.

3.6.5 Datasets
The statistics of datasets used for training and
finetuning is shown in the table 3.6.5 (Herzig
et al., 2020).
We can see from table-7 (Herzig et al., 2020)

that the authors used three different datasets,
namely, WIKISQL (Hwang et al., 2019), WIK-
ITQ (Pasupat and Liang, 2015), and SQA
(Iyyer et al., 2017). All three are different
in some aspects, and all three are the same
in some aspects. For example, WIKISQL has
a logical form, whereas WIKITQ and SQA do
not have a logical form. SQA is conversational,
while WIKISQL and WIKITQ are not conver-
sational. WIKISQL and WIKITQ contain ag-
gregation operators, while SQA does not. We
can see authors used datasets that vary in na-
ture.

3.6.6 Results
Table-6 (Herzig et al., 2020) shows the accu-
racy of the WIKITQ dataset. We can see that
TAPAS (pre-trained on SQA) gives state-of-
the-art accuracy.

3.7 Knowledge Graph Embedding
Based Question Answering

Knowledge Graph Embedding Based Ques-
tion Answering (KGEQA) (Huang et al., 2019)
aims to solve the question-answering task on
the knowledge graph. The approach we will
discuss here aims to answer simple questions
on the knowledge graph. First, we should
understand what the definition of the simple
question is.

The question can be answered unambiguously
if we know the head entity and predicate. The
answer is the tail entity. Suppose we ask
”When was Dhoni born?” from the knowledge
graph. This can be answered if we know
the head entity (”Dhoni”) and the predicate
(”born”), then the answer is the tail entity (”7
July 1981”). This is an example of a simple
question. We will discuss an algorithm (Huang
et al., 2019) to answer the simple question,
which uses the knowledge graph embeddings.

Datasets Before understanding the algo-
rithm, first, we should understand the data
which we need for training this algorithm. We
need a knowledge graph (from which the ques-
tions will be answered), we need the simple
questions (input to the model for training),
and we also need the triplet (head entity,
predicate/relation, tail entity) for training the
model.

Figure 13: Statistics of the Dataset

Figure 13 (Huang et al., 2019) show the
statistics of the dataset. Freebase is used
for the knowledge graph, the simple question
which can be answered if one knows the head
entity and the predicate of the free base is also
given with the dataset.

Our goal is to find the head entity and the
predicate from the knowledge graph. Then,
we can easily find the tail entity and thus our
answer.

Architecture
The basic idea of the algorithm is simple. We
need the head entity and predicate from the
question. The first knowledge graph is embed-
ded into a vector of lower dimensions. From
the question, we predict the head entity em-
bedding and the predicate embedding. We can
calculate/predict the tail entity embedding us-
ing the entity embedding and the predicate
embedding (link prediction task). Now the
triplet/fact (h, r, t) closest to this predicted
triplet is chosen as the answer. Figure 14
(Huang et al., 2019) shows the architecture of
the model. We can easily see the above steps
in graphical format. Predicate learning, Head
entity learning, Head entity detection model,
and finding the closest facts are the most im-
portant component of the model. In the next
sections, we will look into that.

3.7.1 Predicate and Head Entity
Learning Model

Basically, we have to give questions as input to
the model. The supervision of the model is the
predicate embedding (in the case of the Pred-
icate learning model) and the Head entity (in
the case of the Head entity learning model).

We can use any neural network model. Au-
thors used Bi-directional LSTM with attention
to predict the required embedding.

Figure 15: Architecture of the Predicate/Head En-
tity learning model

Figure 15 (Huang et al., 2019) shows the
model’s architecture. the layers of the forward-
LSTM and backward-LSTM are concatenated,
attention weights are calculated, then the con-

Figure 14: Overall Architecture

text vector is computed. It is concatenated
with the original word embedding (residual
connection). The average is taken element-
wise to get the predicted embeddings.

αj are the attention weights.

3.7.2 Head Entity Detection Model

There are 15 Million entities in the Freebase
knowledge graph. This may lead to a problem.
Remember that the last step of the algorithm
is to find the fact closest to the predicted fact.
Search space will be huge in the large knowl-
edge graphs.

The authors use a reasonable assumption
(Huang et al., 2019) to solve this problem. The
Head entity will be from the question itself.
This assumption is valid, but not every word
in the question can be a head entity. The Head
Entity Detection model detects which word in
the question can be the head entity.

Figure 17: Head Detection Model

Figure 17 (Huang et al., 2019) shows the ar-
chitecture of the head entity detection model.
This is the typical bi-directional LSTM archi-
tecture with no attention. The last layer con-
sists of two neurons (Indicating whether the
token can be an Entity name token or not)

3.7.3 Joint Distance Metric
Now we have the predicted head entity, predi-
cate entity, and set of all possible head entities.
We must find the fact in the knowledge graph
closest to the expected point. We need an ob-
jective function to see that. The first set of
candidate facts is collected based on the out-
put of the head entity detection model. Let
us call the set of candidate facts by C. The
objective function used by the author (Huang
et al., 2019) is :

The first three terms find the fact closest
to the predicted fact. The last two terms com-
pute the similarity between the two words (one
predicted by the head entity model and the

Figure 16: Embedding Layer

other the candidate fact).

The whole algorithm is described in the figure
18 (Huang et al., 2019).

Figure 18: Algorithm KGEQA

3.8 K-BERT
Integrating knowledge graphs and deep learn-
ing system is vital for many NLP tasks such
as question-answering, sentiment analysis, etc.
This section will discuss one method to incor-
porate the knowledge graph with a deep learn-

ing system.

3.8.1 Methodology
Integrating knowledge graphs and deep learn-
ing system is a challenging task. To incorpo-
rate both systems, K-BERT uses four different
modules. The first module is the knowledge
layer, embedding layer, seeing layer, and mask
transformers.

Figure 20: Architecture of KBERT

Figure 20 (Liu et al., 2020) shows the archi-
tecture of K-BERT. We can see that it uses
four different modules. The knowledge layer
embeds knowledge into a text using any knowl-
edge graph. We can see an example in fig-
ure 20, if the input sentence is ”Tim Cook is
currently visiting Beijing now,” then the sen-
tence tree is formed using the knowledge graph.

Figure 19: K-BERT Results

Branches of that tree contain nodes and rela-
tions from the knowledge graph.

Figure 16 (Liu et al., 2020) shows the em-
bedding layer, instead of hard positioning, K-
BERT uses soft positioning. Hard position-
ing is giving numbers to words in the input
sentence, which BERT does. Soft position-
ing gives numbers to branches also. It consid-
ers every branch a new sentence. Visible ma-
trix is constructed using the soft positioning
as shown in the figure 16. Third layer which is
seeing layer also uses the soft positioning, as
the name suggests which word can ”see” other
word is determined by the seeing layer. A ma-
trix is created based on whether the word is in
same branch or not.

Mij =

{
0 wi ⊖ wj

−∞ wi ⊘ wj

Where, wi⊖wj denotes wi and wj are on the
same branch. wi⊘wj denotes they are in differ-
ent branch. Last layer is mask-self-attention,
which is an extension of self-attention. For-
mally, the mask-self-attention is

Qi+1,Ki+1, V i+1 = hiWq, h
iWk, h

iWv

Si+1 = softmax
(
Qi+1Ki+1⊤ +M√

dk

)
,

hi+1 = Si+1V i+1

(1)

where Wq, Wk and Wv are trainable model
parameters. hi is the hidden state of the i-th
mask-self-attention blocks. dk is the scaling
factor. M is the visible matrix calculated by
the seeing layer. Intuitively, if wk is invisible to
wj , theMjk will mask the attention score Si+1

to 0, which means wk make no contribution to
the hidden state of wj .

3.8.2 Experiments
Pretraining is done using various datasets like
WikiZh, and WebtextZh. the authors used
three different knowledge graph for experi-
ments namely, CN-DBpedia, HowNet, and
MedicalKG. Various open domain and domain
specific tasks are used to evaluate the K-
BERT.
Figure-19 shows the result of the K-BERT.

We can see K-BERT outperforms BERT in al-
most all the tasks except BookReview task,
which is a open-domain task. K-BERT is
specially designed for domain specific tasks.
Therefore from the results we can conclude
that integration of knowledge graph and deep
learning improves the performance of the
whole system.

4 Summary

Information Retrieval and Question Answer-
ing are important downstream tasks in NLP.
This paper shows some of the work done in
these fields. First, we saw sentence trans-
formers trained using the siamese network.
We saw that sentence transformer reduces the
time complexity of inference. We also covered
three objective functions (Classification Objec-
tive Function, Regression Objective Function,
and Triplet Objective Function). Next, we de-
scribed Condenser architecture, which is used
to pretrain the model such that the CLS token
gives powerful sentence embeddings. We also
saw the coCondenser model, which uses con-
trastive loss with MLM objective. The embed-
dings generated using this technique give even
more powerful sentence embeddings. Next,
we described UnifiedQA, which is a single
model for handling all types of formats of ques-

tions. Twenty datasets are used for training
the model. T5 model is trained using these
20 datasets, and unifiedQA produces better re-
sults than all the dedicated models combined.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

Luyu Gao and Jamie Callan. 2021. Unsuper-
vised corpus aware language model pre-training
for dense passage retrieval. arXiv preprint
arXiv:2108.05540.

Jonathan Herzig, Paweł Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Martin
Eisenschlos. 2020. Tapas: Weakly supervised
table parsing via pre-training. arXiv preprint
arXiv:2004.02349.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and
Ping Li. 2019. Knowledge graph embedding
based question answering. In Proceedings of the
twelfth ACM international conference on web
search and data mining, pages 105–113.

Wonseok Hwang, Jinyeong Yim, Seunghyun Park,
and Minjoon Seo. 2019. A comprehensive explo-
ration on wikisql with table-aware word contex-
tualization. arXiv preprint arXiv:1902.01069.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang.
2017. Search-based neural structured learning
for sequential question answering. In Proceed-
ings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1:
Long Papers), pages 1821–1831.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min,
Patrick Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen-tau Yih. 2020. Dense
passage retrieval for open-domain question an-
swering. arXiv preprint arXiv:2004.04906.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Clark, and
Hannaneh Hajishirzi. 2020. Unifiedqa: Cross-
ing format boundaries with a single qa system.
arXiv preprint arXiv:2005.00700.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,
Qi Ju, Haotang Deng, and Ping Wang. 2020.
K-bert: Enabling language representation with
knowledge graph. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34,
pages 2901–2908.

Panupong Pasupat and Percy Liang. 2015. Com-
positional semantic parsing on semi-structured
tables. arXiv preprint arXiv:1508.00305.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, Peter J Liu, et al. 2020. Ex-
ploring the limits of transfer learning with a uni-
fied text-to-text transformer. J. Mach. Learn.
Res., 21(140):1–67.

Pranav Rajpurkar, Robin Jia, and Percy Liang.
2018. Know what you don’t know: Unan-
swerable questions for squad. arXiv preprint
arXiv:1806.03822.

A Chandra Obula Reddy and K Madhavi. 2017. A
survey on types of question answering system.
IOSR Journal of Computer Engineering (IOSR-
JCE), 19(6):19–23.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Tahseen Sultana and Srinivasu Badugu. 2020. A re-
view on different question answering system ap-
proaches. Advances in decision sciences, image
processing, security and computer vision, pages
579–586.

