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What is common amongst 
these problems

 Fitting k clusters to a set of N points

 Fitting L lines to a set of points in 2-dim plane

 Tossing two coins and getting the probabilities of 
heads from each from the observations

 A tourist asking for direction from a person in a 
country where the inhabitants only lie or speak the 
truth

 Getting the arc transition probabilities in a 
probabilistic FSM

 WSD from comparable corpora of two languages in 
unsupervised setting

 Fitting Gaussian distributions to a set of points



Maximum Likelihood 
considerations
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Pushpak Bhattacharyya
CSE Dept., 

IIT Bombay 

EM (“how to know when you do not 

completely know”)

29th August, 2012



Parameter estimation: an 
exercise in maximization

 Problem:- Given no of heads
obtained out of N trials, what is
probability of obtaining head?

 In case of one coin

 Let probabilty of obtaining head =

This implies probability of obtaining exactly Nh

successes (heads) out of N trials (tosses)
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Most “likely” value of PH

 To obtain the most likely value of       , 
we take ln of the above equation and 
differentiate wrt 
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Value of PH in absence of any 
information

 Suppose we know nothing about the 
properties of a coin then what can we 
say about probability of head ? We have 
to use the entropy E:

 Let        be the probability of head

 Let        be the probability of head
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Entropy

• Entropy is defined as sum of the 
multiplication of probability and log of 
probability with – sign.It is the 
instrument to deal with uncertainity.

 So best we can do is to maximize the 
entropy.Maximize E subject to the eq 
(1) and get the value of        .HP



Finding PH and PT
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A deeper look at EM

 Problem: two coins are tossed, 
randomly picking a coin at a time. The 
number of trials is N, number of heads 
is NH and number of tails is NT. 

 How can one estimate the following 
probabilities:

 p: prob. Of choosing coin1

 p1: prob. Of head from coin1

 p2: prob. Of head from coin2



Expectation Maximization (1 Coin 
Toss)

 Toss 1 coin
 K = Number of heads
 N = Number of trials

 X = observation of tosses
= <x1>, <x2>,<x3>…<xn> - each can take values 

0 or 1

 p = probability of Head
=                  

(as per MLE – maximizes probability of observed 
data) 
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Expectation Maximization (1 Coin 
Toss)
 Y = <x1, z1 >, <x2, z2>,<x3, z3>…<xi, 

zi>…<xn, zn>

 xi = 1 for Head

 = 0 for Tail

 zi = indicator function 

 = 1 if the observation comes from the 
coin

 In this case, zi = 1 
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Expectation Maximization (2 
coin toss)

 X = <x1>, <x2>,<x3>…<xi>…<xn> 

 Y = <x1, z11, z12>,<x2, z21, z22>,<x3, z31, 
z32>…<xi, zi1, zi2>…<xn, zn1, zn2>
 xi = 1 for Head

 = 0 for Tail

 zi1 = 1 if the observation comes from coin 1 else 0

 zi2 = 1 if the observation comes from coin 2 else 0

 only 1 of zi1 and zi2 can be 1

 xi is observed while zi1 and zi2 is unobserved 



Expectation Maximization (2 
coin toss)

 Parameters of the setting
 p1 = probability of Head for coin 1

 p2 = probabilily of Head for coin 2

 p = probability of choosing for coin 1 for the toss

 Express p, p1 and p2 in terms of observed and 
unobserved data
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Expectation Maximization trick
 Replace zi1 and zi1 in p, p1, p2 with E(zi1)

and E(zi2)

 zi1 : event of x=xi given that observation is 
from coin 1

 E(zi1) = expectation of zi1
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Summary
 X = <x1>, <x2>,<x3>…<xi>…<xn> 

 Y = <x1, z11, z12>,<x2, z21, z22>,<x3, z31, 
z32>…<xi, zi1, zi2>…<xn, zn1, zn2>
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Observations

 Any EM problem has observed and
unobserved data

 Nature of distribution
 two coins follow two different binomial

distributions

 Oscillation between E and M
 convergence to local maxima or minima

guaranteed

 greedy algorithm



EM: Baum-Welch algorithm: 
counts

String = abb aaa bbb aaa

Sequence of states with respect to input symbols

a, b

a,b

q r
a,b

rqrqqqrqrqqrq aaabbbaaabba


o/p seq

State seq

a,b



Calculating probabilities from table

Table of counts

T=#states

A=#alphabet symbols

Now if we have a non-deterministic transitions then 
multiple state seq possible for the given o/p seq (ref. to 
previous slide’s feature). Our aim is to find expected 
count through this.
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Interplay Between Two 
Equations
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Illustration

a:0.67

b:1.0

b:0.17

a:0.16

q r

a:0.04

b:1.0

b:0.48

a:0.48

q r

Actual (Desired) HMM

Initial guess



One run of Baum-Welch algorithm: string 
ababb

P(path)

q r q r q q 0.00077 0.00154 0.00154 0 0.0007
7

q r q q q q 0.00442 0.00442 0.00442 0.0044
2

0.0088
4

q q q r q q 0.00442 0.00442 0.00442 0.0044
2

0.0088
4

q q q q q q 0.02548 0.0 0.000 0.0509
6

0.0764
4

Rounded Total  0.035 0.01 0.01 0.06 0.095

New Probabilities (P)  0.06
=(0.01/(0.
01+0.06+

0.095)

1.0 0.36 0.581

q
b

q q
a

q r
a

q  q
b

r a ba ab bb bba

*      ε is considered as starting and ending symbol of the input sequence 
string.

State sequences

Through multiple iterations the probability values will converge.



EM based unsupervised 
Approach



ESTIMATING SENSE DISTRIBUTIONS

If sense tagged Marathi corpus were available, we could have 
estimated

But such a corpus is not available



Framework: Figure 1 and 
Figure 2



E-M steps



Points to note…
 Symmetric formulation

 E and M steps are identical except for the change in 
language

 Either can be treated as the E-step, making the other as the 
M-step

 A back-and-forth traversal over translation correspondences 
in the two languages

 Does not require parallel corpus – only in-domain corpus is 
needed



In General..



Experimental Setup

 Languages: Hindi, Marathi
 Domains: Tourism and Health (largest domain-specific sense tagged corpus)
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Algorithms Being Compared

 EM (our approach)

 Personalized PageRank (Agirre and Soroa, 2009)

 State-of-the-art bilingual approach 
(using Mutual Information) (Kaji and Morimoto, 

2002)

 Random Baseline

 Wordnet First sense baseline 
(supervised baseline) 
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Results

 Performs better than other state-of-the-art knowledge 
based and unsupervised approaches

 Does not beat the Wordnet First Sense Baseline which is a 
supervised baseline
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